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Erdős–Ko–Rado theorem

A collection F of k-subsets of [n] is intersecting if any two sets in F
intersect (are not disjoint).
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Erdős–Ko–Rado theorem

A collection F of k-subsets of [n] is intersecting if any two sets in F
intersect (are not disjoint).

Theorem

Erdős–Ko–Rado theorem (1938, 1961):

Suppose F ⊆
![n]
k

"
is intersecting.

Upper bound:
If k ≤ n/2 then |F| ≤

!n−1
k−1

"
.
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Erdős–Ko–Rado theorem (1938, 1961):

Suppose F ⊆
![n]
k

"
is intersecting.

Upper bound:
If k ≤ n/2 then |F| ≤

!n−1
k−1

"
.

Uniqueness:
If k < n/2 and |F| =

!n−1
k−1

"
then F = {S : i ∈ S} for some i ∈ [n].
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Erdős–Ko–Rado theorem

A collection F of k-subsets of [n] is intersecting if any two sets in F
intersect (are not disjoint).

Theorem

Erdős–Ko–Rado theorem (1938, 1961):

Suppose F ⊆
![n]
k

"
is intersecting.

Upper bound:
If k ≤ n/2 then |F| ≤

!n−1
k−1

"
.

Uniqueness:
If k < n/2 and |F| =

!n−1
k−1

"
then F = {S : i ∈ S} for some i ∈ [n].

Stability (Hilton, Milner 1967; Frankl 1987):
If k < n/2 and |F| ≈

!n−1
k−1

"
then F ≈ {S : i ∈ S} for some i ∈ [n].
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Erdős–Ko–Rado theorem

Theorem

If F ⊆
![n]
k

"
is intersecting and k < n/2 then

Upper bound: |F| ≤
!n−1
k−1

"
.

Uniqueness: If |F| =
!n−1
k−1

"
then F is a star (all sets containing i).

Stability: If |F| ≈
!n−1
k−1

"
then F is close to a star.
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Erdős–Ko–Rado theorem

Theorem

If F ⊆
![n]
k

"
is intersecting and k < n/2 then

Upper bound: |F| ≤
!n−1
k−1

"
.

Uniqueness: If |F| =
!n−1
k−1

"
then F is a star (all sets containing i).

Stability: If |F| ≈
!n−1
k−1

"
then F is close to a star.

Many different proofs:

Shifting (Erdős, Ko, Rado 1961).
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Erdős–Ko–Rado theorem

Theorem

If F ⊆
![n]
k

"
is intersecting and k < n/2 then

Upper bound: |F| ≤
!n−1
k−1

"
.

Uniqueness: If |F| =
!n−1
k−1

"
then F is a star (all sets containing i).

Stability: If |F| ≈
!n−1
k−1

"
then F is close to a star.

Many different proofs:
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Erdős–Ko–Rado theorem
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If F ⊆
![n]
k

"
is intersecting and k < n/2 then
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Uniqueness: If |F| =
!n−1
k−1

"
then F is a star (all sets containing i).

Stability: If |F| ≈
!n−1
k−1

"
then F is close to a star.

Many different proofs:

Shifting (Erdős, Ko, Rado 1961).

Katona’s circle method (Katona 1972).

Random walk method (Frankl 1978).

Spectral techniques (Lovász 1979).

Polynomial method (Füredi, Hwang, Weichsel 2006).
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Spectral proof
Kneser graph K (n, k):

Vertices:
![n]
k

"
.

Edges: S ∼ T if S ∩ T = ∅.
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Spectral proof
Kneser graph K (n, k):

Vertices:
![n]
k

"
.

Edges: S ∼ T if S ∩ T = ∅.
Spectral properties:

Degree and maximal eigenvalue:
!n−k

k

"
.

Eigenvalues: (−1)j
!n−k−j

k−j

"
; minimal: −

!n−k−1
k−1

"
.
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k

"
.

Edges: S ∼ T if S ∩ T = ∅.
Spectral properties:

Degree and maximal eigenvalue:
!n−k

k

"
.

Eigenvalues: (−1)j
!n−k−j

k−j

"
; minimal: −

!n−k−1
k−1

"
.

Proof of upper bound:

Let A be adjacency matrix of K (n, k).
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Vertices:
![n]
k

"
.

