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Dokow & Holzman: Other polymorphisms exist only for AND, XOR

Always have dictators, sometimes “antidictators”, sometimes constants
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Background: Boolean Function Analysis

Every function   has unique representation as multilinear polyf : {±1}n → {±1}

Noise operator  multiplies degree  monomials (“level “) by Tρ d d ρd

Degree of : degree of unique representation (as polynomial)f

Constant coefficient is expectation of  f

Important observation: different monomials are orthogonal
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Polymorphisms of Majority

A function  is a polymorphism of Majority iff : {±1}n → {±1}

f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))

Fix , average over :x y, z T1/2 f(x) =
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2
f(x) + μ, μ = 𝔼[ f ]

Comparing expectations on both sides: .μ ∈ {0, ± 1}

If , function is constant.μ ∈ {±1}

If  then , so , so  is a dictator.μ = 0 T1/2 f = 1
2 f deg f = 1 f

Everything also holds approximately, using FKN theorem!
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Polymorphisms of AND

A function  is a polymorphism of AND iff : {0,1}n → {0,1}

f(xy) = f(x)f(y)

Fix , average over :x y
T↓ f(x) = μf(x), μ = 𝔼[ f ]

Problem: one-sided noise operator  has complicated effect 
                 on Fourier expansion

T↓

However, can read Fourier expansion of  
from biased Fourier expansion of  !

T↓ f
f

←Unbiased inputs(3/4,1/4)-biased inputs→

Cannot directly compare biased and unbiased Fourier expansions! 
The two expansions depend on different parts of .f

←Unbiased inputs(3/4,1/4)-biased inputs→

average of  over values “below” 𝔼[ f(xy)] = f x
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Approximate polymorphisms of AND

Starting point: , where .T↓ f ≈ μf μ = 𝔼[ f ]

Since noise operator is “low-pass filter”,  has decaying tails.f ≈ μ−1T↓ f

Bourgain’s junta theorem:  is close to a junta.f

Fixing non-junta variables: , where .T↓g ≈ μf g : {0,1}n → [0,1]

Suggests solving generalized eigenvalue problem

T↓g = λh

where  and .g : {0,1}n → [0,1] h : {0,1}n → {0,1}
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T↓g(x) = 𝔼[g(y)] y 1
2

Expected solutions: .g = h = x1 ∧ ⋯ ∧ xℓ, λ = 2−ℓ

Can rule out unexpected solutions since .λ ≈ 𝔼[h]

Also holds for approximate version .T↓g ≈ λh
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Generalized eigenvalue problem
Solve  for  and .T↓g = λh g : {0,1}n → [0,1] h : {0,1}n → {0,1}

First step:  is monotone.h

Let . Want to rule out  but . 
If  then  for all  below . 
So  for all  below , hence .

z ≤ x h(x) = 0 h(z) = 1
h(x) = 0 g(y) = 0 y x

g(w) = 0 w z h(z) = 0

Second step: all minterms of  have same size.h

Third step: minterm hypergraph is complete multipartite ⟹  is AND-OR.h

Fourth step: invert  ⟹  is AND-XOR.T↓ g

LP duality: argument automatically extends to !T↓g ≈ λh



Results



Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ



Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If  then  is -close to AND or constant.Pr[ f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ



Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If  then  is -close to AND or constant.Pr[ f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If  then  is -close to 
a dictator or a constant.

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O( ϵ)



Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If  then  is -close to AND or constant.Pr[ f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If  then  is -close to 
a dictator or a constant.

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O( ϵ)

• Same for Majority on any odd number of inputs.



Results

• If  then  is -close to an AND or a constant.Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ

• If  then  is -close to AND or constant.Pr[ f(x1⋯xk) = f(x1)⋯f(xk)] ≥ 1 − ε f δ

• If  then  is -close to 
a dictator or a constant.

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O( ϵ)

• Same for Majority on any odd number of inputs.

• Ongoing work: many more functions!
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Another Result
Suppose  and .g : {0,1}n → [0,1] h : {0,1}n → {0,1}

If , then  is close to AND-XOR,  is close to AND-OR.T↓g ≈ λh g h

Suppose that 
 (i)  is typically small when  

 (ii)  is typically at least  when  

Then  is close to a monotone junta.

T↓g h = 0

T↓g λ h = 1
h

Cannot say more since  always a solution for monotone junta .g = h h

Proof is somewhat different!



Open questions



Open questions

• If  then  is -close to an AND or a constant. 
What is the best relation between  and ?

Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ



Open questions

• If  then  is -close to an AND or a constant. 
What is the best relation between  and ?

Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

• If  then  is -close to a 
dictator or a constant. Works for any Majority. 
Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. 
Can we generalize this to any function other than AND, XOR?

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O( ϵ)



Open questions

• If  then  is -close to an AND or a constant. 
What is the best relation between  and ?

Pr[ f(xy) = f(x)f(y)] ≥ 1 − ε f δ
ε δ

• If  then  is -close to a 
dictator or a constant. Works for any Majority. 
Dokow & Holzman: Non-trivial exact polymorphisms only for AND, XOR. 
Can we generalize this to any function other than AND, XOR?

Pr[ f(𝖬𝖺𝗃(x, y, z)) = 𝖬𝖺𝗃( f(x), f(y), f(z))] ≥ 1 − ε f O( ϵ)

• If  then  correlates with exact polymorphism. 

Does a similar statement hold for AND?

Pr[ f(x ⊕ y) = f(x) ⊕ f(y)] ≥ 1
2 +ε f
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Bonus: Schaefer’s theorem

SAT is NP-complete (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

Not-All-Equal-SAT is NP-complete NAE(x1, x2, x3) ∧ NAE(x1, x2, x4)

XOR-SAT is in P (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2 ⊕ x4)

Schaefer’s theorem: 
If all predicates have one of the following polymorphisms, in P: 

constant 0, constant 1, AND, OR, Majority, XOR 
Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).


