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K indistinguishability

Two sources X Y of n random bits
are k indistinguishable if

Xs NYS
for any set SEEN of size K

Example X Ai bi Ambi Am bm.am bm
Y X conditioned on a t am O



Fooling ACO
BIVW constructed a pair X Y of
Nn indistinguishable sources that can be
distinguished by 012

Braverman proved that if X Y are
polylogcn indistinguishable and Y is the
uniform distribution then X Y fool ACO

Can we close this gap



Simple sources
We consider sources samplable
from an infinite supply of iid
uniformly random bits ri

Low degree sources

Yi is low degreepolynomial in r

Local sources
Yi depends on few bits of r

Crypto motivations



Results at a glance
If X Y are polylog n indistinguishable and

Y is uniform then X Y fool ACO Braverman

4 is linear then XY fool decision trees narrowONE
Y is quadratic then X Y fool decision trees
Y has constant degree then X Y fool OR
4 has constant localitythen X Y fool OR

polylogln indistinguishable linear sources foolACO
Inner Product of Ado XOR

3 rn indistinguishable sources
of degree 0Clogn distinguished by OR



th indistinguishable logdegree sources not foolingOR

Since TegCOR Cnn by LPduality
OR distinguishes some pair X Y of Nn indis sources
Resampling wlog X y are mixtures of iid
Can sample X Y using poly size decision trees
Use Razborov Smolensky randomized encoding
to consistently approximate X Y using
polynomials of degree 0Clog n

Eli new It It Heir
leaves leaves



Predictability
A subset SEED E predicts Y if

Pr 415 0 but 4 10 EE

If s E predicts Y and X 4 are

Ishi indist then S Chel predicts X
I f s 8 predicts X Y then X 4 8 foolOR
and Css fool decision trees of sizes
Goal if 4 is simple then Y is

E Predicted by set of size polyloy te



Predicting linear sources
A subset SEED E predicts Y if

PREYIs _o but 4 10 EE

Y is linear if each Yi is linear function of r

Case 1 there exist log E linearly independent
coordinates Prats o E

Case 2 otherwise choose a basis S
Pr 415 0 but 4103 0

Generalization to higher degree
uses higher order Fourier analysis



Predicting local sources
S E predicts 4 if Prc 415 0 but y to EE

Y is E local every Yi depends on Cmany rj's
choose maximal set 1 of indices
depending on disjoint coordinates
Case t.IT zztlogCte

Choose SET of that size Pr 415 0 EE

case 2 tlE2t logCte
For each assignment to coords
appearing in 41T source simplifies
to Ct N local source induction



Prediction for narrow DNFs
A decision tree E predicts Y fo r f i f
for l e fraction of leaves wrtY valueof f is determined

If a depth d DT E predicts Y for F

and X Y are d indist then X Y E fool f

Any linear source is E predicted for
any width w DNF by a DT of depth 0624094

Proof combination of arguments
for linear and local sources



Connection with linear IP pp
polylog n indist linear sources fool ACO

Il
jh rn

f an AC circuit can predict elf from d CF't email

then I spanned by polylogen many l

I
i f m pdy n then for any ly em there exists l s t
no Aco circuit can predict elf 7 given eCFI em F

I
no Aco circuit can predict Lr 57given lift lmCF 4,151 4m15

I
no ACooXOR circuit can predict r s



Open Questions
A class of sources is simple for

1

a class of functions I if
X Y polylogen indist c It X Y fool I

1 Maximal d s t degree d sources are simple for0122
Know D well 1 0Clog n

2 Maximal t s t t local sources are simplefor0122
Know E well E Gcn

3 Same for decision trees DNFs Aco


