Analysis of Boolean functions on exotic domains

Yuval Filmus Technion – Israel Institute of Technology PART I What is analysis of Boolean functions?

(mostly) the study of Boolean-valued functions

from a spectral perspective.

the study of Boolean-valued functions

(mostly)

 $\{0,I\} \text{ or } \{\pm I\}$

from a spectral perspective.

(mostly)

{0,1} or {±1}

the study of Boolean-valued functions

Fourier analysis, representation theory, or equivalent

from a spectral perspective.

the study of Boolean-valued functions

 $\{0,I\}$ or $\{\pm I\}$

Fourier analysis, representation theory, or equivalent

(mostly)

from a spectral perspective.

The functions are usually over a finite domain.

• Collection of subsets of a finite set (extremal combinatorics)

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)
- Subset of vertices in a graph (theoretical computer science)

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)
- Subset of vertices in a graph (theoretical computer science)
- Classification function (statistical learning theory)

Boolean cube

• Most of the time, functions are over $\{0,1\}^n$

Boolean cube

- Most of the time, functions are over $\{0,1\}^n$
- More rarely, over other product domains

Boolean cube

- Most of the time, functions are over $\{0,1\}^n$
- More rarely, over other product domains
- Some applications: over finite groups or over $\binom{[n]}{k}$

Known as the "slice" or the Johnson association scheme

• Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$

Every two sets intersect

• Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$

Every two sets intersect

• Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \le \binom{n-1}{k-1}$ • Extremal families: "stars"

- Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$
 - Extremal families: "stars"
 - Analysis: almost extremal families close to stars

- Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$
 - Extremal families: "stars"
 - "Stability" • Analysis: almost extremal families close to stars

- Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$
 - Extremal families: "stars"
 - "Stability" • Analysis: almost extremal families close to stars
- Ellis-Friedgut-Pilpel: if any two permutations in $\mathcal{F} \subseteq S_n$ agree on at least t points then $|\mathcal{F}| \leq (n-t)!$

- Erdős–Ko–Rado theorem: if k < n/2 then an intersecting family $\mathcal{F} \subseteq {\binom{[n]}{k}}$ satisfies $|\mathcal{F}| \le {\binom{n-1}{k-1}}$
 - Extremal families: "stars"
 - "Stability" • Analysis: almost extremal families close to stars
- Ellis-Friedgut-Pilpel: if any two permutations in $\mathcal{F} \subseteq S_n$ agree on at least t points then $|\mathcal{F}| \leq (n-t)!$
 - Only known proof through Analysis

PART II Structure theorems

• If a Boolean function on $\{0,1\}^n$ satisfies $f(x_1,\ldots,x_n) = C + \sum_{i=1}^n a_i x_i$ then it is a "dictatorship" (depends on one coordinate)

- If a Boolean function on $\{0,1\}^n$ satisfies $f(x_1,\ldots,x_n) = C + \sum_{i=1}^n a_i x_i$ then it is a "dictatorship" (depends on one coordinate)
- Friedgut–Kalai–Naor: a Boolean function satisfying $f(x_1, \ldots, x_n) \approx C + \sum_{i=1}^n a_i x_i$ is close to a Boolean dictatorship

- If a Boolean function on $\{0,1\}^n$ satisfies $f(x_1,\ldots,x_n) = C + \sum_{i=1}^n a_i x_i$ then it is a "dictatorship" (depends on one coordinate)
- Friedgut-Kalai-Naor: a Boolean function satisfying f(x₁,...,x_n) ≈ C + ∑_{i=1}ⁿ a_ix_i is close to a Boolean dictatorship
 F.: same holds over {[n] k}

- If a Boolean function on $\{0,1\}^n$ satisfies $f(x_1,\ldots,x_n) = C + \sum_{i=1}^n a_i x_i$ then it is a "dictatorship" (depends on one coordinate)

• What is the analog of a linear function for S_n ?

- What is the analog of a linear function for S_n ?
- Think of S_n as group of n×n permutation matrices with entries x_{ij}

- What is the analog of a linear function for S_n ?
- Think of S_n as group of *n*×*n* permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}

Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n ?
- Think of S_n as group of n×n permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}
- Ellis-Friedgut-Pilpel: a Boolean linear function either depends on image of some point or on inverse image of some point

Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n ?
- Think of S_n as group of *n*×*n* permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}
- Ellis-Friedgut-Pilpel: a Boolean linear function either depends on image of some point or on inverse image of some point Dictatorship

• $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship

- $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship
- Ellis–F.–Friedgut (I): Every Boolean function of magnitude *c/n* (for *c* small) which is close to a linear function is close to a maximum of *c* entries

