
Bounded Indistinguishability

for Simple Sources

Andrej
Bogdanov

CUHK

K. Dinesh

CUHK

Yuval
Filmus

Technion

Yuval
Ishai

Technion

Avi
Kaplan

Technion

Akshay
Srinivasan

TIFR

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

 are -wise indistinguishable if every coordinates look the sameX, Y k k

Cast of Characters
 distributions on X = (X1, …, Xn), Y = (Y1, …, Yn) {0,1}n

 is -wise independent if every coordinates look uniformX k k

 are -wise indistinguishable if every coordinates look the sameX, Y k k

 is -wise independent if are -wise indistinguishableX k X, U k
⇧

uniform

distribution

Examples

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

 and are -wise indistinguishableX |a1+⋯+an=0 X |a1+⋯+an=1 (n − 1)

Motivation

Motivation
-wise independence: derandomizationk

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

Motivation
-wise independence: derandomizationk

any parties can recover secretr

no keys leak any informationk

-wise indistinguishability: secret sharing schemesk

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any parties can recover secretr

no keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any parties can recover secretr

no keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

secure multiparty computation and leakage-resilience require share manipulation

breaks -wise independence but not -wise indistinguishabilityk k

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

“Fooling escalation”

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

“Fooling escalation”

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

“Fooling escalation”
LP 

duality⇒

Braverman for indistinguishability? 
[Bogdanov–Ishai–Viola–Williamson 2016]

Braverman’s theorem:

polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR!

n
n

Does Braverman

hold for polylog

indistinguishable

simple sources?

“Fooling escalation”
LP 

duality⇒

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Win–Win!

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction
‣ linear sources: proactive secret sharing

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction
‣ linear sources: proactive secret sharing
‣ quadratic sources: secure multiparty computation

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction
‣ linear sources: proactive secret sharing
‣ quadratic sources: secure multiparty computation] Arise in natural 

crypto protocols

when combining 
different shares

Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction
‣ linear sources: proactive secret sharing
‣ quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

] Arise in natural 
crypto protocols

when combining 
different shares

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Li
ne

ar
 s

ou
rc

es

Web of Conjectures
Given: class of sources (e.g. affine), class of circuits (e.g.)𝖠𝖢𝟢

Circuits cannot distinguish -wise indistinguishable sourcesk

Circuits cannot distinguish -wise indistinguishable sources 
of the form and (“cosets”)

k
X |r1=0 X |r1=1

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Li
ne

ar
 s

ou
rc

es

Special case: compute parity of codewords belonging to LDPC code

Inner Product w/ Preprocessing

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y) Compute IP in 𝖯𝖧𝖼𝖼

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Linear sources, circuits𝖠𝖢𝟢

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Cannot compute for all in given linear ⟨x, y⟩ x 𝖠𝖢𝟢 gj(y)

Cannot compute in given linear ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

Linear sources, circuits𝖠𝖢𝟢

Inner Product w/ Preprocessing
IPPP: Compute in given ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)

 Linear IPPP: Compute in (equivalently, linear)⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕ fi(x), gj(y)

Compute IP in 𝖯𝖧𝖼𝖼

No source bits contain any information on ⇒ Circuits cannot predict k r1 r1

Cannot compute for all in given linear ⟨x, y⟩ x 𝖠𝖢𝟢 gj(y)

Cannot compute in given linear ⟨x, y⟩ 𝖠𝖢𝟢 fi(x), gj(y)Ar
bi

tr
ar

y 
pr

ep
ro

ce
ss

in
g

Linear sources, circuits𝖠𝖢𝟢

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Best result: lower bound for with error 𝖣𝖭𝖥 ∘ ⊕ 1/poly(n)

Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

 Cannot compute in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Concentrate on OR, decision trees, DNFs

Best result: lower bound for with error 𝖣𝖭𝖥 ∘ ⊕ 1/poly(n)

OR is interesting!

OR is interesting!
selective failure attacks

OR is interesting!
selective failure attacks

visual secret sharing

[Naor–Shamir 1994]

OR is interesting!
selective failure attacks

visual secret sharing

[Naor–Shamir 1994]

OR

Our Results
-wise indistinguishable sourcesk

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Quadratic sources fools decision treesk = polylog(n)

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Suffices for one source to be simple!

]

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Degree log n OR distinguishes k = n

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Suffices for one source to be simple!

]

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Degree log n OR distinguishes k = n

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Application to visual secret sharingMixture of iid

Suffices for one source to be simple!

]

Techniques

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Degree log n OR distinguishes k = n

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Application to visual secret sharingMixture of iid

Suffices for one source to be simple!

