Structure theorems for almost low degree functions

Yuval Filmus

Institute for Advanced Study

April 8, 2014
1. **Theorems**
 - Boolean cube
 - Slice (Johnson scheme)
 - Symmetric group

2. **Applications**
 - Theorems
 - Connection to structure theorems
 - Multiple intersections

3. **Proofs**
 - Almost linear functions on slice
 - Almost linear functions on S_n (sparse case)
 - Almost linear functions on S_n (balanced case)
Section 1

Theorems
Suppose $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ is linear:

$$f(x_1, \ldots, x_n) = c_0 + \sum_{i=1}^{n} c_i x_i.$$
Suppose \(f: \{-1,1\}^n \rightarrow \{-1,1\} \) is linear:

\[
f(x_1, \ldots, x_n) = c_0 + \sum_{i=1}^{n} c_i x_i.
\]

Theorem: \(f \) depends on at most one coordinate.
Almost linear functions

Suppose $f: \{-1, 1\}^n \to \{-1, 1\}$ is almost linear:

$$\mathbb{E} \left[\left(c_0 + \sum_{i=1}^{n} c_i x_i - f \right)^2 \right] = \epsilon.$$

Distribution over $\{-1, 1\}^n$: uniform or μ_p.

$$\mu_p(x_1, \ldots, x_n) = p^{\#\{i: x_i = -1\}} (1 - p)^{\#\{i: x_i = 1\}}.$$
Almost linear functions

Suppose $f : \{-1, 1\}^n \to \{-1, 1\}$ is almost linear:

$$\mathbb{E} \left[\left(c_0 + \sum_{i=1}^{n} c_i x_i - f \right)^2 \right] = \epsilon.$$

Distribution over $\{-1, 1\}^n$: uniform or μ_p.

$$\mu_p(x_1, \ldots, x_n) = p^{|\{i: x_i = -1\}|} (1 - p)^{|\{i: x_i = 1\}|}.$$

Theorem: f is $O(\epsilon)$-close to a linear Boolean function.

(Friedgut–Kalai–Naor, 2002)
If \(f : \{-1, 1\}^n \to \{-1, 1\} \) has degree \(d \) then
\(f \) depends on \(\leq d2^d \) variables.

\((\text{Nisan–Szegedy, 1994})\)
If $f : \{-1, 1\}^n \to \{-1, 1\}$ has degree d then f depends on $\leq d2^d$ variables.

(Nisan–Szegedy, 1994)

If $f : \{-1, 1\}^n \to \{-1, 1\}$ is ϵ-close to a function of degree d then f is $O(\epsilon)$-close to a Boolean function of degree d.

(Kindler–Safra, 2002)
The slice is \(\binom{[n]}{k} \).

Usually assume \(\delta \leq \frac{k}{n} \leq 1 - \delta \).

Can identify the slice with

\[
\left\{ (x_1, \ldots, x_n) \in \{\pm 1\}^n : \sum_{i=1}^n x_i = 2k - n \right\}.
\]
Suppose $f : \binom{[n]}{k} \rightarrow \{-1, 1\}$ is linear:

$$f(x_1, \ldots, x_n) = \sum_{i=1}^{n} c_i x_i.$$

Theorem: f depends on at most one coordinate.
Almost linear functions

Suppose $f: \binom{[n]}{k} \to \{-1, 1\}$ is almost linear:

$$\mathbb{E} \left[\left(\sum_{i=1}^{n} c_i x_i - f \right)^2 \right] = \epsilon.$$

Uniform distribution on $\binom{[n]}{k}$.

Theorem: f is $O(\epsilon)$-close to a linear Boolean function.

(F. et al., 2013+)
If \(f : \binom{[n]}{k} \rightarrow \{-1, 1\} \) has degree \(d \) then \(f \) depends on \(\exp(d) \) variables.

(F. et al., 2013+)
If \(f : \binom{[n]}{k} \to \{-1, 1\} \) has degree \(d \) then
\(f \) depends on \(\exp(d) \) variables.

