Bounded Indistinguishability for Simple Sources

Andrej Bogdanov CUHK

K. Dinesh

CUHK

Yuval Filmus

Technion

Yuval Ishai

Technion

Avi Kaplan

Technion

Akshay Srinivasan

TIFR

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

$X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

Cast of Characters

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

X, Y are k-wise indistinguishable if every k coordinates look the same

Cast of Characters

 $X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$ distributions on $\{0, 1\}^n$

X is k-wise independent if every k coordinates look uniform

X, Y are k-wise indistinguishable if every k coordinates look the same

X is k-wise independent if X, U are k-wise indistinguishable 公 uniform distribution

Examples

Uniform distribution on even parity vectors: (n - 1)-wise independent

where k is dual distance (shortest linear relation)

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

where k is dual distance (shortest linear relation)

$$X = (a_1, b_1, a_1 + b_1, \dots$$

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

 - $(a_n, b_n, a_n + b_n)$ is 2-wise independent

where k is dual distance (shortest linear relation)

$$X = (a_1, b_1, a_1 + b_1, \dots, a_n, b_n, a_n + b_n)$$
 is 2-wise independent

$$X|_{a_1 + \dots + a_n = 0} \text{ and } X|_{a_1 + \dots + a_n = 0}$$

Examples

- Uniform distribution on even parity vectors: (n 1)-wise independent
- Uniform distribution on subspace is (k 1)-wise independent,

 $\dots + a_n = 1$ are (n - 1)-wise indistinguishable

k-wise indistinguishability: secret sharing schemes

k-wise indistinguishability: secret sharing schemes

any *r* parties can recover secret

no k keys leak any information

k-wise indistinguishability: secret sharing schemes

k-wise independent secret sharing schemes use linear reconstruction AC^{0} reconstruction requires k-wise indistinguishability

any *r* parties can recover secret

no k keys leak any information

k-wise indistinguishability: secret sharing schemes

k-wise independent secret sharing schemes use linear reconstruction AC^{0} reconstruction requires k-wise indistinguishability

secure multiparty computation and leakage-resilience require share manipulation breaks k-wise independence but not k-wise indistinguishability

any *r* parties can recover secret

no k keys leak any information

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

"Fooling escalation"

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

"Fooling escalation"

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

"Fooling escalation"

LP

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

"Fooling escalation"

LP

Braverman for indistinguishability? [Bogdanov–Ishai–Viola–Williamson 2016]

Nisan–Szegedy: approximate degree of OR is \sqrt{n} so \sqrt{n} -wise indistinguishability doesn't even fool OR!

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Secret recovery in AC⁰

Leakage-resilience of secure multiparty computation (also secure hardware etc.)

"Resilience escalation"

AC⁰ models realistic leakage

Motivation

Low-complexity secret sharing

Generating shares is simple

Secret recovery in AC⁰

Iocal sources

- Iocal sources

Inear sources: linear secret sharing with easy reconstruction

- Iocal sources
- Inear sources: proactive secret sharing

Inear sources: linear secret sharing with easy reconstruction

- Iocal sources
- Inear sources: linear secret sharing with easy reconstruction
- Inear sources: proactive secret sharing
- quadratic sources: secure multiparty computation

- Iocal sources
- Inear sources: linear secret sharing with easy reconstruction
- Inear sources: proactive secret sharing
- quadratic sources: secure multiparty computation

Arise in natural crypto protocols when combining different shares

Sources that are easy to sample given iid uniform random bits r_1, r_2, r_3, \ldots

- Iocal sources
- Inear sources: linear secret sharing with easy reconstruction
- Inear sources: proactive secret sharing
- quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

Arise in natural crypto protocols when combining different shares

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Circuits cannot distinguish k-wise indistinguishable sources

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

Circuits cannot distinguish k-wise indistinguishable sources

Circuits cannot distinguish k-wise indistinguishable sources of the form $X|_{r_1=0}$ and $X|_{r_1=1}$ ("cosets")

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Given: class of sources (e.g. affine), class of circuits (e.g. AC⁰)

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Special case: compute parity of codewords belonging to LDPC code

Inner Product w/ Preprocessing

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$

Inner Product w/ Preprocessing

IPPP: Compute $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$

Compute IP in PH^{cc}

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc}

Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ \oplus (equivalently, $f_i(x), g_i(y)$ linear)

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc}

Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

Linear sources, AC⁰ circuits

No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc} Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

- Linear sources, AC⁰ circuits
- No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Cannot compute $\langle x, y \rangle$ in AC⁰ given linear $f_i(x), g_i(y)$

Inner Product w/ Preprocessing **IPPP: Compute** $\langle x, y \rangle$ in AC⁰ given $f_i(x), g_i(y)$ Compute IP in PH^{cc} Linear IPPP: Compute $\langle x, y \rangle$ in AC⁰ $\odot \oplus$ (equivalently, $f_i(x), g_i(y)$ linear)

