Intersecting families
and Hoffman’s bound

Yuval Filmus
Technion, Israel

6 December 2021
Outline

1. Introduction: Erdős–Ko–Rado
2. Hoffman’s bound and t-intersecting families
3. Uniqueness for intersecting families of permutations
4. Extensions and open problems
Erdős–Ko–Rado theorem

A collection \mathcal{F} of k-subsets of $[n]$ is *intersecting* if any two sets in \mathcal{F} intersect (are not disjoint).
Erdős–Ko–Rado theorem

A collection \mathcal{F} of k-subsets of $[n]$ is intersecting if any two sets in \mathcal{F} intersect (are not disjoint).

Theorem

Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting.

- Upper bound:
 If $k \leq n/2$ then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
Erdős–Ko–Rado theorem

A collection \mathcal{F} of k-subsets of $[n]$ is *intersecting* if any two sets in \mathcal{F} intersect (are not disjoint).

Theorem

Erdős–Ko–Rado theorem (1938, 1961):
Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting.

- **Upper bound:**
 If $k \leq n/2$ then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

- **Uniqueness:**
 If $k < n/2$ and $|\mathcal{F}| = \binom{n-1}{k-1}$ then $\mathcal{F} = \{ S : i \in S \}$ for some $i \in [n]$.
A collection \mathcal{F} of k-subsets of $[n]$ is *intersecting* if any two sets in \mathcal{F} intersect (are not disjoint).

Theorem

Erdős–Ko–Rado theorem (1938, 1961):
Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting.

- **Upper bound:**
 If $k \leq n/2$ then $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

- **Uniqueness:**
 If $k < n/2$ and $|\mathcal{F}| = \binom{n-1}{k-1}$ then $\mathcal{F} = \{ S : i \in S \}$ for some $i \in [n]$.

- **Stability (Hilton, Milner 1967; Frankl 1987):**
 If $k < n/2$ and $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then $\mathcal{F} \approx \{ S : i \in S \}$ for some $i \in [n]$.
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound:** $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness:** If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability:** If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound**: $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness**: If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability**: If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
Erdős–Ko–Rado theorem

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then</td>
</tr>
<tr>
<td>- Upper bound: $</td>
</tr>
<tr>
<td>- Uniqueness: If $</td>
</tr>
<tr>
<td>- Stability: If $</td>
</tr>
</tbody>
</table>

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
- Katona’s circle method (Katona 1972).
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound:** $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness:** If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability:** If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
- Katona’s circle method (Katona 1972).
- Random walk method (Frankl 1978).
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound:** $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness:** If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability:** If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
- Katona's circle method (Katona 1972).
- Random walk method (Frankl 1978).
- Spectral method (Lovász 1979).
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound:** $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness:** If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability:** If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
- Katona’s circle method (Katona 1972).
- Random walk method (Frankl 1978).
- Spectral method (Lovász 1979).
- Polynomial method (Füredi, Hwang, Weichsel 2006).
Erdős–Ko–Rado theorem

Theorem

If $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting and $k < n/2$ then

- **Upper bound:** $|\mathcal{F}| \leq \binom{n-1}{k-1}$.
- **Uniqueness:** If $|\mathcal{F}| = \binom{n-1}{k-1}$ then \mathcal{F} is a star (all sets containing i).
- **Stability:** If $|\mathcal{F}| \approx \binom{n-1}{k-1}$ then \mathcal{F} is close to a star.

Many different proofs:

- Shifting (Erdős, Ko, Rado 1961).
- Katona’s circle method (Katona 1972).
- Random walk method (Frankl 1978).
- **Spectral techniques** (Lovász 1979).
- Polynomial method (Füredi, Hwang, Weichsel 2006).
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.
Spectral proof

Kneser graph $K(n, k)$:

- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:

- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $(-1)^j \binom{n-k-j}{k-j}$; minimal: $-(n-k-1)$.
Spectral proof

Kneser graph $K(n, k)$:

- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:

- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $(-1)^j \binom{n-k-j}{k-j}$; minimal: $-(\binom{n-k-1}{k-1})$.

Proof of upper bound:

- Let A be adjacency matrix of $K(n, k)$.

Yuval Filmus Technion, Israel
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:
- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $(-1)^j \binom{n-k-j}{k-j}$; minimal: $-\binom{n-k-1}{k-1}$.

Proof of upper bound:
- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu \binom{n}{k}$.
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:
- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $(-1)^j \binom{n-k-j}{k-j}$; minimal: $-(\binom{n-k-1}{k-1})$.

Proof of upper bound:
- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu\binom{n}{k}$.
- Write $f = 1_\mathcal{F}$ as $f = \mu \mathbf{1} + f^\perp$, where $f^\perp \perp \mathbf{1}$.
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:
- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $\left(-1\right)^j \binom{n-k-j}{k-j}$; minimal: $-\binom{n-k-1}{k-1}$.

Proof of upper bound:
- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu\binom{n}{k}$.
- Write $f = 1_{\mathcal{F}}$ as $f = \mu 1 + f^\perp$, where $f^\perp \perp 1$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu 1\|^2 = \mu - \mu^2$, where $\|g\|^2 = \mathbb{E}[g^2]$.
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:
- Degree and maximal eigenvalue: $\binom{n-k}{k}$.
- Eigenvalues: $(-1)^j \binom{n-k-j}{k-j}$; minimal: $-(\binom{n-k-1}{k-1})$.