\((F. \ et \ al., \ 2013+)\)

Conjecture: If \(f : \binom{[n]}{k} \to \{-1, 1\} \) is \(\epsilon \)-close to a function of degree \(d \) then \(f \) is \(O(\epsilon) \)-close to a \textit{Boolean} function of degree \(d \).
The symmetric group is S_n.

Can identify S_n with permutation matrices $X = (x_{ij})_{i,j=1}^n$. Each entry is 0/1, each row and each column sums to 1.
Suppose \(f : S_n \to \{0, 1\} \) is linear:

\[
f(X) = \sum_{i,j=1}^{n} c_{ij} X_{ij}.
\]

Theorem: \(f \) depends on at most one row or one column.

\[
f(\pi) = \llbracket \pi(i) \in J \rrbracket
\]

or

\[
f(\pi) = \llbracket \pi^{-1}(j) \in I \rrbracket
\]

(Ellis, Friedgut and Pilpel, 2011)
Almost linear functions

Suppose \(f : S_n \rightarrow \{0, 1\} \) is almost linear:

\[
\mathbb{E} \left[\left(\sum_{i,j=1}^{n} c_{ij} x_i - f \right)^2 \right] = \epsilon.
\]

Uniform distribution on \(S_n \).

Theorem: If \(f \) is balanced, \(f \) is \(O(\epsilon^{1/7}) \)-close to a linear Boolean function.

Theorem: If \(f \) is sparse, \(f \) is \(O(\epsilon^{1/2}) \)-close to a function of the form

\[
\max(x_{i_1j_1}, \ldots, x_{i_rj_r}),
\]

i.e., characteristic function of a union of double cosets

\[
T_{ij} = \{ \pi \in S_n : \pi(i) = j \}.
\]

Sparse means \(\mathbb{E}[f] = c/n \) for small \(c \).

(Ellis, F., Friedgut, 2014)
If $f : S_n \rightarrow \{0, 1\}$ has degree d then f can be written as a sum of disjoint monomials of degree d. I.e., f is characteristic function of disjoint sum of double d-cosets $T_{i_1j_1} \cap \cdots \cap T_{i_dj_d}$.

(Ellis, Friedgut and Pilpel, 2011)
If \(f : S_n \to \{0, 1\} \) has degree \(d \) then

\(f \) can be written as a sum of disjoint monomials of degree \(d \).

I.e., \(f \) is characteristic function of disjoint sum of double \(d \)-cosets

\[T_{i_1 j_1} \cap \cdots \cap T_{i_d j_d}. \]

(Ellis, Friedgut and Pilpel, 2011)

Theorem: If \(f \) is sparse, \(f \) is \(O(\epsilon^{1/2}) \)-close to the characteristic function of a union of double \(d \)-cosets.

Sparse means \(\mathbb{E}[f] = c/n^d \) for small \(c \).

(Ellis, F., Friedgut, 2014)
Section 2

Applications
If $k < n/2$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting, then

$$|\mathcal{F}| \leq \binom{n-1}{k-1}.$$

Equality only for $\mathcal{F} = \{S \in \binom{[n]}{k} : i \in S\}$ ("star").
Erdős–Ko–Rado theorems

If $k < n/2$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting, then

$$|\mathcal{F}| \leq \binom{n - 1}{k - 1}.$$

Equality only for $\mathcal{F} = \{ S \in \binom{[n]}{k} : i \in S \}$ (“star”).

If $p < 1/2$ and $\mathcal{F} \subseteq 2^{[n]}$ is intersecting, then $\mu_p(\mathcal{F}) \leq p$.
Equality only for $\mathcal{F} = \{ S \in 2^{[n]} : i \in S \}$.

(Friedgut, 2008)
Erdős–Ko–Rado theorems

Erdős–Ko–Rado theorem (1938/1961): If $k < n/2$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting, then

$$|\mathcal{F}| \leq \binom{n-1}{k-1}.$$

Equality only for $\mathcal{F} = \{ S \in \binom{[n]}{k} : i \in S \}$ (“star”).

