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X=,....X),Y=(Y,..., YY) distributions on {0,1 }"

X is k-wise independent if every k coordinates look uniform

X, Y are k-wise indistinguishable if every k coordinates look the same

X is k-wise independent if X, U are k-wise indistinguishable
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Examples

Uniform distribution on even parity vectors: (n — 1)-wise independent

Uniform distribution on subspace is (k — 1)-wise independent,
where k is dual distance (shortest linear relation)

X=(ayb,a +by,...,a,b, a + b)) is 2-wise independent

X‘a1+---+a _o and X‘a1+---+a _, are (n — 1)-wise indistinguishable
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k-wise indistinguishability: secret sharing schemes
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Motivation

k-wise independence: derandomization

k-wise independent secret sharing schemes use linear reconstruction
ACY reconstruction requires k-wise indistinguishability

secure multiparty computation and leakage-resilience require share manipulation
breaks k-wise independence but not k-wise indistinguishability
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Braverman for indistinguishability?
|[Bogdanov-Ishai-Viola-Williamson 2016]

Does Bravermanf =
hold for polylog

Indistinguishable
simple sources?

Braverman’s theorem: Nisan—-Szegedy:
polylog independence approximate degree of OR is \/n
fools AC® LP so \/n-wise indistinguishability
“Fooling escalation” duality = doesn’t even fool OR!



Motivation

Does Braverman hold for polylog-wise indistinguishable simple sources?
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Low-complexity
secret sharing

Leakage-resilience of
secure multiparty computation
(also secure hardware etc.)

“Resilience escalation” Generating shares is simple

AC° models realistic leakage Secret recovery in ACY
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Simple sources

Sources that are easy to sample given iid uniform random bits r, r,, 15, ...

» |local sources

> linear sources: linear secret sharing with easy reconstruction

Arise In natural

crypto protocols
when combining

> linear sources: proactive secret sharing ]
different shares

> gquadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not
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Linear sources

Circuits cannot distinguish k-wise indistinguishable sources
of the form X ‘m:o and X ‘r1=1 (“cosets”)

No k source bits contain any information on r; = Circuits cannot predict r,

Special case: compute parity of codewords belonging to LDPC code
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2 Inner Product w/ Preprocessing
IPPP: Compute (x, y) in ACC given f(x), g/()

Linear IPPP: Compute (x, y) in AC°- @ (equivalently, f,(x), g(y) linear)

Linear sources, ACY circuits

No k source bits contain any information on r; = Circuits cannot predict r,



Cannot compute (x, y) for all x in AC® given linear g/(y)

Cannot compute (x, y) in AC° given linear f.(x), gi(y)



Arbitrary
preprocessing

. O = n
Cannot compute (x, y) for all x in AC® given linear g/(y)

Cannot compute (x, y) in AC° given linear f.(x), gi(y)



Barrier

ACP circuits cannot distinguish k-wise indistinguishable linear sources

Cannot compute (x, y) in AC% . &
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Best result: lower bound for DNF - @ with error 1/poly(n)

Concentrate on OR, decision trees, DNFs
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OR is interesting!

selective failure attacks

visual secret sharing
[Naor—-Shamir 1994]
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k = polylog(n) fools local DNFs

Suffices for one source to be simple!
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k = polylog(n) fools decision trees
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Starting point: \/Z-wise indistinguishable sources distinguished by OR

Resampling: each source is mixture of iid

Given arbitrary source X on {0,1 }", construct mixture of iid X" on {0,1}"

Sample x ~ X, sample i, ...,1,, € [n], output > TN

If X, Y are k-wise indistinguishable, so are X', Y’

Distinguishing advantage of OR reduces by arbitrarily small constant
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OR distinguishes ﬁ-wise Indistinguishable simple sources

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Sample with small failure probability

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Turns out complexity is low enough
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OR distinguishes ﬁ-wise Indistinguishable simple sources

Convert sources to poly size decision trees

Convert to degree log n using randomized encoding

Express each output bit as sum of s many 1-leaves of decision tree

d W
Encode leaf £} A=« Al as || |1+ ) (1 +2)r,
k=1 |

J=1

Error is 27¢, so need degree d = O(log )



Application: Visual Secret Sharing




Application: Visual Secret Sharing




ing

b

3V

Visual Secret Shar

Application



ing

Visual Secret Shar

Application

-

-,
"‘q_)' .

e

rans

<
A




e /, \ / e
S & % NEI(- /,
B s Tlff |' | C |(
\"Yr;\Hlflg»wHéks A Dnsllaémh{:gu\: m\?‘zg
T i(ﬁ 5 P }L ; 1 3
-~ B, @1 @82 TH ﬂ "-'i
£ 18 22 ?.39\

Our Results

”uiﬁ‘i.ﬁfﬁ?ﬂg’ ; k-wise indistinguishable sources

Constant degree/locality

Quadratic sources k = polylog(n) fools decision trees

Linear sources k = polylog(n) fools local DNFs

Suffices for one source to be simple!

Degree log n OR distinguishes k = \/n

Mixture of 1id

Application to visual secret sharing
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Linear sources are predictable

X is (k, €)-predictable if there exists § C [n] of size k such that
PrX|,=0and X # 0] < ¢

A class of sources is predictable if every source is (polylog(1/€), €)-predictable

Linear source: each X is linear function of r, r,, 13, ...

Linear sources are (log,(1/¢), €)-predictable

Case 1: X;, ..., X, has a basis § of size at most log,(1/¢)

Case 2: Let S be log,(1/¢€) linearly independent output bits

PrX|,=0]=e¢
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Predictability and decision trees

X is (k, €)-predictable if there exists § C [n] of size k such that
Pr[X|S= Oand X #0] < ¢

A class of sources is predictable if every source is (polylog(1/€), €)-predictable

If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees

Y is (k, e/n)-predictable, X, Y are (k + 1)-indistinguishable = X is (k, €)-predictable

X, Y are (k, €)-predictable and 2k-indistinguishable = OR has advantage < €

OR has advantage < € = Size s decision trees have advantage < s€
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Predictability for local DNFs

X: n-bit source, f: n-bit function

X is (k, €)-predictable for f if there exists a depth k decision tree T with leaves
labeled 0,1, L suchthat 7(x) € {f(x), L } and Pr[T(X) =1 ]| <€

w-local DNF: disjunction of functions depending on w input bits

Linear sources are (O(w2" log(1/€)), €)-predictable for w-local DNFs

If X, Y are k-indistinguishable and Y is (k, €)-predictable for f then f is e-fooled by X, Y
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Open Questions

Results on DNFs or AC%? No barriers for local sources!

Application: secret-sharing with sharing in NC° and reconstruction in AC’

(current best: sharing using decision trees and reconstruction using OR)
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Open Questions

Results on DNFs or AC®? No barriers for local sources! [OOSR (=18 1 8l2le

Given linear preprocessing g{(y), which parities of y are computable in ACP?
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?
Conjectures about linear sources imply conjectures about quadratic sources?

Best degree? (know: O(logn) and w(1))
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

(n — 1)-wise indistinguishable distributions over ({0,1}")" distinguished by AC°?

Application: secret sharing scheme in AC® with “sharp threshold”