Proof of upper bound:
- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu\binom{n}{k}$.
- Write $f = 1_{\mathcal{F}}$ as $f = \mu 1 + f^{\perp}$, where $f^{\perp} \perp 1$.
- $\|f^{\perp}\|^2 = \|f\|^2 - \|\mu 1\|^2 = \mu - \mu^2$, where $\|g\|^2 = \mathbb{E}[g^2]$.
- $0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^{\perp}, Af^{\perp} \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1}$.

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 5 / 22
Spectral proof

Kneser graph $K(n, k)$:
- Vertices: $\binom{[n]}{k}$.
- Edges: $S \sim T$ if $S \cap T = \emptyset$.

Spectral properties:
- Degree and maximal eigenvalue: $\left(\begin{array}{c}n-k \end{array}\right)$.
- Eigenvalues: $(-1)^j \left(\begin{array}{c}n-k-j \end{array}\right)$; minimal: $-(n-k-1)$.

Proof of upper bound:
- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu\binom{n}{k}$.
- Write $f = 1_{\mathcal{F}}$ as $f = \mu \mathbf{1} + f^\perp$, where $f^\perp \perp \mathbf{1}$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu \mathbf{1}\|^2 = \mu - \mu^2$, where $\|g\|^2 = \mathbb{E}[g^2]$.
- $0 = \langle f, Af \rangle = \langle \mu \mathbf{1}, A\mu \mathbf{1} \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \left(\begin{array}{c}n-k \end{array}\right) - (\mu - \mu^2) \left(\begin{array}{c}n-k-1 \end{array}\right)$.
- Arithmetic: $\mu \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \binom{n-1}{k-1}$. □
Spectral proof

Proof of upper bound:

- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu \binom{n}{k}$.
- Write $f = 1_\mathcal{F}$ as $f = \mu \mathbf{1} + f^\perp$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu \mathbf{1}\|^2 = \mu - \mu^2$.
- $0 = \langle f, Af \rangle = \langle \mu \mathbf{1}, A\mu \mathbf{1} \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1}$.
- Arithmetic: $\mu \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \binom{n-1}{k-1}$. □
Spectral proof

Proof of upper bound:

1. Let \(A \) be adjacency matrix of \(K(n, k) \).
2. Let \(\mathcal{F} \) be intersecting family of size \(\mu \binom{n}{k} \).
3. Write \(f = 1_{\mathcal{F}} \) as \(f = \mu 1 + f^\perp \).
4. \(\|f^\perp\|^2 = \|f\|^2 - \|\mu 1\|^2 = \mu - \mu^2 \).
5. \(0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1} \).
6. Arithmetic: \(\mu \leq \frac{k}{n} \), so \(|\mathcal{F}| \leq \binom{n-1}{k-1} \).

Proof of uniqueness (\(\mu = \frac{k}{n} \)):

1. \(f^\perp \) must belong to eigenspace of \(-\binom{n-k-1}{k-1}\).
Spectral proof

Proof of upper bound:

- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu \binom{n}{k}$.
- Write $f = 1_{\mathcal{F}}$ as $f = \mu \mathbf{1} + f^\perp$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu \mathbf{1}\|^2 = \mu - \mu^2$.
- $0 = \langle f, Af \rangle = \langle \mu \mathbf{1}, A \mu \mathbf{1} \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1}$.
- Arithmetic: $\mu \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
Spectral proof

Proof of upper bound:

- Let A be adjacency matrix of $K(n, k)$.
- Let \mathcal{F} be intersecting family of size $\mu\binom{n}{k}$.
- Write $f = 1_\mathcal{F}$ as $f = \mu \mathbf{1} + f^\perp$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu \mathbf{1}\|^2 = \mu - \mu^2$.
- $0 = \langle f, Af \rangle = \langle \mu \mathbf{1}, A\mu \mathbf{1} \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1}$.
- Arithmetic: $\mu \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1 - x_i\}$.
Spectral proof

Proof of upper bound:

- Let A be adjacency matrix of $K(n,k)$.
- Let \mathcal{F} be intersecting family of size $\mu \binom{n}{k}$.
- Write $f = 1_{\mathcal{F}}$ as $f = \mu \mathbf{1} + f^\perp$.
- $\|f^\perp\|^2 = \|f\|^2 - \|\mu \mathbf{1}\|^2 = \mu - \mu^2$.
- $0 = \langle f, Af \rangle = \langle \mu \mathbf{1}, A\mu \mathbf{1} \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 \binom{n-k}{k} - (\mu - \mu^2) \binom{n-k-1}{k-1}$.
- Arithmetic: $\mu \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1-x_i\}$.
- Since $\mu = \frac{k}{n}$, $f = x_i$.

\square
Spectral proof

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1-x_i\}$.
- Since $\mu = \frac{k}{n}$, $f = x_i$. □
Spectral proof

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1x_1 + \cdots + c_nx_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1-x_i\}$.
- Since $\mu = \frac{k}{n}$, $f = x_i$. \square

Proof of stability ($\mu \approx \frac{k}{n}$):

- f^\perp must be close to eigenspace of $-(\binom{n-k-1}{k-1})$ (in L_2).
Spectral proof

Proof of uniqueness ($\mu = \frac{k}{n}$):

- f^\perp must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1 - x_i\}$.
- Since $\mu = \frac{k}{n}$, $f = x_i$.

