We prove that a balanced Boolean function on $S_n$ whose Fourier transform is highly concentrated on the first two irreducible representations of $S_n$ is close in structure to a dictatorship, a function which is determined by the image or pre-image of a single element. As a corollary, we obtain a stability result concerning extremal isoperimetric sets in the Cayley graph on $S_n$ generated by the transpositions.
Our proof works in the case where the expectation of the function is bounded away from 0 and 1. In contrast, the preceding paper deals with Boolean functions of expectation $O(1/n)$ whose Fourier transform is highly concentrated on the first two irreducible representations of $S_n$. These need not be close to dictatorships; rather, they must be close to a union of a constant number of cosets of point-stabilizers.