Edges: S ∼ T if S ∩ T = ∅.
Spectral properties:

Degree and maximal eigenvalue:
!n−k

k

"
.

Eigenvalues: (−1)j
!n−k−j

k−j

"
; minimal: −

!n−k−1
k−1

"
.

Proof of upper bound:

Let A be adjacency matrix of K (n, k).

Let F be intersecting family of size µ
!n
k

"
.
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!n−k−j

k−j
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!n−k−1
k−1

"
.

Proof of upper bound:

Let A be adjacency matrix of K (n, k).

Let F be intersecting family of size µ
!n
k

"
.

Write f = 1F as f = µ1+ f ⊥, where f ⊥ ⊥ 1.
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Vertices:
![n]
k

"
.

Edges: S ∼ T if S ∩ T = ∅.
Spectral properties:

Degree and maximal eigenvalue:
!n−k
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"
.

Eigenvalues: (−1)j
!n−k−j

k−j

"
; minimal: −

!n−k−1
k−1

"
.

Proof of upper bound:

Let A be adjacency matrix of K (n, k).

Let F be intersecting family of size µ
!n
k

"
.

Write f = 1F as f = µ1+ f ⊥, where f ⊥ ⊥ 1.

‖f ⊥‖2 = ‖f ‖2 − ‖µ1‖2 = µ− µ2, where ‖g‖2 = E[g2].

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 5 / 22



Spectral proof
Kneser graph K (n, k):

Vertices:
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Let A be adjacency matrix of K (n, k).

Let F be intersecting family of size µ
!n
k

"
.

Write f = 1F as f = µ1+ f ⊥, where f ⊥ ⊥ 1.

‖f ⊥‖2 = ‖f ‖2 − ‖µ1‖2 = µ− µ2, where ‖g‖2 = E[g2].

0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2
!n−k

k

"
− (µ− µ2)

!n−k−1
k−1

"
.
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0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2
!n−k

k

"
− (µ− µ2)
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"
.
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n , so |F| ≤

!n−1
k−1

"
. □
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Spectral proof

Proof of upper bound:

Let A be adjacency matrix of K (n, k).

Let F be intersecting family of size µ
!n
k

"
.

Write f = 1F as f = µ1+ f ⊥.

‖f ⊥‖2 = ‖f ‖2 − ‖µ1‖2 = µ− µ2.

0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2
!n−k

k

"
− (µ− µ2)

!n−k−1
k−1

"
.

Arithmetic: µ ≤ k
n , so |F| ≤

!n−1
k−1

"
. □

Proof of uniqueness (µ = k
n ):

f ⊥ must belong to eigenspace of −
!n−k−1

k−1

"
.
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Since f is Boolean, f ∈ {0, 1, xi , 1− xi}.
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.

f can be expressed as f (x1, . . . , xn) = c1x1 + · · ·+ cnxn.

Since f is Boolean, f ∈ {0, 1, xi , 1− xi}.
Since µ = k
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k−1

"
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Spectral proof

Proof of uniqueness (µ = k
n ):

f ⊥ must belong to eigenspace of −
!n−k−1

k−1

"
.

f can be expressed as f (x1, . . . , xn) = c1x1 + · · ·+ cnxn.

Since f is Boolean, f ∈ {0, 1, xi , 1− xi}.
Since µ = k

n , f = xi . □

Proof of stability (µ ≈ k
n ):

f ⊥ must be close to eigenspace of −
!n−k−1

k−1

"
(in L2).

f is close to c1x1 + · · ·+ cnxn.

Since f is Boolean, f is close to {0, 1, xi , 1− xi}
(Friedgut–Kalai–Naor 2002; F. 2016).
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Spectral proof

Proof of uniqueness (µ = k
n ):

f ⊥ must belong to eigenspace of −
!n−k−1

k−1

"
.

f can be expressed as f (x1, . . . , xn) = c1x1 + · · ·+ cnxn.

Since f is Boolean, f ∈ {0, 1, xi , 1− xi}.
Since µ = k

n , f = xi . □

Proof of stability (µ ≈ k
n ):

f ⊥ must be close to eigenspace of −
!n−k−1

k−1

"
(in L2).

f is close to c1x1 + · · ·+ cnxn.