Proof of stability ($\mu \approx \frac{k}{n}$):

- f^\perp must be close to eigenspace of $-(\binom{n-k-1}{k-1})$ (in L_2).
- f is close to $c_1 x_1 + \cdots + c_n x_n$.
Spectral proof

Proof of uniqueness ($\mu = \frac{k}{n}$):

- $f \perp$ must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
- f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, $f \in \{0, 1, x_i, 1-x_i\}$.
- Since $\mu = \frac{k}{n}$, $f = x_i$. \hfill \square

Proof of stability ($\mu \approx \frac{k}{n}$):

- $f \perp$ must be close to eigenspace of $-(\binom{n-k-1}{k-1})$ (in L_2).
- f is close to $c_1 x_1 + \cdots + c_n x_n$.
- Since f is Boolean, f is close to $\{0, 1, x_i, 1-x_i\}$ (Friedgut–Kalai–Naor 2002; F. 2016).
Spectral proof

Proof of uniqueness ($\mu = \frac{k}{n}$):

1. $f \perp$ must belong to eigenspace of $-(\binom{n-k-1}{k-1})$.
2. f can be expressed as $f(x_1, \ldots, x_n) = c_1 x_1 + \cdots + c_n x_n$.
3. Since f is Boolean, $f \in \{0, 1, x_i, 1 - x_i\}$.
4. Since $\mu = \frac{k}{n}$, $f = x_i$. □

Proof of stability ($\mu \approx \frac{k}{n}$):

1. $f \perp$ must be close to eigenspace of $-(\binom{n-k-1}{k-1})$ (in L_2).
2. f is close to $c_1 x_1 + \cdots + c_n x_n$.
3. Since f is Boolean, f is close to $\{0, 1, x_i, 1 - x_i\}$ (Friedgut–Kalai–Naor 2002; F. 2016).
4. Since $\mu \approx \frac{k}{n}$, $f \approx x_i$. □
Outline

1. Introduction: Erdős–Ko–Rado
2. Hoffman’s bound and t-intersecting families
3. Uniqueness for intersecting families of permutations
4. Extensions and open problems
Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose $G = (V, E)$ is a d-regular graph with minimal eigenvalue λ_{min}.
Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose $G = (V, E)$ is a d-regular graph with minimal eigenvalue λ_{min}. Same calculation as before shows that

\[\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d - \lambda_{\text{min}}} |V|. \]
Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose $G = (V, E)$ is a d-regular graph with minimal eigenvalue λ_{min}. Same calculation as before shows that

$$\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d - \lambda_{\text{min}}} |V|.$$

Example

For the Kneser graph $K(n, k)$,

$$d = \binom{n - k}{k}, \quad \lambda_{\text{min}} = -\binom{n - k - 1}{k - 1}.$$
Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose $G = (V, E)$ is a d-regular graph with minimal eigenvalue λ_{min}. Same calculation as before shows that

$$\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d - \lambda_{\text{min}}} |V|.$$

Example

For the Kneser graph $K(n, k)$,

$$d = \binom{n-k}{k}, \quad \lambda_{\text{min}} = -\binom{n-k-1}{k-1}.$$

Therefore

$$\alpha(K(n, k)) \leq \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k}} + \binom{n-k}{k-1} \binom{n}{k} = \binom{n-1}{k-1}.$$
Weighted Hoffman’s bound (Lovász 1979)

A collection \mathcal{F} of k-subsets of $[n]$ is t-intersecting if any two sets in \mathcal{F} have at least t common elements.
Weighted Hoffman’s bound (Lovász 1979)

A collection \mathcal{F} of k-subsets of $[n]$ is t-intersecting if any two sets in \mathcal{F} have at least t common elements.

Theorem

Wilson (1984):

Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is t-intersecting.

- **Upper bound:**

 If $n \geq (t + 1)(k - t + 1)$ then $|\mathcal{F}| \leq \binom{n-t}{k-t}$.
Weighted Hoffman’s bound (Lovász 1979)

A collection \mathcal{F} of k-subsets of $[n]$ is *t-intersecting* if any two sets in \mathcal{F} have *at least* t common elements.

Theorem

Wilson (1984):

Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is t-intersecting.

- **Upper bound:**

 If $n \geq (t + 1)(k - t + 1)$ then $|\mathcal{F}| \leq \binom{n-t}{k-t}$.

- **Uniqueness:**

 If $n > (t + 1)(k - t + 1)$ and $|\mathcal{F}| = \binom{n-t}{k-t}$ then \mathcal{F} is a t-star (all sets containing i_1, \ldots, i_t).
Weighted Hoffman’s bound (Lovász 1979)

A collection \mathcal{F} of k-subsets of $[n]$ is \textit{t-intersecting} if any two sets in \mathcal{F} have \textit{at least} t common elements.

\textbf{Theorem}

\textit{Wilson (1984):}
Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is t-intersecting.

- \textbf{Upper bound:}
 \begin{align*}
 \text{If } n \geq (t + 1)(k - t + 1) \text{ then } |\mathcal{F}| &\leq \binom{n-t}{k-t}.
 \end{align*}

- \textbf{Uniqueness:}
 \begin{align*}
 \text{If } n > (t + 1)(k - t + 1) \text{ and } |\mathcal{F}| = \binom{n-t}{k-t} \text{ then } \mathcal{F} \text{ is a } t\text{-star (all sets containing } i_1, \ldots, i_t).}
 \end{align*}

(False for smaller n.)
Weighted Hoffman’s bound (Lovász 1979)

A collection \mathcal{F} of k-subsets of $[n]$ is t-intersecting if any two sets in \mathcal{F} have at least t common elements.

