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Background: Boolean Function Analysis

Every function f: {x£1}" — {£1} has unique representation as multilinear poly
Degree of f: degree of unique representation (as polynomial)

Noise operator Tp multiplies degree d monomials (“level d”) by pd

Constant coefficient is expectation of f

Important observation: different monomials are orthogonal
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A functionf: {£1}" — {x1} is a polymorphism of Majority if

J(Maj(x, y, 2)) = Maj(f(x),/(¥),/(2))

1 — 2
Fix x, average overy,z:  T1pf(x) = 2” fx)+u,  p=E[f]

Comparing expectations on both sides: u € {0, £ 1}.

If u € {£1}, function is constant.

It u=0thenT,f= %f, sodegf =1, so fis a dictator.

Everything also holds approximately, using FKN theorem!
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A function f: {0,1}" — {0,1} is a polymorphism of AND if
(3/4,1/4)-biased inputs—  f(xy) =f(x)f(y) «Unbiased inputs

Fix x, average over y: E[ f(xy)] = average of f over values “below” x

(3/4,1/4)-biased inputs— T, f(x) = uf(x), +Unbiased inputs

Cannot directly compare biased and unbiased Fourier expansions!

The two expansions depend on different parts of f.

However, can read Fourier expansion of T f
from biased Fourier expansion of 1!
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Starting point: T, f ~ uf, where u = E[f].

Since noise operator is “low-pass filter”, f ~ //t_lTlf has decaying tails.
Bourgain’s junta theorem: fis close to a junta.
Fixing non-junta variables: T|g ~ uf, where g: {0,1}" — [0,1].
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Generalized eigenvalue problem

Solve T g(x) = An(x) for g: {0,1}" — [0,1] and A: {0,1}" — {0,1}.
T,g(x) = E[g(y)]. where y results from zeroing each coordinate w.p. %

Expected solutions: g=h=x; A Ax,,A =277,

Unexpected solutions: g =x, @ x,,h = x; Vx,,A = 1/2.

General case: gis ¢c- AND of XORs, i is AND of ORs, A = ¢ - 2-#factors

Also holds for approximate version T,g ~ ih.

Can rule out unexpected solutions since 1 ~ E[A].
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Generalized eigenvalue problem

Solve T\g = an for g: {0,1}" — [0,1] and A: {0,1}" — {0,1}.

First step: 4 1s monotone.

Let z < x. Want to rule out /(x) = 0 but /(z) = 1.

If 7(x) = 0 then ¢g(y) = 0 for all y below x.
So ¢(w) = 0 for all w below z, hence h(z) = 0.

Second step: all minterms of # have same size.

Third step: minterm hypergraph is complete multipartite = his AND-OR.
Fourth step: invert T, = g is AND-XOR.

LP duality: argument automatically extends to 7T|g ~ Ah!
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. If Pr| f(xy) = f(x)f(y)] = 1 — € then fis 0-close to an AND or a constant.

o If Prlf(x;---x;) = f(x;):--f(x;)] = 1 — € then fis 0-close to AND or constant.
. If Pr[ f(Maj(x,v,2)) = Maj(f(x),f(v),f(z))] =2 1 — ethenfis 0(\/2)-close to
a dictator or a constant.

« Same for Majority on any odd number of inputs.

- Ongoing work: many more functions!
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Suppose g: {0,1}" = [0,1] and A: {0,1}" — {0,1}.
f T\g ~ Ah, then g is close to AND-XOR, h is close to AND-OR.
Suppose that

(i) T\g is typically small when h =0

(i) T,g is typically at least A when i = 1
Then h is close to a monotone junta.

Cannot say more since g = h always a solution for monotone junta #.

Proof is somewhat different!
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Open questions

. If Pr[f(xy) = f(x)f(y)] > 1 — e then fis 0-close to an AND or a constant.
What is the best relation between € and 07?

. If Pr{ fiMaj(x, v, 2)) = Maj(f(x), f(y),f(z))] > 1 — e then fis O(/¢)-close to a

dictator or a constant. Works for any Majority.

Can we generalize this to any function other than AND, XOR?

. fPr[f(x®y)=1fx) D f(y)] > %-I-E then f correlates with exact polymorphism.
Does a similar statement hold for AND?
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SAT is NP-complete (X VX VX3) A (X VX Vo)
Not-All-Equal-SAT is NP-complete NAE(x, Xy, x3) A NAE(x, x5, X,)
XOR-SATisInP (xl D x, D Xg) A (x1 D x, D X4)

Schaefer’s theorem:
If all predicates have one of the following polymorphisms, in P:

constant O, constant 1, AND, OR, Majority, XOR
Otherwise, NP-complete.

Recently extended to non-binary domains (Dichotomy Theorem).