If $p < 1/2$ and $\mathcal{F} \in 2^{[n]}$ is intersecting, then $\mu_p(\mathcal{F}) \leq p$. Equality only for $\mathcal{F} = \{ S \in 2^{[n]} : i \in S \}$.

(Friedgut, 2008)

If $\mathcal{F} \subseteq S_n$ is intersecting, then $|\mathcal{F}| \leq (n-1)!$. Equality only for $\mathcal{F} = \{ \pi \in S_n : \pi(i) = j \}$.

(Deza–Frankl, 1977); (Cameron–Ku, 2003)
If $k < n/2$, $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is intersecting, and $|\mathcal{F}| \approx \binom{n-1}{k-1}$, then \mathcal{F} is close to a star.

(Frankl, 1987)

If $p < 1/2$, $\mathcal{F} \in 2^{[n]}$ is intersecting, and $\mu_p(\mathcal{F}) \approx p$, then \mathcal{F} is close to a star.

(Friedgut, 2008)

If $\mathcal{F} \subseteq S_n$ is intersecting and $|\mathcal{F}| \approx (n-1)!$, then \mathcal{F} is close to a star.

(Ellis, 2009)
Stability and structure theorems

Stability theorems follow from structure theorems. Example: Intersecting families in $2^{[n]}$.

Let f be characteristic function of an intersecting family. Friedgut constructs a quadratic form Q such that $\langle f, Qf \rangle = 0$.

Spectral decomposition of Q implies

$$\sum_{S \subseteq [n]} \left(-\frac{p}{1-p} \right)^{|S|} \hat{f}(S)^2 = 0.$$

Also know $\hat{f}(\emptyset) = \sum_S \hat{f}(S)^2 = \mu_p(\mathcal{F})$.
Stability and structure theorems

For characteristic function f of intersecting family \mathcal{F}:

$$\sum_{S \subseteq [n]} \left(-\frac{p}{1-p} \right)^{|S|} \hat{f}(S)^2 = 0.$$

Also know $\hat{f}(\emptyset) = \sum_S \hat{f}(S)^2 = \mu_p(\mathcal{F})$.

- $\mu_p(\mathcal{F}) \leq p$.
- If $\mu_p(\mathcal{F}) = p$ then \hat{f} is supported on first two levels.
- If $\mu_p(\mathcal{F}) \approx p$ then \hat{f} is concentrated on first two levels.

Friedgut–Kalai–Naor gives stability.
Multiple intersections

If \(n \geq (t + 1)(k - t - 1) \) and \(\mathcal{F} \) is \(t \)-intersecting, then

\[
|\mathcal{F}| \leq \binom{n - t}{k - t}.
\]

Equality only for \(\mathcal{F} = \{ S \in \binom{[n]}{k} : i_1, \ldots, i_t \in S \} \) ("\(t \)-star").

\((Frankl, 1984)\)
Multiple intersections

If $n \geq (t + 1)(k - t - 1)$ and \mathcal{F} is t-intersecting, then

$$|\mathcal{F}| \leq \binom{n - t}{k - t}.$$

Equality only for $\mathcal{F} = \{ S \in \binom{[n]}{k} : i_1, \ldots, i_t \in S \}$ ("t-star").

(Frankl, 1984)

If $p < 1/(t + 1)$ and $\mathcal{F} \subseteq 2^{[n]}$ is t-intersecting, then $\mu_p(\mathcal{F}) \leq p^t$.

Equality only for $\mathcal{F} = \{ S \in 2^{[n]} : i_1, \ldots, i_t \in S \}$.

(Friedgut, 2008)
Multiple intersections

If \(n \geq (t + 1)(k - t - 1) \) and \(\mathcal{F} \) is \(t \)-intersecting, then

\[
|\mathcal{F}| \leq \binom{n-t}{k-t}.
\]

Equality only for \(\mathcal{F} = \{ S \in \binom{[n]}{k} : i_1, \ldots, i_t \in S \} \) ("\(t \)-star").

