Bounded indistinguishability of simple sources

Andrej Bogdanov
K. Dinesh

Yuval Filmus
Avi Kaplan
Yuval Ishai

CUHK
Technion
TIFR
K-indistinguishability

Two sources X,Y of n random bits are K-indistinguishable if

$$X_S \approx Y_S$$

for any set $S \subseteq [n]$ of size K.

Example: $X = a_1, b_1, a_1+b_1, \ldots, a_m, b_m, a_m+b_m$

$Y = X$ conditioned on $a_1 + \ldots + a_m = 0$
Fooling AC^0

[B1VW] constructed a pair X, Y of \sqrt{n}-indistinguishable sources that can be distinguished by OR.

Braverman proved that if X, Y are polylog(n)-indistinguishable and Y is the uniform distribution then X, Y fool AC^0.

Can we close this gap?
Simple sources

We consider sources samplable from an infinite supply of iid uniformly random bits r_i.

- Low degree sources:
 Y_i is low-degree polynomial in r

- Local sources:
 Y_i depends on few bits of r

Crypto motivations.
Results at a glance

If X, Y are $\text{polylog}(n)$-indistinguishable and...

... Y is uniform then X, Y fool AC^0 (Braverman)
... Y is linear then X, Y fool decision trees & narrow DNFs
... Y is quadratic then X, Y fool decision trees
... Y has constant degree then X, Y fool OR
... Y has constant locality then X, Y fool OR

polylog(n)-indistinguishable linear sources fool AC^0

\Rightarrow Inner-Product & $AC^0 \circ \text{XOR}$

$n^{\text{polylog}(n)}$-indistinguishable sources
of degree $O(\log n)$ distinguished by OR
$\tilde{\Omega}(n)$-indistinguishable log degree sources not fooling OR

- Since $\deg(\text{OR}) = \Omega(n^2)$, by LP duality
 OR distinguishes some pair X, Y of $\tilde{\Omega}(n)$-indis. sources
- "Resampling": wlog, X,Y are mixtures of iid
- Can sample X,Y using poly size decision trees
- Use Razborov–Smolensky randomized encoding to consistently approximate X,Y using polynomials of degree $O(\log n)$.

\[\sum_{\text{leaves}} l_1 \cdots l_m \Rightarrow \sum_{\text{leaves}} \prod \left(1 + \sum_{j} (1 + \lambda_j) r_{k,j} \right) \]
Predictability

A subset $S \subseteq [n]$ ε-predicts Y if

$$\Pr[Y|S=0 \text{ but } Y\neq 0] \leq \varepsilon.$$

- If S ε-predicts Y and X,Y are $(|S|+1)$-indist. then S $(n\varepsilon)$-predicts X.
- If S δ-predicts X,Y then X,Y δ-fool
 and $(\delta\delta)$-fool decision trees of sizes.

\Rightarrow Goal: if Y is simple then Y is
ε-predicted by set of size $\text{polylog}(\frac{1}{\varepsilon})$.
Predicting linear sources

A subset \(S \subseteq [n] \) \(\epsilon \)-predicts \(Y \) if

\[
\Pr[Y|S = 0 \text{ but } Y \neq 0] \leq \epsilon.
\]

\(Y \) is linear if each \(Y_i \) is linear function of \(X \)

Case 1: there exist \(\log_2(\frac{1}{\epsilon}) \) linearly independent coordinate \(S \) \(\Rightarrow \) \(\Pr[Y|S = 0] = \epsilon \)

Case 2: otherwise, choose a basis \(S \)

\(\Rightarrow \) \(\Pr[Y|S = 0 \text{ but } Y \neq 0] = 0 \)

Generalization to higher degree uses higher-order Fourier analysis
Predicting local sources

S ε-predicts Y if $\Pr [Y|S = 0 \text{ but } Y \neq 0] \leq \varepsilon$

Y is t-local: every Y_i depends on t many S_j's

Choose maximal set T of indices depending on disjoint coordinates

Case 1: $|T| \geq 2^t \log(\frac{1}{\varepsilon})$

Choose set T of that size $\Rightarrow \Pr [Y|S = 0] \leq \varepsilon$

Case 2: $|T| \leq 2^t \log(\frac{1}{\varepsilon})$

For each assignment to coords appearing in $Y|T$, source simplifies to $(t-1)$-local source; induction
Prediction for narrow DNFs

A decision tree ϵ-predicts Y for f if for $1-\epsilon$ fraction of leaves (wrt Y), value of f is determined.

If a depth d DT ϵ-predicts Y for f and x, y are d-indist. then x, y ϵ-fool f.

Any linear source is ϵ-predicted for any width w DNF by a DT of depth $O(w^{2\epsilon}/\log 2\epsilon)$.

Proof: combination of arguments for linear and local sources.
Connection with linear IPPP

polylog(n)-indist. Linear sources fool AC^0

\[\downarrow \]

if an AC^0 circuit can predict \(l(F^2) \) from \(l_1(F^2), \ldots, l_m(F^2) \)

then \(l \) spanned by polylog(n) many \(l_i \)

\[\downarrow \]

if \(m = \text{poly}(n) \) then for any \(l_1, \ldots, l_m \) there exists \(l \) s.t.

no AC^0 circuit can predict \(l(F^2) \) given \(l_1(F^2), \ldots, l_m(F^2) \)

\[\downarrow \]

no AC^0 circuit can predict \(\langle r, s \rangle \) given \(l_1(F^2), \ldots, l_m(F^2), y_1(s), \ldots, y_m(s) \)

\[\downarrow \]

no AC^0\text{-XOR} circuit can predict \(\langle r, s \rangle \)
Open Questions

A class of sources \mathcal{Y} is simple for a class of functions \mathcal{F} if

$$X, Y \text{ polylog}(n)\text{-indist, } Y \in \mathcal{Y} \Rightarrow X, Y \text{ fool } \mathcal{F}$$

1. Maximal d s.t. degree d sources are simple for OR?
 Know: $d = \omega(1)$, $d = O(\log n)$

2. Maximal t s.t. t-local sources are simple for OR?
 Know: $t = \omega(1)$, $t = \tilde{O}(n)$

3. Same for decision trees, DNFs, AC^0...