Since f is Boolean, f is close to {0, 1, xi , 1− xi}
(Friedgut–Kalai–Naor 2002; F. 2016).

Since µ ≈ k
n , f ≈ xi . □
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Hoffman’s bound and t-intersecting families

Uniqueness for intersecting families of permutations

Extensions and open problems

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 8 / 22



Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose G = (V ,E ) is a d-regular graph with minimal eigenvalue λmin.
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Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose G = (V ,E ) is a d-regular graph with minimal eigenvalue λmin.
Same calculation as before shows that

α(G ) ≤ −λmin

d − λmin
|V |.

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 9 / 22



Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose G = (V ,E ) is a d-regular graph with minimal eigenvalue λmin.
Same calculation as before shows that

α(G ) ≤ −λmin

d − λmin
|V |.

Example

For the Kneser graph K (n, k),

d =

#
n − k

k

$
, λmin = −

#
n − k − 1

k − 1

$
.
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Hoffman’s classical bound (Hoffman 1970)

Theorem

Suppose G = (V ,E ) is a d-regular graph with minimal eigenvalue λmin.
Same calculation as before shows that

α(G ) ≤ −λmin

d − λmin
|V |.

Example

For the Kneser graph K (n, k),

d =

#
n − k

k

$
, λmin = −

#
n − k − 1

k − 1

$
.

Therefore

α(K (n, k)) ≤
!n−k−1

k−1

"
!n−k

k

"
+
!n−k−1

k−1

"
#
n

k

$
=

#
n − 1

k − 1

$
.
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Weighted Hoffman’s bound (Lovász 1979)

A collection F of k-subsets of [n] is t-intersecting if any two sets in F
have at least t common elements.
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Weighted Hoffman’s bound (Lovász 1979)

A collection F of k-subsets of [n] is t-intersecting if any two sets in F
have at least t common elements.

Theorem

Wilson (1984):

Suppose F ⊆
![n]
k

"
is t-intersecting.

Upper bound:
If n ≥ (t + 1)(k − t + 1) then |F| ≤

!n−t
k−t

"
.
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Weighted Hoffman’s bound (Lovász 1979)

A collection F of k-subsets of [n] is t-intersecting if any two sets in F
have at least t common elements.

Theorem

Wilson (1984):

Suppose F ⊆
![n]
k

"
is t-intersecting.

Upper bound:
If n ≥ (t + 1)(k − t + 1) then |F| ≤

!n−t
k−t

"
.

Uniqueness:
If n > (t + 1)(k − t + 1) and |F| =

!n−t
k−t

"
then F is a t-star

(all sets containing i1, . . . , it).
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Weighted Hoffman’s bound (Lovász 1979)

A collection F of k-subsets of [n] is t-intersecting if any two sets in F
have at least t common elements.

Theorem

Wilson (1984):

Suppose F ⊆
![n]
k

"
is t-intersecting.

Upper bound:
If n ≥ (t + 1)(k − t + 1) then |F| ≤

!n−t
k−t

"
.

Uniqueness:
If n > (t + 1)(k − t + 1) and |F| =

!n−t
k−t

"
then F is a t-star

(all sets containing i1, . . . , it).

(False for smaller n.)
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Weighted Hoffman’s bound (Lovász 1979)

A collection F of k-subsets of [n] is t-intersecting if any two sets in F
have at least t common elements.

Theorem

Wilson (1984):

Suppose F ⊆
![n]
k

"
is t-intersecting.

Upper bound:
If n ≥ (t + 1)(k − t + 1) then |F| ≤

!n−t
k−t

"
.

Uniqueness:
If n > (t + 1)(k − t + 1) and |F| =

!n−t
k−t

"
then F is a t-star

(all sets containing i1, . . . , it).

(False for smaller n.)

Hoffman’s classical bound gives the wrong bound!
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Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .
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Write f = µ1+ f ⊥, where µ = |F|/|V |.
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Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .

Write f = µ1+ f ⊥, where µ = |F|/|V |.
0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2d + (µ− µ2)λmin.
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Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .

Write f = µ1+ f ⊥, where µ = |F|/|V |.
0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2d + (µ− µ2)λmin.