- Linear sources, AC⁰ circuits
- No k source bits contain any information on $r_1 \Rightarrow$ Circuits cannot predict r_1

Best result: lower bound for DNF $\circ \bigoplus$ with error 1/poly(n)

Best result: lower bound for DNF $\circ \oplus$ with error 1/poly(n)

Concentrate on OR, decision trees, DNFs

selective failure attacks

selective failure attacks

visual secret sharing [Naor–Shamir 1994]

selective failure attacks

visual secret sharing [Naor-Shamir 1994]

A. 02 12,13,18,32 38 B. 01 02 10 11 25 42 0.1118.22 36.37.38 0.12 22 25 28 36 39 5, 09 10 13 19 40 43 F. 05 06 19 20 28 32

Our Results k-wise indistinguishable sources

k-wise indistinguishable sources

Constant degree/locality

Constant k fools OR

k-wise indistinguishable sources

Constant degree/locality

Quadratic sources

Constant *k* fools OR

k = polylog(n) fools decision trees

k-wise indistinguishable sources

Constant degree/locality

Quadratic sources

Linear sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Quadratic sources

Linear sources

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

Quadratic sources

Linear sources

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

Quadratic sources

Linear sources

Degree log *n*

Mixture of iid

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

OR distinguishes $k = \sqrt{n}$

Application to visual secret sharing

Quadratic sources

Linear sources

Degree log n

Mixture of iid

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

OR distinguishes $k = \sqrt{n}$

Application to visual secret sharing

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Resampling: each source is mixture of iid

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Convert to degree log n using randomized encoding

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Resampling: each source is mixture of iid

Given arbitrary source X on $\{0,1\}^n$, construct mixture of iid X' on $\{0,1\}^m$

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Given arbitrary source X on $\{0,1\}^n$, construct mixture of iid X' on $\{0,1\}^m$

Sample $x \sim X$, sample $i_1, \ldots, i_m \in [n]$, output x_{i_1}, \ldots, x_{i_m}

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Sample $x \sim X$, sample $i_1, \ldots, i_m \in [n]$, output x_{i_1}, \ldots, x_{i_m}

If X, Y are k-wise indistinguishable, so are X', Y'

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Given arbitrary source X on $\{0,1\}^n$, construct mixture of iid X' on $\{0,1\}^m$

Sample $x \sim X$, sample $i_1, \ldots, i_m \in [n]$, output x_{i_1}, \ldots, x_{i_m}

If X, Y are k-wise indistinguishable, so are X', Y'

Distinguishing advantage of OR reduces by arbitrarily small constant

Starting point: \sqrt{n} -wise indistinguishable sources distinguished by OR

Given arbitrary source X on $\{0,1\}^n$, construct mixture of iid X' on $\{0,1\}^m$

Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Resampling: each source is mixture of iid

Technicality 1: Can only sample exactly from dyadic distributions

Sample with small failure probability

Resampling: each source is mixture of iid

Technicality 1: Can only sample exactly from dyadic distributions

Sample with small failure probability

Resampling: each source is mixture of iid

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Technicality 1: Can only sample exactly from dyadic distributions

Sample with small failure probability

Turns out complexity is low enough

Resampling: each source is mixture of iid

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Convert to degree $\log n$ using randomized encoding

Express each output bit as sum of s many 1-leaves of decision tree

Express each output bit as sum of s many 1-leaves of decision tree

$$(1 + \ell_j)r_{k,j}$$

Express each output bit as sum of s many 1-leaves of decision tree

Error is 2^{-d} , so need degree $d = O(\log s)$

Convert to degree log n using randomized encoding

$$(1 + \mathcal{C}_j)r_{k,j}$$

Given two distributions on biases: X for white, Y for black

Given two distributions on biases: X for white, Y for black

Sample once and for all bias for each pixel

Given two distributions on biases: X for white, Y for black

Sample once and for all bias for each pixel

Generate new share by sampling each pixel according to its bias

Constant degree/locality

Quadratic sources

Linear sources

Degree log *n*

Mixture of iid

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

OR distinguishes $k = \sqrt{n}$

Application to visual secret sharing

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear and quadratic sources are predictable

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear and quadratic sources are predictable

If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size *k* such that $\Pr[X|_S = 0 \text{ and } X \neq 0] \leq \epsilon$

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

Linear sources are $(\log_2(1/\epsilon), \epsilon)$ -predictable

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

Linear sources are $(\log_2(1/\epsilon), \epsilon)$ -predictable

Case 1: X_1, \ldots, X_n has a basis S of size at most $\log_2(1/\epsilon)$

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

Linear sources are $(\log_2(1/\epsilon), \epsilon)$ -predictable

Case 1: X_1, \ldots, X_n has a basis S of size at most $\log_2(1/\epsilon)$

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

Linear sources are $(\log_2(1/\epsilon), \epsilon)$ -predictable

Case 1: X_1, \ldots, X_n has a basis S of size at most $\log_2(1/\epsilon)$

$$X|_S = 0 \Longrightarrow X = 0$$

Case 2: Let S be $\log_2(1/\epsilon)$ linearly independent output bits

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is *predictable* if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

Linear source: each X_i is linear function of r_1, r_2, r_3, \ldots

Linear sources are $(\log_2(1/\epsilon), \epsilon)$ -predictable

Case 1: X_1, \ldots, X_n has a basis S of size at most $\log_2(1/\epsilon)$

$$X|_S = 0 \Longrightarrow X = 0$$

Case 2: Let S be $\log_2(1/\epsilon)$ linearly independent output bits

$$\Pr[X|_S = 0] = \epsilon$$

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is predictable if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

- $\Pr[X|_{\varsigma} = 0 \text{ and } X \neq 0] \leq \epsilon$

If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is predictable if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$
- If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees
- Y is $(k, \epsilon/n)$ -predictable, X, Y are (k + 1)-indistinguishable $\implies X$ is (k, ϵ) -predictable

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is predictable if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

X, Y are (k, ϵ) -predictable and 2k-indistinguishable \implies OR has advantage $\leq \epsilon$

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$
- If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees
- Y is $(k, \epsilon/n)$ -predictable, X, Y are (k + 1)-indistinguishable $\implies X$ is (k, ϵ) -predictable

X is (k, ϵ) -predictable if there exists $S \subseteq [n]$ of size k such that

A class of sources is predictable if every source is $(polylog(1/\epsilon), \epsilon)$ -predictable

X, Y are (k, ϵ) -predictable and 2k-indistinguishable \implies OR has advantage $\leq \epsilon$

OR has advantage $\leq \epsilon \implies$ Size s decision trees have advantage $\leq s\epsilon$

- $\Pr[X|_{S} = 0 \text{ and } X \neq 0] \leq \epsilon$
- If X, Y are polylog(n)-indistinguishable and Y is predictable then X, Y fool decision trees
- Y is $(k, \epsilon/n)$ -predictable, X, Y are (k + 1)-indistinguishable $\implies X$ is (k, ϵ) -predictable

Constant degree/locality

Quadratic sources

Linear sources

Degree log *n*

Mixture of iid

k-wise indistinguishable sources

Constant k fools OR

k = polylog(n) fools decision trees

k = polylog(n) fools local DNFs

Suffices for one source to be simple!

OR distinguishes $k = \sqrt{n}$

Application to visual secret sharing

X: *n*-bit source, *f*: *n*-bit function

Predictability for local DNFs

X: *n*-bit source, *f*: *n*-bit function

X is (k, ϵ) -predictable for *f* if there exists a depth *k* decision tree *T* with leaves labeled $0, 1, \perp$ such that $T(x) \in \{f(x), \perp\}$ and $\Pr[T(X) = \perp] \leq \epsilon$

X: *n*-bit source, *f*: *n*-bit function

X is (k, ϵ) -predictable for f if there exists a depth k decision tree T with leaves labeled 0,1, \bot such that $T(x) \in \{f(x), \bot\}$ and $\Pr[T(X) = \bot] \leq \epsilon$

w-local DNF: disjunction of functions depending on w input bits

X: *n*-bit source, *f*: *n*-bit function

X is (k, ϵ) -predictable for f if there exists a depth k decision tree T with leaves labeled 0,1, \bot such that $T(x) \in \{f(x), \bot\}$ and $\Pr[T(X) = \bot] \leq \epsilon$

w-local DNF: disjunction of functions depending on w input bits

Linear sources are $(O(w2^w \log(1/\epsilon)), \epsilon)$ -predictable for w-local DNFs

X: *n*-bit source, *f*: *n*-bit function

X is (k, ϵ) -predictable for f if there exists a depth k decision tree T with leaves labeled 0,1, \bot such that $T(x) \in \{f(x), \bot\}$ and $\Pr[T(X) = \bot] \leq \epsilon$

w-local DNF: disjunction of functions depending on w input bits

Linear sources are $(O(w2^w \log(1/\epsilon)), \epsilon)$ -predictable for w-local DNFs

If X, Y are k-indistinguishable and Y is (k, ϵ) -predictable for f then f is ϵ -fooled by X, Y

Results on DNFs or AC⁰? No barriers for local sources!

Results on DNFs or AC⁰? No barriers for local sources!

- Application: secret-sharing with sharing in NC⁰ and reconstruction in AC⁰ (current best: sharing using decision trees and reconstruction using OR)

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$) Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)

Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

(n-1)-wise indistinguishable distributions over Σ^n distinguished by AC⁰? Connection to approximate degree breaks down

Web of conjectures

Given linear preprocessing $g_i(y)$, which parities of y are computable in AC⁰? Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent? Conjectures about linear sources imply conjectures about quadratic sources?

More on OR

Best degree? (know: $O(\log n)$ and $\omega(1)$)

Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

(n-1)-wise indistinguishable distributions over $(\{0,1\}^n)^n$ distinguished by AC⁰? Application: secret sharing scheme in AC⁰ with "sharp threshold"