Theorem

Wilson (1984):
Suppose $\mathcal{F} \subseteq \binom{[n]}{k}$ is t-intersecting.

- **Upper bound:**
 If $n \geq (t + 1)(k - t + 1)$ then $|\mathcal{F}| \leq \binom{n-t}{k-t}$.

- **Uniqueness:**
 If $n > (t + 1)(k - t + 1)$ and $|\mathcal{F}| = \binom{n-t}{k-t}$ then \mathcal{F} is a t-star (all sets containing i_1, \ldots, i_t).

*(False for smaller n.)

Hoffman’s classical bound gives the wrong bound!
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, $\alpha(G) \leq \frac{-\lambda_{\min}}{d-\lambda_{\min}} |V|$:

- $A = \text{adjacency matrix}$, $\mathcal{F} = \text{independent set}$, $f = 1_{\mathcal{F}}$.

Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, \(\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d-\lambda_{\text{min}}} |V| \):

- \(A = \) adjacency matrix, \(\mathcal{F} = \) independent set, \(f = 1_\mathcal{F} \).
- Write \(f = \mu 1 + f^\perp \), where \(\mu = |\mathcal{F}|/|V| \).
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, \(\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d-\lambda_{\text{min}}} |V| \):

- \(A = \) adjacency matrix, \(\mathcal{F} = \) independent set, \(f = 1_{\mathcal{F}} \).
- Write \(f = \mu 1 + f^\perp \), where \(\mu = |\mathcal{F}|/|V| \).
- \(0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 d + (\mu - \mu^2) \lambda_{\text{min}} \).
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, \(\alpha(G) \leq \frac{-\lambda_{\min}}{d-\lambda_{\min}} |V| \):

- \(A = \) adjacency matrix, \(\mathcal{F} = \) independent set, \(f = 1_{\mathcal{F}} \).
- Write \(f = \mu 1 + f^\perp \), where \(\mu = |\mathcal{F}|/|V| \).
- \(0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 d + (\mu - \mu^2)\lambda_{\min} \).

Observation

Suffices for \(A \) to satisfy:

- \(A \) is symmetric.
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, $\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d - \lambda_{\text{min}}} |V|$:

- $A =$ adjacency matrix, $\mathcal{F} =$ independent set, $f = 1_{\mathcal{F}}$.
- Write $f = \mu 1 + f^\perp$, where $\mu = |\mathcal{F}|/|V|$.
- $0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 d + (\mu - \mu^2)\lambda_{\text{min}}$.

Observation

Suffices for A to satisfy:

- A is symmetric.
- $A1 = \lambda_1 1$ (λ_1 replaces d).
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, $\alpha(G) \leq \frac{-\lambda_{\text{min}}}{d-\lambda_{\text{min}}} |V|$:

- $A = \text{adjacency matrix}$, $\mathcal{F} = \text{independent set}$, $f = 1_{\mathcal{F}}$.
- Write $f = \mu 1 + f^\perp$, where $\mu = |\mathcal{F}|/|V|$.
- $0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 d + (\mu - \mu^2)\lambda_{\text{min}}$.

Observation

Suffices for A to satisfy:

- A is symmetric.
- $A1 = \lambda_1 1$ (λ_1 replaces d).
- $A(x, y) = 0$ if $(x, y) \notin E$.
Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, $\alpha(G) \leq \frac{-\lambda_{\min}}{d-\lambda_{\min}} |V|$:

- A = adjacency matrix, F = independent set, $f = 1_F$.
- Write $f = \mu 1 + f^\perp$, where $\mu = |F|/|V|$.
- $0 = \langle f, Af \rangle = \langle \mu 1, A\mu 1 \rangle + \langle f^\perp, Af^\perp \rangle \geq \mu^2 d + (\mu - \mu^2) \lambda_{\min}$.

Observation

Suffices for A to satisfy:

- A is symmetric.
- $A1 = \lambda_1 1$ (λ_1 replaces d).
- $A(x, y) = 0$ if $(x, y) \notin E$.

Resulting bound: $\alpha(G) \leq \frac{-\lambda_{\min}}{\lambda_1 - \lambda_{\min}} |V|$.
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A1 = \lambda_1 1$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\min}}{\lambda_1 - \lambda_{\min}} |V|$.
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A \mathbf{1} = \lambda_1 \mathbf{1}$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\text{min}}}{\lambda_1 - \lambda_{\text{min}}} |V|$.

Example (t-intersecting families)

- By symmetry, $A(S, T)$ depends only on $|S \cap T|$.
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A1 = \lambda_1 1$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\min}}{\lambda_1 - \lambda_{\min}} |V|$.

Example (t-intersecting families)

- By symmetry, $A(S, T)$ depends only on $|S \cap T|$.
- So A belongs to the Bose–Mesner algebra of the Johnson scheme.
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A1 = \lambda_1 \cdot 1$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\text{min}}}{\lambda_1 - \lambda_{\text{min}}} |V|$.