Observation

Suffices for A to satisfy:

A is symmetric.
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Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .

Write f = µ1+ f ⊥, where µ = |F|/|V |.
0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2d + (µ− µ2)λmin.

Observation

Suffices for A to satisfy:

A is symmetric.

A1 = λ11 (λ1 replaces d).
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Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .

Write f = µ1+ f ⊥, where µ = |F|/|V |.
0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2d + (µ− µ2)λmin.

Observation

Suffices for A to satisfy:

A is symmetric.

A1 = λ11 (λ1 replaces d).

A(x , y) = 0 if (x , y) /∈ E .
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Weighted Hoffman’s bound

Recall proof of Hoffman’s bound, α(G ) ≤ −λmin
d−λmin

|V |:

A = adjacency matrix, F = independent set, f = 1F .

Write f = µ1+ f ⊥, where µ = |F|/|V |.
0 = 〈f ,Af 〉 = 〈µ1,Aµ1〉+ 〈f ⊥,Af ⊥〉 ≥ µ2d + (µ− µ2)λmin.

Observation

Suffices for A to satisfy:

A is symmetric.

A1 = λ11 (λ1 replaces d).

A(x , y) = 0 if (x , y) /∈ E .

Resulting bound: α(G ) ≤ −λmin

λ1 − λmin
|V |.
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Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose G = (V ,E ). If a V × V symmetric matrix satisfies

A1 = λ11.

A(x , y) = 0 if (x , y) /∈ E.

Then α(G ) ≤ −λmin

λ1 − λmin
|V |.
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Suppose G = (V ,E ). If a V × V symmetric matrix satisfies

A1 = λ11.

A(x , y) = 0 if (x , y) /∈ E.

Then α(G ) ≤ −λmin

λ1 − λmin
|V |.

Example (t-intersecting families)

By symmetry, A(S ,T ) depends only on |S ∩ T |.
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So A belongs to the Bose–Mesner algebra of the Johnson scheme.
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A(x , y) = 0 if (x , y) /∈ E.

Then α(G ) ≤ −λmin

λ1 − λmin
|V |.

Example (t-intersecting families)

By symmetry, A(S ,T ) depends only on |S ∩ T |.
So A belongs to the Bose–Mesner algebra of the Johnson scheme.

Analysis must be tight on t-stars =⇒ V 1, . . . ,V t must be λmin-e.s.
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Then α(G ) ≤ −λmin

λ1 − λmin
|V |.

Example (t-intersecting families)

By symmetry, A(S ,T ) depends only on |S ∩ T |.
So A belongs to the Bose–Mesner algebra of the Johnson scheme.

Analysis must be tight on t-stars =⇒ V 1, . . . ,V t must be λmin-e.s.

Choose λ1 arbitrarily =⇒ determine λmin =⇒ determine A.
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Theorem (Hoffman’s bound)

Suppose G = (V ,E ). If a V × V symmetric matrix satisfies

A1 = λ11.

A(x , y) = 0 if (x , y) /∈ E.

Then α(G ) ≤ −λmin

λ1 − λmin
|V |.

Example (t-intersecting families)

By symmetry, A(S ,T ) depends only on |S ∩ T |.
So A belongs to the Bose–Mesner algebra of the Johnson scheme.

Analysis must be tight on t-stars =⇒ V 1, . . . ,V t must be λmin-e.s.

Choose λ1 arbitrarily =⇒ determine λmin =⇒ determine A.

λmin is indeed minimal eigenvalue precisely for correct values of n !
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Weighted Hoffman’s bound

Theorem (Hoffman’s bound)

Suppose G = (V ,E ). If a V × V symmetric matrix satisfies

A1 = λ11.

A(x , y) = 0 if (x , y) /∈ E.

Then α(G ) ≤ −λmin

λ1 − λmin
|V |.

Example (t-intersecting families)

By symmetry, A(S ,T ) depends only on |S ∩ T |.
So A belongs to the Bose–Mesner algebra of the Johnson scheme.

Analysis must be tight on t-stars =⇒ V 1, . . . ,V t must be λmin-e.s.

Choose λ1 arbitrarily =⇒ determine λmin =⇒ determine A.

λmin is indeed minimal eigenvalue precisely for correct values of n !

Closely related to Lovász θ function and Delsarte’s LP bound.
Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 12 / 22



More examples

Hoffman’s bound is only known way to prove many intersection theorem:

t-intersecting vector spaces (Frankl, Wilson 1986).
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Hoffman’s bound is only known way to prove many intersection theorem:

t-intersecting vector spaces (Frankl, Wilson 1986).

t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).
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t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).

t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher,
Shirazi 2021+).
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t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).

t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher,
Shirazi 2021+).

Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger,
Zhao 2021).
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t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).

t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher,
Shirazi 2021+).

Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger,
Zhao 2021).

Many, many more!
(see Godsil, Meagher 2015 for an exposition of some of these)
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Hoffman’s bound is only known way to prove many intersection theorem:

t-intersecting vector spaces (Frankl, Wilson 1986).

t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).

t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher,
Shirazi 2021+).

Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger,
Zhao 2021).

Many, many more!
(see Godsil, Meagher 2015 for an exposition of some of these)

But: Wilson’s result on t-intersecting families can be proved by shifting.
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More examples

Hoffman’s bound is only known way to prove many intersection theorem:

t-intersecting vector spaces (Frankl, Wilson 1986).

t-intersecting permutations (Ellis, Friedgut, Pipel 2011; Ellis 2012;
Meagher, Razafimahatratra 2020; Behajaina, Maleki, Rasoamanana,
Razafimahatratra 2021+).

t-intersecting perfect matchings (Lindzey 2018; Fallat, Meagher,
Shirazi 2021+).

Clique-intersecting families of graphs (Ellis, F., Friedgut 2010; Berger,
Zhao 2021).

Many, many more!
(see Godsil, Meagher 2015 for an exposition of some of these)

But: Wilson’s result on t-intersecting families can be proved by shifting.
Ahlswede, Khachatrian (1997, 1999): optimal bound for all n, k , t.
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Outline

Introduction: Erdős–Ko–Rado

Hoffman’s bound and t-intersecting families

Uniqueness for intersecting families of permutations

Extensions and open problems
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Intersecting families of permutations

Two permutations α,β ∈ Sn intersect if α(i) = β(i) for some i .
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Theorem

If F ⊆ Sn is intersecting then |F| ≤ (n − 1)!.
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Intersecting families of permutations

Two permutations α,β ∈ Sn intersect if α(i) = β(i) for some i .

Theorem

If F ⊆ Sn is intersecting then |F| ≤ (n − 1)!.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.
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Two permutations α,β ∈ Sn intersect if α(i) = β(i) for some i .

Theorem

If F ⊆ Sn is intersecting then |F| ≤ (n − 1)!.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.

Proof 2 (Renteln 2007).

Hoffman’s classical bound on the derangement graph.
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Intersecting families of permutations

Two permutations α,β ∈ Sn intersect if α(i) = β(i) for some i .

Theorem

If F ⊆ Sn is intersecting then |F| ≤ (n − 1)!.

Proof 1 (Deza, Frankl 1977).

n cyclic shifts of any permutation are pairwise non-intersecting.

Proof 2 (Renteln 2007).

Hoffman’s classical bound on the derangement graph.

What do extremal families look like?
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Intersecting families of permutations

Stars {π ∈ Sn : π(i) = j} are intersecting.
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Intersecting families of permutations

Stars {π ∈ Sn : π(i) = j} are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size (n − 1)!.
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Intersecting families of permutations

Stars {π ∈ Sn : π(i) = j} are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size (n − 1)!.

Proof (Ellis, Friedgut, Pilpel 2011).

Hoffman’s bound implies that extremal families have degree 1.

Definition (Terminology)

Degree: minimal degree of poly in xij = 1π(i)=j agreeing with f .
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Stars {π ∈ Sn : π(i) = j} are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size (n − 1)!.

Proof (Ellis, Friedgut, Pilpel 2011).

Hoffman’s bound implies that extremal families have degree 1.

Degree 1 families are dictators (Birkhoff–von Neumann).

Definition (Terminology)

Degree: minimal degree of poly in xij = 1π(i)=j agreeing with f .

Dictator: function depending only on π(i) or only on π−1(j).
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Intersecting families of permutations

Stars {π ∈ Sn : π(i) = j} are intersecting.

