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Where do Boolean functions
come from?

e Collection of subsets of a finite set (extremal combinatorics)
e Voting scheme (social choice theory)

e Graph property (random graph theory, percolation)

e Obstructions to decoding (coding theory)

e Subset of vertices in a graph (theoretical computer science)

o (Classification function (statistical learning theory)
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Boolean cube

e Most of the time, functions are over {0,1}"

* More rarely, over other product domains

k

e Some applications: over finite groups or over ( ])

Known as the “slice” or the Jobnson association scheme
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Erdés—Ko—Rado theory

Every two sets
intersect

e Erd6s—Ko—Rado georem: if k < n/2 then
an intersecting family F C ([n]) e ‘ ]__‘ < (n 1oF )

k IR
o Extremal families: “stars” & “c
tc'?bj].

o Ellis—Friedgut—Pilpel: if any two permutations in / C 5,
agree on at least ¢ points then |F| < (n — t)!

® Only known proof through Analysis
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then it is a “dictator Ship” (depends on one coordinate)

* Friedgut—Kalai—Naor: a Boolean function satistying

f(iUl,...,iUn) T C_I_Zazmz
. . : 1=1
is close to a Boolean dictatorship

T
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e Think of S, as group of nxn permutation matrices
with entries x;;

e Linear function: linear combination of x;;

o Ellis—Friedgut-Pilpel: a Boolean linear function
either depends on image of some point
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Friedgut-Kalai—INaor on §,

e max(x, X,,) close to xi; + x,, but not to a dictatorship

o Ellis—F.—Friedgut (1):
Every Boolean function of magnitude ¢/z (for ¢ small)
which is close to a linear function is close to a maximum
of ¢ entries

e Ellis—F.—Friedgut (2):
Every balanced Boolean function close to a linear function
is close to a dictatorship
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Higher-degree analogues

e Nisan—Szegedy: If a Boolean function equals a degree &
polynomial then 1t1s a C(d)-“junta” (depends on C(d) coordinates)

e Kindler-Safra: If a Boolean function is close to a degree &
polynomial then it is close to a C(d)-junta

o —Kindler—Mossel-Wimmer: Same true for slice
o Stability for z-intersecting families of sets

o Ellis—F.—Friedgut (3): Same true for S, for sparse functions
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e Suppose x; are random =1 variables

e Under what conditions does

E o7

i
have a roughly normal distribution?

* Berry—Esséen: as long as no a; is too prominent
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Lindeberg replacement trick

e How to prove Berry—Esséen?

e Replace each x; by standard Gaussian g;:

E ;T ~ E ;g
i i

e Properties of Gaussians imply

Zangi NN(OaZa?)
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Invariance principle

e Mossel-O’Donnel-Oleszkiewicz noticed that the
same trick works for low-degree polynomials

e This time we need all the variable /nfluences to be small

e Implies that Majority vote is the voting rule most
resistant to noise (asymptotically)

e Important corollaries in theoretical computer science
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Caveat

e Invariance principle only applies to (low-degree)
multilinear polynomials

e For example, x:2+...+x,? is constant while g,2+...+g,2 is not

e Not a problem, since any function on Boolean cube has
unique multilinear representation
(“Fourier expansion”)
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Invariance principle
on the slice

e Relevant distributions:
® (51,....5,): uniform distribution on A—slice

® (x1,...,4): product distribution with same

marginals (Ber(/n))

¢ (g1,...,2): Gaussian product distribution with
same mean and variance

® §.+...+5, constant but x+...+x, isn’t!
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Invariance principle
on the slice

car

Middle slice is a

representative section of the
Boolean cube

S from the point of view of [N
Soe  low-degree “harmonic”

Wl multilinear polynomials

invariance principle holds tor such polynomials

o Corollary: Majority is Stablest on the slice
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Fourier analysis on the slice

e On the Boolean cube we have Fourier analysis on Z,
 On S, we have representation theory

* On the slice we also have representation theory:
every multilinear “harmonic” polynomial decomposes
as sum of its homogeneous parts
(part of general theory of association schemes)



Geltand—Tsetlin basis



Geltand—Tsetlin basis

e Srinivasan constructs (implicitly) a canonical
orthogonal basis for functions on the slice



Geltand—Tsetlin basis

e Srinivasan constructs (implicitly) a canonical
orthogonal basis for functions on the slice

e Basis is orthogonal with respect to @/
Symmetric measures on X,...,X!



Geltand—Tsetlin basis

e Srinivasan constructs (implicitly) a canonical
orthogonal basis for functions on the slice

e Basis is orthogonal with respect to @/
Symmetric measures on X,...,X!

e Basis depends on order of coordinates
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Explicit basis

 I. gives explicit construction of the basis

e Definition: A = (a1,...,a7) < B = (b1,...,by) if
a1 < b1,...,ap <bp,by <--- <y
e Basis consists of all non-zero functions

Xubitn Z (xal _ajbl) Lyl (Qjae _xbe)

bildle;
e Norm of XB proportional to norm of

($1 ] 5132) il (372|B|—1 11 5172|B|)
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Implications

e For small 4, norm of (z1 — x2) - - - (Z2g_1 — T24) roughly
identical for uniform distribution on A-slice and
corresponding product distribution

e Basis implies that same is true for all low-degree
harmonic polynomials! (F—Mossel: basis-free argument)

* Basis is explicit orthogonal basis of eigenvectors for
Johnson and Kneser graphs

o Simplifies Wimmer’s proof of Friedgut’s junta theorem
on the slice
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OPEN QUESTIONS

e More exotic domains:

e k-dimensional vector subspaces of
n-dimensional vector space over finite field

e Other groups
o “Multi-slice”

e More theorems on slice and symmetric group



THE END