Example (t-intersecting families)

- By symmetry, $A(S, T)$ depends only on $|S \cap T|$.
- So A belongs to the Bose–Mesner algebra of the Johnson scheme.
- Analysis must be tight on t-stars $\implies V^1, \ldots, V^t$ must be λ_{min}-e.s.
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose \(G = (V, E) \). If a \(V \times V \) symmetric matrix satisfies

- \(A1 = \lambda_1 1 \).
- \(A(x, y) = 0 \) if \((x, y) \notin E \).

Then \(\alpha(G) \leq \frac{-\lambda_{\text{min}}}{\lambda_1 - \lambda_{\text{min}}} |V| \).

Example (\(t \)-intersecting families)

- By symmetry, \(A(S, T) \) depends only on \(|S \cap T| \).
- So \(A \) belongs to the Bose–Mesner algebra of the Johnson scheme.
- Analysis must be tight on \(t \)-stars \(\implies V^1, \ldots, V^t \) must be \(\lambda_{\text{min}} \)-e.s.
- Choose \(\lambda_1 \) arbitrarily \(\implies \) determine \(\lambda_{\text{min}} \) \(\implies \) determine \(A \).
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A1 = \lambda_1 1$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\text{min}}}{\lambda_1 - \lambda_{\text{min}}} |V|$.

Example (t-intersecting families)

- By symmetry, $A(S, T)$ depends only on $|S \cap T|$.
- So A belongs to the Bose–Mesner algebra of the Johnson scheme.
- Analysis must be tight on t-stars $\implies V^1, \ldots, V^t$ must be λ_{min}-e.s.
- Choose λ_1 arbitrarily \implies determine λ_{min} \implies determine A.
- λ_{min} is indeed minimal eigenvalue precisely for correct values of n!
Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose $G = (V, E)$. If a $V \times V$ symmetric matrix satisfies

- $A1 = \lambda_1 1$.
- $A(x, y) = 0$ if $(x, y) \notin E$.

Then $\alpha(G) \leq \frac{-\lambda_{\min}}{\lambda_1 - \lambda_{\min}} |V|$.

Example (t-intersecting families)

- By symmetry, $A(S, T)$ depends only on $|S \cap T|$.
- So A belongs to the Bose–Mesner algebra of the Johnson scheme.
- Analysis must be tight on t-stars $\implies V^1, \ldots, V^t$ must be λ_{\min}-e.s.
- Choose λ_1 arbitrarily \implies determine λ_{\min} \implies determine A.
- λ_{\min} is indeed minimal eigenvalue precisely for correct values of n!

Closely related to Lovász θ function and Delsarte’s LP bound.
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
- t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
- t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
- t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher, Shirazi 2021+).
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
- t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
- t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher, Shirazi 2021+).
- Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger, Zhao 2021).
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
- t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
- t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher, Shirazi 2021+).
- Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger, Zhao 2021).
- Many, many more!
 (see Godsil, Meagher 2015 for an exposition of some of these)
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- \(t \)-intersecting vector spaces (Frankl, Wilson 1986).
- \(t \)-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
- \(t \)-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher, Shirazi 2021+).
- Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger, Zhao 2021).
- Many, many more!
 (see Godsil, Meagher 2015 for an exposition of some of these)

But: Wilson’s result on \(t \)-intersecting families can be proved by shifting.
More examples

Hoffman’s bound is only known way to prove many intersection theorem:

- t-intersecting vector spaces (Frankl, Wilson 1986).
- t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012; Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana, Razafimahatratra 2021+).
- t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher, Shirazi 2021+).
- Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger, Zhao 2021).
- Many, many more!
 (see Godsil, Meagher 2015 for an exposition of some of these)

But: Wilson’s result on t-intersecting families can be proved by shifting. Ahlswede, Khachatrian (1997, 1999): optimal bound for all n, k, t.
Outline

1. Introduction: Erdős–Ko–Rado
2. Hoffman’s bound and t-intersecting families
3. Uniqueness for intersecting families of permutations
4. Extensions and open problems
Intersecting families of permutations

Two permutations \(\alpha, \beta \in S_n\) intersect if \(\alpha(i) = \beta(i)\) for some \(i\).
Intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ intersect if $\alpha(i) = \beta(i)$ for some i.

Theorem

If $\mathcal{F} \subseteq S_n$ is intersecting then $|\mathcal{F}| \leq (n - 1)!$.

Yuval Filmus
Technion, Israel
Intersecting families and Hoffman's bound
6 December 2021
Intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ intersect if $\alpha(i) = \beta(i)$ for some i.

Theorem

If $\mathcal{F} \subseteq S_n$ is intersecting then $|\mathcal{F}| \leq (n - 1)!$.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.
Intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ intersect if $\alpha(i) = \beta(i)$ for some i.

Theorem

If $\mathcal{F} \subseteq S_n$ is intersecting then $|\mathcal{F}| \leq (n - 1)!$.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.

Proof 2 (Renteln 2007).

Hoffman’s classical bound on the derangement graph.
Intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ intersect if $\alpha(i) = \beta(i)$ for some i.

Theorem

If $\mathcal{F} \subseteq S_n$ is intersecting then $|\mathcal{F}| \leq (n - 1)!$.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.

Proof 2 (Renteln 2007).

Hoffman’s classical bound on the derangement graph.

What do extremal families look like?
Intersecting families of permutations

Stars \(\{ \pi \in S_n : \pi(i) = j \} \) are intersecting.
Intersecting families of permutations

Stars \(\{ \pi \in S_n : \pi(i) = j \} \) are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size \((n − 1)!\).
Intersecting families of permutations

Stars \(\{\pi \in S_n : \pi(i) = j\} \) are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size \((n - 1)!\).