Theorem (Cameron, Ku 2003)

Stars are the unique intersecting families of size (n − 1)!.

Proof (Ellis, Friedgut, Pilpel 2011).

Hoffman’s bound implies that extremal families have degree 1.

Degree 1 families are dictators (Birkhoff–von Neumann).

Intersecting dictators are stars.

Definition (Terminology)

Degree: minimal degree of poly in xij = 1π(i)=j agreeing with f .

Dictator: function depending only on π(i) or only on π−1(j).
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t-intersecting families of permutations

Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .
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t-intersecting families of permutations

Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .

Theorem (Ellis, Friedgut, Pilpel 2011)

If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.
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Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .

Theorem (Ellis, Friedgut, Pilpel 2011)

If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.

Proved using Hoffman’s bound and representation theory of Sn.
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Theorem (Ellis, Friedgut, Pilpel 2011)
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Proved using Hoffman’s bound and representation theory of Sn.

What about uniqueness?
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If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.

Proved using Hoffman’s bound and representation theory of Sn.

What about uniqueness?

t-stars {π ∈ Sn : π(ik) = jk for k ∈ [t]} are t-intersecting.
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t-intersecting families of permutations

Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .

Theorem (Ellis, Friedgut, Pilpel 2011)

If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.

Proved using Hoffman’s bound and representation theory of Sn.

What about uniqueness?

t-stars {π ∈ Sn : π(ik) = jk for k ∈ [t]} are t-intersecting.

Theorem (Ellis 2011)

If F ⊆ Sn is t-intersecting, |F| = (n − t)! and n ≥ Nt then F is a t-star.
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t-intersecting families of permutations

Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .

Theorem (Ellis, Friedgut, Pilpel 2011)

If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.

Proved using Hoffman’s bound and representation theory of Sn.

What about uniqueness?

t-stars {π ∈ Sn : π(ik) = jk for k ∈ [t]} are t-intersecting.

Theorem (Ellis 2011)

If F ⊆ Sn is t-intersecting, |F| = (n − t)! and n ≥ Nt then F is a t-star.

Complicated proof (but proves a much stronger result).
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t-intersecting families of permutations

Two permutations α,β ∈ Sn t-intersect if α(ij) = β(ij) for some i1, . . . , it .

Theorem (Ellis, Friedgut, Pilpel 2011)

If F ⊆ Sn is t-intersecting and n ≥ Nt then |F| ≤ (n − t)!.

Proved using Hoffman’s bound and representation theory of Sn.

What about uniqueness?

t-stars {π ∈ Sn : π(ik) = jk for k ∈ [t]} are t-intersecting.

Theorem (Ellis 2011)

If F ⊆ Sn is t-intersecting, |F| = (n − t)! and n ≥ Nt then F is a t-star.

Complicated proof (but proves a much stronger result).
Below: simple argument of Dafni, F., Lifshitz, Lindzey, Vinyals 2021.
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.
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Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 18 / 22



Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].
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Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .

Any π ∈ F must t-intersect C0, say π(ij) = π0(ij) for i1, . . . , it ∈ C0.
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .

Any π ∈ F must t-intersect C0, say π(ij) = π0(ij) for i1, . . . , it ∈ C0.

Let ρ ∈ F satisfies ρ(ij) ∕= π0(ij) for some j ∈ [t].
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .

Any π ∈ F must t-intersect C0, say π(ij) = π0(ij) for i1, . . . , it ∈ C0.

Let ρ ∈ F satisfies ρ(ij) ∕= π0(ij) for some j ∈ [t].

π must t-intersect a certificate Cρ for ρ, so π(it+1) = ρ(it+1) for
some it+1 ∈ Cρ different from i1, . . . , it .
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .

Any π ∈ F must t-intersect C0, say π(ij) = π0(ij) for i1, . . . , it ∈ C0.

Let ρ ∈ F satisfies ρ(ij) ∕= π0(ij) for some j ∈ [t].

π must t-intersect a certificate Cρ for ρ, so π(it+1) = ρ(it+1) for
some it+1 ∈ Cρ different from i1, . . . , it .

Altogether, π belongs to some (t + 1)-star.
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Uniqueness for t-intersecting families of permutations

Starting point: t-intersecting family F of size (n − t)!, where n large.