]

OR distinguishes -wise indistinguishable simple sources n

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Convert to degree using randomized encodinglog n

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Given arbitrary source on , construct mixture of iid on X {0,1}n X′￼ {0,1}m

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Given arbitrary source on , construct mixture of iid on X {0,1}n X′￼ {0,1}m

Sample , sample , output x ∼ X i1, …, im ∈ [n] xi1, …, xim

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Given arbitrary source on , construct mixture of iid on X {0,1}n X′￼ {0,1}m

Sample , sample , output x ∼ X i1, …, im ∈ [n] xi1, …, xim

If are -wise indistinguishable, so are X, Y k X′￼, Y′￼

OR distinguishes -wise indistinguishable simple sources n

Starting point: -wise indistinguishable sources distinguished by ORn

Resampling: each source is mixture of iid

Given arbitrary source on , construct mixture of iid on X {0,1}n X′￼ {0,1}m

Sample , sample , output x ∼ X i1, …, im ∈ [n] xi1, …, xim

If are -wise indistinguishable, so are X, Y k X′￼, Y′￼

Distinguishing advantage of OR reduces by arbitrarily small constant

OR distinguishes -wise indistinguishable simple sources n

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

OR distinguishes -wise indistinguishable simple sources n

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

OR distinguishes -wise indistinguishable simple sources n

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Sample with small failure probability

OR distinguishes -wise indistinguishable simple sources n

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Sample with small failure probability

OR distinguishes -wise indistinguishable simple sources n

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Sample with small failure probability

Turns out complexity is low enough

OR distinguishes -wise indistinguishable simple sources n
Convert sources to poly size decision trees

Convert to degree using randomized encodinglog n

OR distinguishes -wise indistinguishable simple sources n
Convert sources to poly size decision trees

Convert to degree using randomized encodinglog n

Express each output bit as sum of many 1-leaves of decision trees

OR distinguishes -wise indistinguishable simple sources n
Convert sources to poly size decision trees

Convert to degree using randomized encodinglog n

Encode leaf as ℓ1 ∧ ⋯ ∧ ℓw

d

∏
k=1

1 +
w

∑
j=1

(1 + ℓj)rk,j

Express each output bit as sum of many 1-leaves of decision trees

OR distinguishes -wise indistinguishable simple sources n
Convert sources to poly size decision trees

Convert to degree using randomized encodinglog n

Encode leaf as ℓ1 ∧ ⋯ ∧ ℓw

d

∏
k=1

1 +
w

∑
j=1

(1 + ℓj)rk,j

Express each output bit as sum of many 1-leaves of decision trees

Error is , so need degree 2−d d = O(log s)

Application: Visual Secret Sharing

OR

Application: Visual Secret Sharing

OR

Given two distributions on biases: X for white, Y for black

Application: Visual Secret Sharing

OR

Given two distributions on biases: X for white, Y for black

Sample once and for all bias for each pixel

Application: Visual Secret Sharing

OR

Given two distributions on biases: X for white, Y for black

Sample once and for all bias for each pixel

Generate new share by sampling each pixel according to its bias

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Degree log n OR distinguishes k = n

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Application to visual secret sharingMixture of iid

Suffices for one source to be simple!

]

Predictability

Predictability
Source: Distribution on X = (X1, …, Xn) {0,1}n

Predictability
Source: Distribution on X = (X1, …, Xn) {0,1}n

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

Predictability
Source: Distribution on X = (X1, …, Xn) {0,1}n

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Predictability
Source: Distribution on X = (X1, …, Xn) {0,1}n

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Linear and quadratic sources are predictable

Predictability
Source: Distribution on X = (X1, …, Xn) {0,1}n

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Linear and quadratic sources are predictable

If are -indistinguishable and is predictable then fool decision treesX, Y polylog(n) Y X, Y

Linear sources are predictable
 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Linear sources are -predictable(log2(1/ϵ), ϵ)

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Case 1: has a basis of size at most X1, …, Xn S log2(1/ϵ)

Linear sources are -predictable(log2(1/ϵ), ϵ)

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Case 1: has a basis of size at most X1, …, Xn S log2(1/ϵ)

Linear sources are -predictable(log2(1/ϵ), ϵ)

X |S = 0 ⟹ X = 0

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Case 1: has a basis of size at most X1, …, Xn S log2(1/ϵ)

Linear sources are -predictable(log2(1/ϵ), ϵ)

Case 2: Let be linearly independent output bitsS log2(1/ϵ)

