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Examples
Uniform distribution on even parity vectors: -wise independent(n − 1)

Uniform distribution on subspace is -wise independent, 
where  is dual distance (shortest linear relation)

(k − 1)
k

 is 2-wise independentX = (a1, b1, a1 + b1, …, an, bn, an + bn)

 and  are -wise indistinguishableX |a1+⋯+an=0 X |a1+⋯+an=1 (n − 1)
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Motivation
-wise independence: derandomizationk

-wise indistinguishability: secret sharing schemesk

any  parties can recover secretr

no  keys leak any informationk

-wise independent secret sharing schemes use linear reconstruction

 reconstruction requires -wise indistinguishability

k
𝖠𝖢𝟢 k

secure multiparty computation and leakage-resilience require share manipulation

breaks -wise independence but not -wise indistinguishabilityk k
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polylog independence 

fools 𝖠𝖢𝟢

Nisan–Szegedy: 
approximate degree of OR is  
so -wise indistinguishability 

doesn’t even fool OR! 

n
n

Does Braverman

hold for polylog 

indistinguishable

simple sources?

“Fooling escalation”
LP 

duality⇒



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage



Motivation
Does Braverman hold for polylog-wise indistinguishable simple sources?

Yes

Leakage-resilience of 
secure multiparty computation 

(also secure hardware etc.)

No

Low-complexity 
secret sharing

“Resilience escalation”

 models realistic leakage𝖠𝖢𝟢

Win–Win!

Generating shares is simple

Secret recovery in 𝖠𝖢𝟢

➡︎ ➡︎Enc Dec
↗︎↗︎↗︎

Leakage
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Simple sources
Sources that are easy to sample given iid uniform random bits r1, r2, r3, …

‣ local sources
‣ linear sources: linear secret sharing with easy reconstruction
‣ linear sources: proactive secret sharing
‣ quadratic sources: secure multiparty computation

Some instances reducible to Braverman; others (e.g. LDPC codes) not

] Arise in natural 
crypto protocols

when combining 
different shares
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Circuits cannot distinguish -wise indistinguishable sources 
of the form  and  (“cosets”)
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No  source bits contain any information on  ⇒ Circuits cannot predict k r1 r1
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Special case: compute parity of codewords belonging to LDPC code
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Barrier

 circuits cannot distinguish -wise indistinguishable linear sources𝖠𝖢𝟢 k

  Cannot compute  in ⟨x, y⟩ 𝖠𝖢𝟢 ∘ ⊕

Hard!

Concentrate on OR, decision trees, DNFs

Best result: lower bound for with error 𝖣𝖭𝖥 ∘ ⊕ 1/poly(n)
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Sample , sample , output x ∼ X i1, …, im ∈ [n] xi1, …, xim

If  are -wise indistinguishable, so are X, Y k X′￼, Y′￼

Distinguishing advantage of OR reduces by arbitrarily small constant
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Resampling: each source is mixture of iid

Convert sources to poly size decision trees

Technicality 1: Can only sample exactly from dyadic distributions

Technicality 2: Size of decision tree depends on complexity of mixture probabilities

Sample with small failure probability

Turns out complexity is low enough
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Convert sources to poly size decision trees

Convert to degree  using randomized encodinglog n

Encode leaf  as ℓ1 ∧ ⋯ ∧ ℓw

d

∏
k=1

1 +
w

∑
j=1

(1 + ℓj)rk,j

Express each output bit as sum of  many 1-leaves of decision trees

Error is , so need degree 2−d d = O(log s)
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Application: Visual Secret Sharing

OR

Given two distributions on biases: X for white, Y for black

Sample once and for all bias for each pixel

Generate new share by sampling each pixel according to its bias
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Quadratic sources  fools decision treesk = polylog(n)

Linear sources  fools local DNFsk = polylog(n)
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Suffices for one source to be simple!
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X (k, ϵ) S ⊆ [n] k

Pr[X |S = 0 and X ≠ 0] ≤ ϵ
A class of sources is predictable if every source is -predictable(polylog(1/ϵ), ϵ)

If  are -indistinguishable and  is predictable then  fool decision treesX, Y polylog(n) Y X, Y

 is -predictable,  are -indistinguishable ⟹  is -predictableY (k, ϵ/n) X, Y (k + 1) X (k, ϵ)

 are -predictable and -indistinguishable ⟹ OR has advantageX, Y (k, ϵ) 2k ≤ ϵ

OR has advantage  ⟹ Size  decision trees have advantage≤ ϵ s ≤ sϵ



Our Results
-wise indistinguishable sourcesk

Constant degree/locality Constant  fools ORk

Degree log n OR distinguishes k = n

Quadratic sources  fools decision treesk = polylog(n)

Linear sources  fools local DNFsk = polylog(n)

Application to visual secret sharingMixture of iid

Suffices for one source to be simple!

]
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Predictability for local DNFs
: -bit source, : -bit function X n f n

 is -predictable for  if there exists a depth  decision tree  with leaves 
labeled such that  and 
X (k, ϵ) f k T

0,1, ⊥ T(x) ∈ {f(x), ⊥ } Pr[T(X) = ⊥ ] ≤ ϵ

Linear sources are -predictable for -local DNFs(O(w2w log(1/ϵ)), ϵ) w

If  are -indistinguishable and  is -predictable for  then  is -fooled by  X, Y k Y (k, ϵ) f f ϵ X, Y

-local DNF: disjunction of functions depending on  input bitsw w
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More on OR
Best degree? (know:  and )O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean

Connection to approximate degree breaks down
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Given linear preprocessing , which parities of  are computable in ?  
Linear IPPP: not all — Our conjecture: short linear combinations — Equivalent?

gj(y) y 𝖠𝖢𝟢

Web of conjectures
Results on DNFs or ? No barriers for local sources!𝖠𝖢𝟢

Conjectures about linear sources imply conjectures about quadratic sources?

More on OR
Best degree? (know:  and )O(log n) ω(1)
Best locality? (reduced precision implies locality 4; ruled out for mixture of iid)

Beyond Boolean
-wise indistinguishable distributions over  distinguished by ? (n − 1) ({0,1}n)n 𝖠𝖢𝟢

Application: secret sharing scheme in  with “sharp threshold”𝖠𝖢𝟢

 secret-sharing𝖭𝖢𝟢/𝖠𝖢𝟢