Hoffman’s bound implies that 1F has degree t.

Nisan 1991 + Nisan, Szegedy 1994: F has certificate complexity Kt .
◮ If π ∈ F then ∃i1, . . . , iKt s.t. ρ ∈ F whenever ρ(ij) = π(ij) ∀j ∈ [Kt ].

Suppose F is not contained in any t-star.

Choose a certificate C0 for some arbitrary π0 ∈ F .

Any π ∈ F must t-intersect C0, say π(ij) = π0(ij) for i1, . . . , it ∈ C0.

Let ρ ∈ F satisfies ρ(ij) ∕= π0(ij) for some j ∈ [t].

π must t-intersect a certificate Cρ for ρ, so π(it+1) = ρ(it+1) for
some it+1 ∈ Cρ different from i1, . . . , it .

Altogether, π belongs to some (t + 1)-star.

F covered by
!Kt

t

"
Kt many (t + 1)-stars =⇒ |F| = O((n − t − 1)!).
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Outline

Introduction: Erdős–Ko–Rado

Hoffman’s bound and t-intersecting families

Uniqueness for intersecting families of permutations

Extensions and open problems
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Versions for hypergraphs
Hoffman’s bound extended to hypergraphs by several authors:

Golubev 2016.

Bachoc, Gundert, Passuello 2019.

F., Golubev, Lifshitz 2021+.
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s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+):
Every s sets intersect.

s-wise t-intersecting families (unsolved in general!):
Every s sets have t elements in common.

Erdős matching conjecture (unsolved in general!):
No s-matching.

Frankl’s triangle problem (Frankl 1990, FGL2021+):
No A,B ,C s.t. A△B△C = ∅.
Mantel’s theorem (FGL2021+): Graphs without triangles.
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Versions for hypergraphs
Hoffman’s bound extended to hypergraphs by several authors:

Golubev 2016.

Bachoc, Gundert, Passuello 2019.

F., Golubev, Lifshitz 2021+.

Independent sets in s-uniform hypergraphs correspond to intersection
conditions on s-tuples:

s-wise intersecting families (Frankl–Tokushige 2003, FGL2021+):
Every s sets intersect.

s-wise t-intersecting families (unsolved in general!):
Every s sets have t elements in common.

Erdős matching conjecture (unsolved in general!):
No s-matching.

Frankl’s triangle problem (Frankl 1990, FGL2021+):
No A,B ,C s.t. A△B△C = ∅.
Mantel’s theorem (FGL2021+): Graphs without triangles.

Turán problems in hypergraphs (unsolved in general).

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 20 / 22



Sum of squares hierarchy

Hoffman’s bound relies on A+λminI ≽ 0 ⇐⇒ f T (A+λminI )f ≥ 0 ∀f .
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Theory of quadratic forms:

f T (A+ λmin)f =
%

i

ℓ2i

for linear functions ℓi in entries of f .
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Sum of squares hierarchy

Hoffman’s bound relies on A+λminI ≽ 0 ⇐⇒ f T (A+λminI )f ≥ 0 ∀f .
Theory of quadratic forms:

f T (A+ λmin)f =
%

i

ℓ2i

for linear functions ℓi in entries of f .

Sum of squares hierarchy: allow ℓi of higher degree.

Known to be tight for degree |V | !
Gives better bounds on codes for concrete parameters.

Challenge: Apply to EKR theory.
◮ t-intersecting families for n < (t + 1)(k − t + 1)?

(spectral proof of Ahlswede–Khachatrian theorem)
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Challenges

s-wise t-intersecting families.

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 22 / 22



Challenges

s-wise t-intersecting families.
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Erdős matching conjecture.

Intersecting families of triangulations (Kalai).

Yuval Filmus Technion, Israel Intersecting families and Hoffman’s bound 6 December 2021 22 / 22



Challenges

s-wise t-intersecting families.
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Challenges

s-wise t-intersecting families.

Erdős matching conjecture.

Intersecting families of triangulations (Kalai).

t-intersecting families of permutations for all n, t.

Chvátal’s conjecture:
If F is downwards-closed family of sets, then maximum size of an
intersecting family is attained by some star (not necessarily uniquely).
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