(Frankl, 1984)

If \(p < 1/(t + 1) \) and \(\mathcal{F} \subseteq 2^{[n]} \) is \(t \)-intersecting, then \(\mu_p(\mathcal{F}) \leq p^t \).

Equality only for \(\mathcal{F} = \{ S \in 2^{[n]} : i_1, \ldots, i_t \in S \} \).

(Friedgut, 2008)

If \(n \geq C_t \) and \(\mathcal{F} \subseteq S_n \) is \(t \)-intersecting, then \(|\mathcal{F}| \leq (n - t)! \).

Equality only for \(\mathcal{F} = \{ \pi \in S_n : \pi(i_1) = j_1, \ldots, \pi(i_t) = j_t \} \).

\(C_t \) should be equal to \(2t + 1 \).

(Ellis, Friedgut and Pilpel, 2011)
Conjecture: if \(n \geq (t + 1)(k - t - 1) \), \(\mathcal{F} \) is \(t \)-intersecting, and \(|\mathcal{F}| \approx \binom{n-t}{k-t} \), then \(\mathcal{F} \) is close to a \(t \)-star.

If \(p < 1/(t + 1) \), \(\mathcal{F} \in 2^n \) is \(t \)-intersecting, and \(\mu_p(\mathcal{F}) \approx p^t \), then \(\mathcal{F} \) is close to a \(t \)-star.

\textit{(Friedgut, 2008), proof uses (Kindler–Safra, 2002)}

If \(n \geq C_t \), \(\mathcal{F} \subseteq S_n \) is \(t \)-intersecting, and \(|\mathcal{F}| \approx (n - t)! \), then \(\mathcal{F} \) is close to a \(t \)-star.

\textit{(Ellis, 2011)}
Section 3

Proofs
Proof sketch

Suppose \(f : \binom{[n]}{n/2} \to \{-1, 1\} \) is \(\epsilon \)-close to a linear function:

\[
f(x_1, \ldots, x_n) \approx \sum_{i=1}^{n} c_i x_i =: \ell.
\]

(Recall \(\sum_{i=1}^{n} x_i = 0 \).)
Proof sketch

Suppose \(f: \binom{[n]}{n/2} \rightarrow \{-1, 1\} \) is \(\epsilon \)-close to a linear function:

\[
f(x_1, \ldots, x_n) \approx \sum_{i=1}^{n} c_i x_i =: \ell.
\]

(Recall \(\sum_{i=1}^{n} x_i = 0 \).)

1. For each \(i \), either \(x_i \approx \pm 1 \) or \(x_i \approx 0 \).
Proof sketch

Suppose \(f : \binom{[n]}{n/2} \to \{-1, 1\} \) is \(\epsilon \)-close to a linear function:

\[
f(x_1, \ldots, x_n) \approx \sum_{i=1}^{n} c_i x_i =: \ell.
\]

(Recall \(\sum_{i=1}^{n} x_i = 0 \).)

1. For each \(i \), either \(x_i \approx \pm 1 \) or \(x_i \approx 0 \).
2. \(x_i \approx \pm 1 \) for at most one \(i \).
Proof sketch

Suppose $f : \binom{[n]}{n/2} \to \{-1, 1\}$ is ϵ-close to a linear function:

$$f(x_1, \ldots, x_n) \approx \sum_{i=1}^n c_i x_i =: \ell.$$

(Recall $\sum_{i=1}^n x_i = 0$.)

1. For each i, either $x_i \approx \pm 1$ or $x_i \approx 0$.
2. $x_i \approx \pm 1$ for at most one i.
3. Reduce to the case $x_i \approx 0$ for all i.

Apply Friedgut–Kalai–Naor.
Proof sketch

Suppose \(f : \binom{[n]}{n/2} \to \{-1, 1\} \) is \(\epsilon \)-close to a linear function:

\[
f(x_1, \ldots, x_n) \approx \sum_{i=1}^{n} c_i x_i =: \ell.
\]

(Recall \(\sum_{i=1}^{n} x_i = 0 \).)