X |S = 0 ⟹ X = 0

Linear sources are predictable

Linear source: each is linear function of Xi r1, r2, r3, …

 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k
Pr[X |S = 0 and X ≠ 0] ≤ ϵ

A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

Case 1: has a basis of size at most X1, …, Xn S log2(1/ϵ)

Linear sources are -predictable(log2(1/ϵ), ϵ)

Case 2: Let be linearly independent output bitsS log2(1/ϵ)

X |S = 0 ⟹ X = 0

Pr[X |S = 0] = ϵ

Predictability and decision trees
 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

If are -indistinguishable and is predictable then fool decision treesX, Y polylog(n) Y X, Y

Predictability and decision trees
 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

If are -indistinguishable and is predictable then fool decision treesX, Y polylog(n) Y X, Y

 is -predictable, are -indistinguishable ⟹ is -predictableY (k, ϵ/n) X, Y (k + 1) X (k, ϵ)

Predictability and decision trees
 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

If are -indistinguishable and is predictable then fool decision treesX, Y polylog(n) Y X, Y

 is -predictable, are -indistinguishable ⟹ is -predictableY (k, ϵ/n) X, Y (k + 1) X (k, ϵ)

 are -predictable and -indistinguishable ⟹ OR has advantageX, Y (k, ϵ) 2k ≤ ϵ

Predictability and decision trees
 is -predictable if there exists of size such that
X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

If are -indistinguishable and is predictable then fool decision treesX, Y polylog(n) Y X, Y

 is -predictable, are -indistinguishable ⟹ is -predictableY (k, ϵ/n) X, Y (k + 1) X (k, ϵ)

 are -predictable and -indistinguishable ⟹ OR has advantageX, Y (k, ϵ) 2k ≤ ϵ

OR has advantage ⟹ Size decision trees have advantage≤ ϵ s ≤ sϵ

Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant fools ORk

Degree log n OR distinguishes k = n

Quadratic sources fools decision treesk = polylog(n)

Linear sources fools local DNFsk = polylog(n)

Application to visual secret sharingMixture of iid

Suffices for one source to be simple!

]

Predictability for local DNFs

Predictability for local DNFs
: -bit source, : -bit function X n f n

Predictability for local DNFs
: -bit source, : -bit function X n f n

 is -predictable for if there exists a depth decision tree with leaves
labeled such that and
X (k, ϵ) f k T

0,1, ⊥ T(x) ∈ {f(x), ⊥ } Pr[T(X) = ⊥] ≤ ϵ

Predictability for local DNFs
: -bit source, : -bit function X n f n

 is -predictable for if there exists a depth decision tree with leaves
labeled such that and
X (k, ϵ) f k T

0,1, ⊥ T(x) ∈ {f(x), ⊥ } Pr[T(X) = ⊥] ≤ ϵ

-local DNF: disjunction of functions depending on input bitsw w

Predictability for local DNFs
: -bit source, : -bit function X n f n

 is -predictable for if there exists a depth decision tree with leaves
labeled such that and
X (k, ϵ) f k T

0,1, ⊥ T(x) ∈ {f(x), ⊥ } Pr[T(X) = ⊥] ≤ ϵ

Linear sources are -predictable for -local DNFs(O(w2w log(1/ϵ)), ϵ) w

-local DNF: disjunction of functions depending on input bitsw w

Predictability for local DNFs
: -bit source, : -bit function X n f n

 is -predictable for if there exists a depth decision tree with leaves
labeled such that and
X (k, ϵ) f k T

0,1, ⊥ T(x) ∈ {f(x), ⊥ } Pr[T(X) = ⊥] ≤ ϵ

Linear sources are -predictable for -local DNFs(O(w2w log(1/ϵ)), ϵ) w

If are -indistinguishable and is -predictable for then is -fooled by X, Y k Y (k, ϵ) f f ϵ X, Y

-local DNF: disjunction of functions depending on input bitsw w

Open Questions

Open Questions
Beyond OR

Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Open Questions
Beyond OR

Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Application: secret-sharing with sharing in and reconstruction in  
(current best: sharing using decision trees and reconstruction using OR)

𝖭𝖢𝟢 𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

Connection to approximate degree breaks down

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

-wise indistinguishable distributions over distinguished by ? (n − 1) Σn 𝖠𝖢𝟢

Open Questions
Beyond OR

Given linear preprocessing , which parities of are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know: and)O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean
-wise indistinguishable distributions over distinguished by ? (n − 1) ({0,1}n)n 𝖠𝖢𝟢

Application: secret sharing scheme in with “sharp threshold”𝖠𝖢𝟢

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢

