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Variants Deterministic: output always correct
Randomized: output correct w.p. 1–ε
Distributional: output correct on 1–ε of inputs

Cost: CC = maximum number of bits transmitted
Minimax: randomized = worst distributional
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h, Randomized: O(log(1/ε))
(with public coins) 

Randomized: O(log(n/ε))
(with only private coins) 



Greater than on n-bit strings
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Using binary search, find maximal common prefix of x,y
Following bit reveals which input is larger

Total cost: O(logn)

Cost per round: O(1)
Number of rounds: logn

(randomized, constant ε)

01101011

01100110

x
y



Some hard functions
(randomized)

Inner product: x1y1⊕⋯⊕xnyn

Randomized cost: n+1

Set (non-)disjointness: x1y1∨⋯∨xnyn

Randomized cost: Θ(n)
Trivial protocol can be improved by constant factor



Why are they hard?
(randomized)

Inner product: x1y1⊕⋯⊕xnyn

Hard since involves computing n many ANDs

Set (non-)disjointness: x1y1∨⋯∨xnyn

Hard since involves computing n many ANDs …

How to turn this intuition into a proof?

… where answer is almost always 0 



Direct product
(randomized)

Easier question:

Cost of computing f(x1,y1),…,f(xn,yn) ≈ n ⨉ cost of computing f?

Information theory:

Cost of sending n samples of X ≈ n H(X)

Information complexity:

Cost of computing n copies of f ≈ n IC(f)



Information complexity

Goal: Cost of computing n copies of f ≈ n IC(f)

Information complexity of protocol P wrt distribution µ :
IC(P,µ) = I(Π;Y|X) + I(Π;X|Y), where X,Y=inputs, Π=transcript of P

“What Alice learns about Bob’s input from transcript” +

“What Bob learns about Alice’s input from transcript”
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Information complexity

Goal: Cost of computing n copies of f ≈ n IC(f)

Information complexity of protocol P wrt distribution µ :
IC(P,µ) = I(Π;Y|X) + I(Π;X|Y), where X,Y=inputs, Π=transcript of P

“What Alice learns about Bob’s input from transcript” +

“What Bob learns about Alice’s input from transcript”

IC of function f wrt distribution µ  and error ε:
IC(f,µ,ε) = min IC(P,µ) over all P computing f with error ε wrt µ
IC of function f with error ε:
IC(f,ε) = max IC(f,µ,ε) over all distributions µ



Properties of information complexity
IC(P,µ) = I(Π;Y|X) + I(Π;X|Y), where X,Y=inputs, Π=transcript of P
IC(f,µ,ε) = min IC(P,µ) over all P computing f with error ε wrt µ
IC(f,ε) = max IC(f,µ,ε) over all distributions µ

IC lower bounds communication: IC(f,µ,ε)≤CC(f,µ,ε)

Direct product: IC(f⊗g,µ⊗ν,ε*)=IC(f,µ,ε)+IC(g,ν,ε)

“Source coding theorem”: CC(fn,µn,ε*)≈n IC(f,µ,ε)
*error per copy



Properties of information complexity
IC(P,µ) = I(Π;Y|X) + I(Π;X|Y), where X,Y=inputs, Π=transcript of P
IC(f,µ,ε) = min IC(P,µ) over all P computing f with error ε wrt µ
IC(f,ε) = max IC(f,µ,ε) over all distributions µ

IC lower bounds communication: IC(f,µ,ε)≤CC(f,µ,ε)

Direct product: IC(f⊗g,µ⊗ν,ε*)=IC(f,µ,ε)+IC(g,ν,ε)

“Source coding theorem”: CC(fn,µn,ε*)≈n IC(f,µ,ε)
No analog of Shannon–Fano:

Gap between IC and CC can be exponential!

(True even when measuring average number of bits communicated)

*error per copy



Exact complexity of set disjointness

“Source coding theorem”: CC(fn,µn,ε*)≈n IC(f,µ,ε)
Version for OR: CC(⋁ of n copies of f,o(1))≈n IC0(f,0)

where IC0(f,0)=max IC(f,µ,0) over µ supported on f–1(0)

Example: IC0(AND,0) = 0.4827…
Conclusion: CC(set-disjointness,o(1))≈0.4827… n

No explicit protocol is known!



Buzzer protocol

Optimal protocol for AND (for symmetric distributions)
Alice gets a bit x, Bob gets a bit y
Alice chooses a random ta∈[0,1]

Bob chooses a random tb∈[0,1]
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Buzzer protocol

Optimal protocol for AND (for symmetric distributions)
Alice gets a bit x, Bob gets a bit y
Alice chooses a random ta∈[0,1]

Bob chooses a random tb∈[0,1]
A timer counts from 0 to 1 continuously

At time 1: protocol outputs 1 

At time ta: if x=0, Alice presses buzzer, protocol outputs 0
At time tb: if y=0, Bob presses buzzer, protocol outputs 0{



Generalized protocols

The buzzer protocol is not a real protocol!
It can be discretized to a real protocol with r rounds

whose information complexity is OPT+Θ(1/r2). 

Challenge:

Define a generalized notion of protocols which achieves

the optimal information complexity exactly for every f.  

OPT cannot be achieved using any real protocol!



More open questions

Amortized communication complexity for zero error?

Information complexity for multiple parties?

Is CC(f) polynomial in IC(P) log CC(P)?
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