1. For each \(i \), either \(x_i \approx \pm 1 \) or \(x_i \approx 0 \).
2. \(x_i \approx \pm 1 \) for at most one \(i \).
3. Reduce to the case \(x_i \approx 0 \) for all \(i \).
Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

\[\{a_1, b_1\} \times \cdots \times \{a_{n/2}, b_{n/2}\}. \]

Corresponding restriction of \(\ell \) is

\[
g(y_1, \ldots, y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i}) y_i. \]
Applying Friedgut–Kalai–Naor

A *subcube* is a subset of the slice of the form

\[\{a_1, b_1\} \times \cdots \times \{a_{n/2}, b_{n/2}\}. \]

Corresponding restriction of \(\ell \) is

\[
g(y_1, \ldots, y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i})y_i.
\]

Friedgut–Kalai–Naor over a random subcube implies

\[
\frac{n}{2} \sum_{i,j=1}^{n} (c_i - c_j)^2 = O(\epsilon).
\]
Applying Friedgut–Kalai–Naor

A subcube is a subset of the slice of the form

\[\{a_1, b_1\} \times \cdots \times \{a_{n/2}, b_{n/2}\} \].

Corresponding restriction of \(\ell \) is

\[g(y_1, \ldots, y_n) = C + \frac{1}{2} \sum_{i=1}^{n/2} (c_{a_i} - c_{b_i})y_i. \]

Friedgut–Kalai–Naor over a random subcube implies

\[\frac{n}{2} \sum_{i,j=1}^{n} (c_i - c_j)^2 = O(\epsilon). \]

Left-hand side upper bounds the variance of \(\ell \).

Since \(\nabla[\ell] = O(\epsilon) \), \(\mathbb{E}[\ell] \approx \pm 1 \). We are done since \(f \approx \ell \).
Proof sketch

Suppose \(f : S_n \to \{0, 1\} \) is sparse (\(\mathbb{E} f = c/n \)) and close to its linear projection \(\mathcal{L} \).
Proof sketch

Suppose $f : S_n \to \{0, 1\}$ is sparse ($\mathbb{E} f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = |F \cap T_{ij}|/|T_{ij}| - |F|/|S_n|$.

2. Let $h = \sum_{ij} b_{ij} x_{ij}$.

3. $\mathbb{E}[h^2] \approx 1/n \sum_{ij} b_{ij}^2$.

4. $\mathbb{E}[h^3] \approx 1/n \sum_{ij} b_{ij}^3$.

5. Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

6. Since $h \geq 0$ and h is close to Boolean, $\mathbb{E}[h^3] \geq c/n$.

7. So $\sum_{ij} b_{ij}^2 (1 - b_{ij}) \lesssim 0$.

8. So for each i, j, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.

9. Roughly c of the b_{ij} are close to 1.

F is approximated by union of the corresponding T_{ij}.

Yuval Filmus
Proof sketch

Suppose $f : S_n \to \{0, 1\}$ is sparse ($\mathbb{E}f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = \frac{|\mathcal{F} \cap T_{ij}|}{|T_{ij}|} - \frac{|\mathcal{F}|}{|S_n|}$.
2. Let $h = \sum_{ij} b_{ij} x_{ij}$.
Proof sketch

Suppose \(f : S_n \rightarrow \{0, 1\} \) is sparse (\(\mathbb{E}f = c/n \)) and close to its linear projection \(\ell \).