Proof (Ellis, Friedgut, Pilpel 2011).
- Hoffman’s bound implies that extremal families have degree 1.

Definition (Terminology)
- **Degree**: minimal degree of poly in \(x_{ij} = 1_{\pi(i)=j}\) agreeing with \(f\).
Intersecting families of permutations

Stars \(\{ \pi \in S_n : \pi(i) = j \} \) are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size \((n - 1)! \).

Proof (Ellis, Friedgut, Pilpel 2011).

- Hoffman’s bound implies that extremal families have degree 1.
- Degree 1 families are **dictators** (Birkhoff–von Neumann).

Definition (Terminology)

- **Degree:** minimal degree of poly in \(x_{ij} = 1_{\pi(i)=j} \) agreeing with \(f \).
- **Dictator:** function depending only on \(\pi(i) \) or only on \(\pi^{-1}(j) \).
Intersecting families of permutations

Stars \(\{ \pi \in S_n : \pi(i) = j \} \) are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size \((n - 1)!\).

Proof (Ellis, Friedgut, Pilpel 2011).

- Hoffman’s bound implies that extremal families have **degree 1**.
- Degree 1 families are **dictators** (Birkhoff–von Neumann).
- Intersecting dictators are stars.

Definition (Terminology)

- **Degree**: minimal degree of poly in \(x_{ij} = 1_{\pi(i)=j} \) agreeing with \(f \).
- **Dictator**: function depending only on \(\pi(i) \) or only on \(\pi^{-1}(j) \).
Two permutations $\alpha, \beta \in S_n$ \textit{t-intersect} if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

t-intersecting families of permutations
Two permutations $\alpha, \beta \in S_n$ \textit{t-intersect} if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

\textbf{Theorem (Ellis, Friedgut, Pilpel 2011)}

If $\mathcal{F} \subseteq S_n$ is \textit{t-intersecting} and $n \geq N_t$ then $|\mathcal{F}| \leq (n - t)!$.
\[t \]-intersecting families of permutations

Two permutations \(\alpha, \beta \in S_n \) \(t \)-intersect if \(\alpha(i_j) = \beta(i_j) \) for some \(i_1, \ldots, i_t \).

Theorem (Ellis, Friedgut, Pilpel 2011)

If \(\mathcal{F} \subseteq S_n \) is \(t \)-intersecting and \(n \geq N_t \) then \(|\mathcal{F}| \leq (n - t)! \).

Proved using Hoffman's bound and representation theory of \(S_n \).
t-intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ t-intersect if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

Theorem (Ellis, Friedgut, Pilpel 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting and $n \geq N_t$ then $|\mathcal{F}| \leq (n - t)!$.

Proved using Hoffman’s bound and representation theory of S_n.

What about uniqueness?
Two permutations $\alpha, \beta \in S_n$ t-intersect if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

Theorem (Ellis, Friedgut, Pilpel 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting and $n \geq N_t$ then $|\mathcal{F}| \leq (n - t)!$.

Proved using Hoffman’s bound and representation theory of S_n.

What about uniqueness?

t-stars $\{\pi \in S_n : \pi(i_k) = j_k \text{ for } k \in [t]\}$ are t-intersecting.
t-intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ *t-intersect* if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

Theorem (Ellis, Friedgut, Pilpel 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting and $n \geq N_t$ then $|\mathcal{F}| \leq (n - t)!$.

Proved using Hoffman’s bound and representation theory of S_n.

What about uniqueness?

t-stars $\{\pi \in S_n : \pi(i_k) = j_k$ for $k \in [t]\}$ are t-intersecting.

Theorem (Ellis 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting, $|\mathcal{F}| = (n - t)!$ and $n \geq N_t$ then \mathcal{F} is a t-star.
t-intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ \textit{t-intersect} if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

Theorem (Ellis, Friedgut, Pilpel 2011)

If $F \subseteq S_n$ is t-intersecting and $n \geq N_t$ then $|F| \leq (n - t)!$.

Proved using Hoffman’s bound and representation theory of S_n.

What about uniqueness?

t-stars $\{\pi \in S_n : \pi(i_k) = j_k \text{ for } k \in [t]\}$ are t-intersecting.

Theorem (Ellis 2011)

If $F \subseteq S_n$ is t-intersecting, $|F| = (n - t)!$ and $n \geq N_t$ then F is a t-star.

Complicated proof (but proves a much stronger result).
t-intersecting families of permutations

Two permutations $\alpha, \beta \in S_n$ *t-intersect* if $\alpha(i_j) = \beta(i_j)$ for some i_1, \ldots, i_t.

Theorem (Ellis, Friedgut, Pilpel 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting and $n \geq N_t$ then $|\mathcal{F}| \leq (n - t)!$.

Proved using Hoffman’s bound and representation theory of S_n.

What about uniqueness?

t-stars $\{\pi \in S_n : \pi(i_k) = j_k \text{ for } k \in [t]\}$ are t-intersecting.

Theorem (Ellis 2011)

If $\mathcal{F} \subseteq S_n$ is t-intersecting, $|\mathcal{F}| = (n - t)!$ and $n \geq N_t$ then \mathcal{F} is a t-star.

Complicated proof (but proves a much stronger result).

Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_\mathcal{F}$ has degree t.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_{\mathcal{F}}$ has degree t.
Uniqueness for \(t \)-intersecting families of permutations

- Starting point: \(t \)-intersecting family \(\mathcal{F} \) of size \((n - t)!\), where \(n \) large.
- Hoffman’s bound implies that \(1_{\mathcal{F}} \) has degree \(t \).
- Nisan 1991 + Nisan, Szegedy 1994: \(\mathcal{F} \) has certificate complexity \(K_t \).
 - If \(\pi \in \mathcal{F} \) then \(\exists i_1, \ldots, i_{K_t} \) s.t. \(\rho \in \mathcal{F} \) whenever \(\rho(i_j) = \pi(i_j) \) \(\forall j \in [K_t] \).
Uniqueness for \(t \)-intersecting families of permutations

- Starting point: \(t \)-intersecting family \(\mathcal{F} \) of size \((n - t)!\), where \(n \) large.
- Hoffman’s bound implies that \(1_\mathcal{F} \) has degree \(t \).
- Nisan 1991 + Nisan, Szegedy 1994: \(\mathcal{F} \) has certificate complexity \(K_t \).
 - If \(\pi \in \mathcal{F} \) then \(\exists i_1, \ldots, i_{K_t} \) s.t. \(\rho \in \mathcal{F} \) whenever \(\rho(i_j) = \pi(i_j) \) \(\forall j \in [K_t] \).
- Suppose \(\mathcal{F} \) is not contained in any \(t \)-star.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_\mathcal{F}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j) \forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_\mathcal{F}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j) \forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
- Any $\pi \in \mathcal{F}$ must t-intersect C_0, say $\pi(i_j) = \pi_0(i_j)$ for $i_1, \ldots, i_t \in C_0$.

Yuval Filmus
Technion, Israel
Intersecting families and Hoffman’s bound
6 December 2021
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_{\mathcal{F}}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j) \forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
- Any $\pi \in \mathcal{F}$ must t-intersect C_0, say $\pi(i_j) = \pi_0(i_j)$ for $i_1, \ldots, i_t \in C_0$.
- Let $\rho \in \mathcal{F}$ satisfies $\rho(i_j) \neq \pi_0(i_j)$ for some $j \in [t]$.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n-t)!$, where n large.
- Hoffman’s bound implies that $1_{\mathcal{F}}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j) \; \forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
- Any $\pi \in \mathcal{F}$ must t-intersect C_0, say $\pi(i_j) = \pi_0(i_j)$ for $i_1, \ldots, i_t \in C_0$.
- Let $\rho \in \mathcal{F}$ satisfies $\rho(i_j) \neq \pi_0(i_j)$ for some $j \in [t]$.
- π must t-intersect a certificate C_ρ for ρ, so $\pi(i_{t+1}) = \rho(i_{t+1})$ for some $i_{t+1} \in C_\rho$ different from i_1, \ldots, i_t.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_\mathcal{F}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j)$ $\forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
- Any $\pi \in \mathcal{F}$ must t-intersect C_0, say $\pi(i_j) = \pi_0(i_j)$ for $i_1, \ldots, i_t \in C_0$.
- Let $\rho \in \mathcal{F}$ satisfies $\rho(i_j) \neq \pi_0(i_j)$ for some $j \in [t]$.
- π must t-intersect a certificate C_ρ for ρ, so $\pi(i_{t+1}) = \rho(i_{t+1})$ for some $i_{t+1} \in C_\rho$ different from i_1, \ldots, i_t.
- Altogether, π belongs to some $(t + 1)$-star.
Uniqueness for t-intersecting families of permutations

- Starting point: t-intersecting family \mathcal{F} of size $(n - t)!$, where n large.
- Hoffman’s bound implies that $1_{\mathcal{F}}$ has degree t.
 - If $\pi \in \mathcal{F}$ then $\exists i_1, \ldots, i_{K_t}$ s.t. $\rho \in \mathcal{F}$ whenever $\rho(i_j) = \pi(i_j)$ $\forall j \in [K_t]$.
- Suppose \mathcal{F} is not contained in any t-star.
- Choose a certificate C_0 for some arbitrary $\pi_0 \in \mathcal{F}$.
- Any $\pi \in \mathcal{F}$ must t-intersect C_0, say $\pi(i_j) = \pi_0(i_j)$ for $i_1, \ldots, i_t \in C_0$.
- Let $\rho \in \mathcal{F}$ satisfies $\rho(i_j) \neq \pi_0(i_j)$ for some $j \in [t]$.
- π must t-intersect a certificate C_ρ for ρ, so $\pi(i_{t+1}) = \rho(i_{t+1})$ for some $i_{t+1} \in C_\rho$ different from i_1, \ldots, i_t.
- Altogether, π belongs to some $(t + 1)$-star.
- \mathcal{F} covered by $\binom{K_t}{t} K_t$ many $(t + 1)$-stars $\implies |\mathcal{F}| = O((n - t - 1)!)$.
Outline