- $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship
- Ellis-F.-Friedgut (I): Every Boolean function of magnitude *c/n* (for *c* small) which is close to a linear function is close to a maximum of *c* entries
- Ellis-F.-Friedgut (2): Every *balanced* Boolean function close to a linear function is close to a dictatorship

• Nisan-Szegedy: If a Boolean function equals a degree d polynomial then it is a C(d)-"junta" (depends on C(d) coordinates)

- Nisan-Szegedy: If a Boolean function equals a degree d polynomial then it is a C(d)-"junta" (depends on C(d) coordinates)
- Kindler–Safra: If a Boolean function is close to a degree *d* polynomial then it is close to a *C*(*d*)-junta

- Nisan-Szegedy: If a Boolean function equals a degree d polynomial then it is a C(d)-"junta" (depends on C(d) coordinates)
- Kindler–Safra: If a Boolean function is close to a degree *d* polynomial then it is close to a *C*(*d*)-junta
- F.-Kindler-Mossel-Wimmer: Same true for slice

- Nisan-Szegedy: If a Boolean function equals a degree d polynomial then it is a C(d)-"junta" (depends on C(d) coordinates)
- Kindler–Safra: If a Boolean function is close to a degree *d* polynomial then it is close to a *C*(*d*)-junta
- F.-Kindler-Mossel-Wimmer: Same true for slice
 - Stability for *t*-intersecting families of sets

- Nisan-Szegedy: If a Boolean function equals a degree d polynomial then it is a C(d)-"junta" (depends on C(d) coordinates)
- Kindler–Safra: If a Boolean function is close to a degree *d* polynomial then it is close to a *C*(*d*)-junta
- F.-Kindler-Mossel-Wimmer: Same true for slice
 - Stability for *t*-intersecting families of sets
- Ellis-F.-Friedgut (3): Same true for S_n for sparse functions

PART III Invariance principle

• Suppose x_i are random ±1 variables

• Suppose x_i are random ±1 variables

Under what conditions does

 $\sum_{i} \alpha_{i} x_{i}$ have a roughly normal distribution?

• Suppose x_i are random ±1 variables

Under what conditions does

have a roughly normal distribution?

• Berry-Esséen: as long as no α_i is too prominent

 $\sum_{i} \alpha_i x_i$

• How to prove Berry-Esséen?

- How to prove Berry-Esséen?
- Replace each x_i by standard Gaussian g_i :

- How to prove Berry-Esséen?
- Replace each x_i by standard Gaussian g_i :

$$\sum_{i} \alpha_{i} x_{i} \approx \sum_{i} \alpha_{i} g_{i}$$

- How to prove Berry-Esséen?
- Replace each x_i by standard Gaussian g_i:

• Properties of Gaussians imply

$$\sum_{i} \alpha_{i} g_{i} \sim N(0, \sum_{i} \alpha_{i}^{2})$$

 $\sum_{i} \alpha_{i} x_{i} \approx \sum_{i} \alpha_{i} g_{i}$

 Mossel–O'Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials

- Mossel–O'Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials
- This time we need all the variable *influences* to be small

- Mossel–O'Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials
- This time we need all the variable *influences* to be small
- Implies that Majority vote is the voting rule most resistant to noise (asymptotically)

- Mossel–O'Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials
- This time we need all the variable *influences* to be small
- Implies that Majority vote is the voting rule most resistant to noise (asymptotically)
- Important corollaries in theoretical computer science

Caveat

• Invariance principle only applies to (low-degree) *multilinear polynomials*

Caveat

- Invariance principle only applies to (low-degree) *multilinear polynomials*
- For example, $x_1^2 + ... + x_n^2$ is constant while $g_1^2 + ... + g_n^2$ is not

Caveat

- Invariance principle only applies to (low-degree) multilinear polynomials
- For example, $x_1^2 + ... + x_n^2$ is constant while $g_1^2 + ... + g_n^2$ is not
- Not a problem, since any function on Boolean cube has unique multilinear representation ("Fourier expansion")

• Relevant distributions:

• Relevant distributions:

• (s_1, \dots, s_n) : uniform distribution on k-slice

- Relevant distributions:
 - $(s_1,...,s_n)$: uniform distribution on *k*-slice
 - (x₁,...,x_n): product distribution with same marginals (Ber(k/n))

- Relevant distributions:
 - $(s_1,...,s_n)$: uniform distribution on *k*-slice
 - (x₁,...,x_n): product distribution with same marginals (Ber(k/n))
 - (g₁,...,g_n): Gaussian product distribution with same mean and variance

- Relevant distributions:
 - $(s_1,...,s_n)$: uniform distribution on *k*-slice
 - (x₁,...,x_n): product distribution with same marginals (Ber(k/n))
 - (g₁,...,g_n): Gaussian product distribution with same mean and variance
- s_1 +...+ s_n constant but x_1 +...+ x_n isn't!