1. Let \(b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n| \).
2. Let \(h = \sum_{ij} b_{ij} x_{ij} \).
3. \(\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2 \), \(\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3 \).
Proof sketch

Suppose $f : S_n \to \{0, 1\}$ is sparse ($\mathbb{E}f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$.
2. Let $h = \sum_{ij} b_{ij} x_{ij}$.
3. $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2$, $\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3$.
4. Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

Yuval Filmus

Structure theorems for almost low degree functions
Proof sketch

Suppose $f : S_n \rightarrow \{0, 1\}$ is sparse ($\mathbb{E}f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$.
2. Let $h = \sum_{ij} b_{ij} x_{ij}$.
3. $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2$, $\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3$.
4. Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.
5. Since $h \gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3] \gtrsim c/n$.
Proof sketch

Suppose \(f : S_n \rightarrow \{0,1\} \) is sparse (\(\mathbb{E}f = c/n \)) and close to its linear projection \(\ell \).

1. Let \(b_{ij} = |\mathcal{F} \cap T_{ij}|/|T_{ij}| - |\mathcal{F}|/|S_n| \).
2. Let \(h = \sum_{ij} b_{ij} x_{ij} \).
3. \(\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2 \), \(\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3 \).
4. Since \(f \approx \ell \), can estimate \(\mathbb{E}[h^2] \approx c/n \).
5. Since \(h \gtrsim 0 \) and \(h \) is close to Boolean, \(\mathbb{E}[h^3] \gtrsim c/n \).
6. So \(\sum_{ij} b_{ij}^2(1 - b_{ij}) \lesssim 0 \).
Proof sketch

Suppose $f : S_n \to \{0, 1\}$ is sparse ($\mathbb{E} f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$.

2. Let $h = \sum_{ij} b_{ij} x_{ij}$.

3. $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2$, $\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3$.

4. Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.

5. Since $h \gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3] \gtrsim c/n$.

6. So $\sum_{ij} b_{ij}^2 (1 - b_{ij}) \lesssim 0$.

7. So for each i, j, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.
Proof sketch

Suppose \(f : S_n \rightarrow \{0, 1\} \) is sparse (\(\mathbb{E} f = c/n \)) and close to its linear projection \(\ell \).

1. Let \(b_{ij} = \frac{|F \cap T_{ij}|}{|T_{ij}|} - \frac{|F|}{|S_n|} \).
2. Let \(h = \sum_{ij} b_{ij} x_{ij} \).
3. \(\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2 \), \(\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3 \).
4. Since \(f \approx \ell \), can estimate \(\mathbb{E}[h^2] \approx c/n \).
5. Since \(h \gtrsim 0 \) and \(h \) is close to Boolean, \(\mathbb{E}[h^3] \gtrsim c/n \).
6. So \(\sum_{ij} b_{ij}^2 (1 - b_{ij}) \lesssim 0 \).
7. So for each \(i, j \), either \(b_{ij} \approx 0 \) or \(b_{ij} \approx 1 \).
8. Roughly \(c \) of the \(b_{ij} \) are close to 1.
Proof sketch

Suppose $f : S_n \to \{0, 1\}$ is sparse ($\mathbb{E}f = c/n$) and close to its linear projection ℓ.

1. Let $b_{ij} = |\mathcal{F} \cap T_{ij}| / |T_{ij}| - |\mathcal{F}| / |S_n|$.
2. Let $h = \sum_{ij} b_{ij} x_{ij}$.
3. $\mathbb{E}[h^2] \approx \frac{1}{n} \sum_{ij} b_{ij}^2$, $\mathbb{E}[h^3] \approx \frac{1}{n} \sum_{ij} b_{ij}^3$.
4. Since $f \approx \ell$, can estimate $\mathbb{E}[h^2] \approx c/n$.
5. Since $h \gtrsim 0$ and h is close to Boolean, $\mathbb{E}[h^3] \gtrsim c/n$.
6. So $\sum_{ij} b_{ij}^2 (1 - b_{ij}) \lesssim 0$.
7. So for each i, j, either $b_{ij} \approx 0$ or $b_{ij} \approx 1$.
8. Roughly c of the b_{ij} are close to 1.
9. \mathcal{F} is approximated by union of the corresponding T_{ij}.

Yuval Filmus

Structure theorems for almost low degree functions
Proof sketch

Suppose $f : S_n \rightarrow \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ.
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.