1. Introduction: Erdős–Ko–Rado
2. Hoffman’s bound and t-intersecting families
3. Uniqueness for intersecting families of permutations
4. Extensions and open problems
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+):
 Every s sets intersect.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+): Every s sets intersect.
- s-wise t-intersecting families (unsolved in general!): Every s sets have t elements in common.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+): Every s sets intersect.
- s-wise t-intersecting families (unsolved in general!): Every s sets have t elements in common.
- Erdős matching conjecture (unsolved in general!): No s-matching.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+):
 Every s sets intersect.
- s-wise t-intersecting families (unsolved in general!):
 Every s sets have t elements in common.
- Erdős matching conjecture (unsolved in general!):
 No s-matching.
- Frankl’s triangle problem (Frankl 1990, FGL2021+):
 No A, B, C s.t. $A \triangle B \triangle C = \emptyset$.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+): Every s sets intersect.
- s-wise t-intersecting families (unsolved in general!): Every s sets have t elements in common.
- Erdős matching conjecture (unsolved in general!): No s-matching.
- Frankl’s triangle problem (Frankl 1990, FGL2021+): No A, B, C s.t. $A \triangle B \triangle C = \emptyset$.
- Mantel’s theorem (FGL2021+): Graphs without triangles.
Versions for hypergraphs

Hoffman’s bound extended to hypergraphs by several authors:

- Golubev 2016.
- Bachoc, Gundert, Passuello 2019.

Independent sets in s-uniform hypergraphs correspond to intersection conditions on s-tuples:

- s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+): Every s sets intersect.
- s-wise t-intersecting families (unsolved in general!): Every s sets have t elements in common.
- Erdős matching conjecture (unsolved in general!): No s-matching.
- Frankl’s triangle problem (Frankl 1990, FGL2021+): No A, B, C s.t. $A \triangle B \triangle C = \emptyset$.
- Mantel’s theorem (FGL2021+): Graphs without triangles.
- Turán problems in hypergraphs (unsolved in general).
Sum of squares hierarchy

- Hoffman’s bound relies on \(A + \lambda_{\text{min}} I \succeq 0 \iff f^T (A + \lambda_{\text{min}} I) f \geq 0 \ \forall f. \)
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\text{min}}I \succeq 0 \iff f^T (A + \lambda_{\text{min}}I)f \geq 0 \ \forall f$.

- Theory of quadratic forms:

 $$f^T(A + \lambda_{\text{min}})f = \sum_i \ell_i^2$$

 for linear functions ℓ_i in entries of f.
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\text{min}} I \succeq 0 \iff f^T(A + \lambda_{\text{min}} I)f \geq 0 \ \forall f$.
- Theory of quadratic forms:
 \[f^T(A + \lambda_{\text{min}})f = \sum_i \ell_i^2 \]
 for linear functions ℓ_i in entries of f.
- Sum of squares hierarchy: allow ℓ_i of higher degree.
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\text{min}}I \succeq 0 \iff f^T (A + \lambda_{\text{min}}I) f \geq 0 \ \forall f$.
- Theory of quadratic forms:

 $$f^T (A + \lambda_{\text{min}}) f = \sum_i \ell_i^2$$

 for linear functions ℓ_i in entries of f.
- Sum of squares hierarchy: allow ℓ_i of higher degree.
- Known to be tight for degree $|V|$!
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\text{min}} I \succeq 0 \iff f^T (A + \lambda_{\text{min}} I) f \geq 0 \ \forall f$.
- Theory of quadratic forms:

 $$f^T (A + \lambda_{\text{min}}) f = \sum_i \ell_i^2$$

 for linear functions ℓ_i in entries of f.
- Sum of squares hierarchy: allow ℓ_i of higher degree.
- Known to be tight for degree $|V|$!
- Gives better bounds on codes for concrete parameters.
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\min} I \succeq 0 \iff f^T (A + \lambda_{\min} I) f \geq 0 \ \forall f$.
- Theory of quadratic forms:

 $$f^T (A + \lambda_{\min}) f = \sum_{i} \ell_i^2$$

 for linear functions ℓ_i in entries of f.
- Sum of squares hierarchy: allow ℓ_i of higher degree.
- Known to be tight for degree $|V|$!
- Gives better bounds on codes for concrete parameters.
- Challenge: Apply to EKR theory.
Sum of squares hierarchy

- Hoffman’s bound relies on $A + \lambda_{\min}I \succeq 0 \iff f^T(A + \lambda_{\min}I)f \geq 0 \forall f$.
- Theory of quadratic forms:
 $$f^T(A + \lambda_{\min})f = \sum_i \ell_i^2$$
 for linear functions ℓ_i in entries of f.
- Sum of squares hierarchy: allow ℓ_i of higher degree.
- Known to be tight for degree $|V|$!
- Gives better bounds on codes for concrete parameters.
- Challenge: Apply to EKR theory.
 - t-intersecting families for $n < (t + 1)(k - t + 1)$?
 (spectral proof of Ahlswede–Khachatrian theorem)
Challenges

- s-wise t-intersecting families.
Challenges

- s-wise t-intersecting families.
- Erdős matching conjecture.
Challenges

- s-wise t-intersecting families.
- Erdős matching conjecture.
- Intersecting families of triangulations (Kalai).
Challenges

- s-wise \(t \)-intersecting families.
- Erdős matching conjecture.
- Intersecting families of triangulations (Kalai).
- \(t \)-intersecting families of permutations for all \(n, t \).

Yuval Filmus
Technion, Israel

Intersecting families and Hoffman’s bound
6 December 2021
Challenges

- s-wise t-intersecting families.
- Erdős matching conjecture.
- Intersecting families of triangulations (Kalai).
- t-intersecting families of permutations for all n, t.
- Chvátal's conjecture:
 If \mathcal{F} is downwards-closed family of sets, then maximum size of an intersecting family is attained by some star (not necessarily uniquely).