 Solution (Dunkl): Consider only multilinear polynomials satisfying:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0$$

 Solution (Dunkl): Consider only multilinear polynomials satisfying:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0$$

• Every function on slice has a unique multilinear representation of this form

 Solution (Dunkl): Consider only multilinear polynomials satisfying:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0$$

- Every function on slice has a unique multilinear representation of this form
- F.-Kindler-Mossel-Wimmer, F.-Mossel: invariance principle holds for such polynomials

 Solution (Dunkl): Consider only multilinear polynomials satisfying:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0$$

- Every function on slice has a unique multilinear representation of this form
- F.-Kindler-Mossel-Wimmer, F.-Mossel: invariance principle holds for such polynomials
- Corollary: Majority is Stablest on the slice

 Solut near Middle slice is a polyr representative section of the Boolean cube from the point of view of • Ever ltilinear low-degree "harmonic" repre multilinear polynomials • F.-K invariance principle holds for such polynomials • Corollary: Majority is Stablest on the slice

PART IV Gelfand–Tsetlin basis for the slice

• On the Boolean cube we have Fourier analysis on \mathbb{Z}_2^n

On the Boolean cube we have Fourier analysis on Z₂ⁿ
On S_n we have representation theory

- On the Boolean cube we have Fourier analysis on \mathbb{Z}_2^n
- On S_n we have representation theory
- On the slice we also have representation theory: every multilinear "harmonic" polynomial decomposes as sum of its homogeneous parts (part of general theory of association schemes)

 Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice

- Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice
- Basis is orthogonal with respect to all symmetric measures on x₁,...,x_n!

- Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice
- Basis is orthogonal with respect to all symmetric measures on x₁,...,x_n!
- Basis depends on order of coordinates

• F. gives explicit construction of the basis

- F. gives explicit construction of the basis
- Definition: $A = (a_1, ..., a_\ell) < B = (b_1, ..., b_\ell)$ if

 $a_1 < b_1, \ldots, a_\ell < b_\ell, b_1 < \cdots < b_\ell$

- F. gives explicit construction of the basis
- Definition: A = (a₁,..., a_ℓ) < B = (b₁,..., b_ℓ) if a₁ < b₁,..., a_ℓ < b_ℓ, b₁ < ··· < b_ℓ
 Basis consists of all non-zero functions

$$\chi_B = \sum_{A < B} (x_{a_1} - x_{b_1}) \cdots (x_{a_\ell} - x_{b_\ell})$$

- F. gives explicit construction of the basis
- Definition: A = (a₁,..., a_ℓ) < B = (b₁,..., b_ℓ) if a₁ < b₁,..., a_ℓ < b_ℓ, b₁ < ··· < b_ℓ
 Basis consists of all non-zero functions

$$\chi_B = \sum_{A < B} (x_{a_1} - x_{b_1}) \cdots (x_{a_\ell} - x_{b_\ell})$$

• Norm of χ_B proportional to norm of $(x_1 - x_2) \cdots (x_{2|B|-1} - x_{2|B|})$

For small d, norm of (x₁ − x₂) ··· (x₂d−1 − x₂d) roughly identical for uniform distribution on k-slice and corresponding product distribution

- For small d, norm of (x₁ − x₂) ··· (x₂d−1 − x₂d) roughly identical for uniform distribution on k-slice and corresponding product distribution
- Basis implies that same is true for all low-degree harmonic polynomials! (F.–Mossel: basis-free argument)

- For small d, norm of (x₁ − x₂) ··· (x₂d−1 − x₂d) roughly identical for uniform distribution on k-slice and corresponding product distribution
- Basis implies that same is true for all low-degree harmonic polynomials! (F.–Mossel: basis-free argument)
- Basis is explicit orthogonal basis of eigenvectors for Johnson and Kneser graphs

- For small d, norm of (x₁ x₂) ··· (x_{2d-1} x_{2d}) roughly identical for uniform distribution on k-slice and corresponding product distribution
- Basis implies that same is true for all low-degree harmonic polynomials! (F.–Mossel: basis-free argument)
- Basis is explicit orthogonal basis of eigenvectors for Johnson and Kneser graphs
- Simplifies Wimmer's proof of Friedgut's junta theorem on the slice

• More exotic domains:

• More exotic domains:

 k-dimensional vector subspaces of n-dimensional vector space over finite field

• More exotic domains:

 k-dimensional vector subspaces of n-dimensional vector space over finite field

• Other groups

- More exotic domains:
 - k-dimensional vector subspaces of n-dimensional vector space over finite field
 - Other groups
 - "Multi-slice"

- More exotic domains:
 - k-dimensional vector subspaces of n-dimensional vector space over finite field
 - Other groups
 - "Multi-slice"
- More theorems on slice and symmetric group

THE END