Yuval Filmus

Structure theorems for almost low degree functions
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.

Yuval Filmus Structure theorems for almost low degree functions
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E} f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\bar{X})$.
3. For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
Proof sketch

Suppose \(f : S_n \to \{-1, 1\} \) is balanced (\(\mathbb{E} f = 0 \)) and close to its linear projection \(\ell \).

1. Let \(a_{ij} = \frac{n-1}{n!} |F \cap T_{ij}| \), so \(f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)} \).
2. For random \(X, Y \), consider \(f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\bar{X}) \).
3. For most \(X, Y \), \(f|_{\pi(X)=Y} \) close to Boolean ("\((X, Y) \) good").
4. Since \(g_1, g_2 \) are "independent", one must be \(\approx 0 \), the other close to Boolean.
Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E} f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^n a_{i\pi(i)}$.

2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\overline{X})$.

3. For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean (“(X, Y) good”).

4. Since g_1, g_2 are “independent”, one must be ≈ 0, the other close to Boolean.

5. For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
Proof sketch

Suppose \(f : S_n \rightarrow \{-1, 1\} \) is balanced (\(\mathbb{E}f = 0 \)) and close to its linear projection \(\ell \).

1. Let \(a_{ij} = \frac{n-1}{n!} |F \cap T_{ij}| \), so \(f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)} \).
2. For random \(X, Y \), consider \(f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\overline{X}) \).
3. For most \(X, Y, f|_{\pi(X)=Y} \) close to Boolean ("\((X, Y)\) good").
4. Since \(g_1, g_2 \) are “independent”, one must be \(\approx 0 \), the other close to Boolean.
5. For most \(\pi \in S_n \), most pairs \((X, \pi(X))\) are good.
6. So \(g_1(\pi|X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1 \) (or 0, \(-1\)) w.p. \(\approx 1 \).
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E} f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n^{-1}}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\overline{X})$.
3. For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
4. Since g_1, g_2 are "independent", one must be ≈ 0, the other close to Boolean.
5. For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
6. So $g_1(\pi|X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1$ (or $0, -1$) w.p. ≈ 1.
7. Friedgut–Kalai–Naor: $a_{i\pi(i)} \approx 0$ for all i with ≤ 1 exception.
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E} f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n^{-1}}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|X) + g_2(\pi|\overline{X})$.
3. For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
4. Since g_1, g_2 are "independent", one must be ≈ 0, the other close to Boolean.
5. For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
6. So $g_1(\pi|X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1$ (or $0, -1$) w.p. ≈ 1.
7. Friedgut–Kalai–Naor: $a_{i\pi(i)} \approx 0$ for all i with ≤ 1 exception.
8. Can only happen if all "strong" entries of (a_{ij}) concentrated on one row or column.
Proof sketch

Suppose $f : S_n \to \{-1, 1\}$ is balanced ($\mathbb{E}f = 0$) and close to its linear projection ℓ.

1. Let $a_{ij} = \frac{n-1}{n!} |\mathcal{F} \cap T_{ij}|$, so $f(\pi) = \sum_{i=1}^{n} a_{i\pi(i)}$.
2. For random X, Y, consider $f|_{\pi(X)=Y} = g_1(\pi|_X) + g_2(\pi|_{\overline{X}})$.
3. For most X, Y, $f|_{\pi(X)=Y}$ close to Boolean ("(X, Y) good").
4. Since g_1, g_2 are "independent", one must be ≈ 0, the other close to Boolean.
5. For most $\pi \in S_n$, most pairs $(X, \pi(X))$ are good.
6. So $g_1(\pi|_X) = \sum_{i \in X} a_{i\pi(i)} \approx 0, 1$ (or $0, -1$) w.p. ≈ 1.
7. Friedgut–Kalai–Naor: $a_{i\pi(i)} \approx 0$ for all i with ≤ 1 exception.
8. Can only happen if all "strong" entries of (a_{ij}) concentrated on one row or column.
9. f essentially depends only on this strong row or column.