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Where do Boolean functions 
come from?

• Collection of subsets of a finite set (extremal combinatorics)

• Voting scheme (social choice theory)

• Graph property (random graph theory, percolation)

• Obstructions to decoding (coding theory)

• Subset of vertices in a graph (theoretical computer science)

• Classification function (statistical learning theory)
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Functions on which domain?

• Most of the time, functions are over

• More rarely, over other product domains

• Some applications: over finite groups or over

{0, 1}n

✓
[n]

k

◆

Known as the “slice” or the Johnson association scheme

Boolean cube
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an intersecting family                    satisfies

• Extremal families: “stars”

• Analysis: almost extremal families close to stars

• Ellis–Friedgut–Pilpel: if any two permutations in          
agree on at least     points then

• Only known proof through Analysis
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• If a Boolean function on             satisfies 
 
 
then it is a “dictatorship” (depends on one coordinate)

• Friedgut–Kalai–Naor: a Boolean function satisfying 
 
 
is close to a Boolean dictatorship

• F.: same holds over
✓
[n]

k

◆

f(x1, . . . , xn) = C +
nX

i=1

aixi

f(x1, . . . , xn) ⇡ C +
nX

i=1

aixi

Implies stability forErdős–Ko–Rado

{0, 1}n
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Friedgut–Kalai–Naor on Sn

• max(x11, x22) close to x11 + x22 but not to a dictatorship

• Ellis–F.–Friedgut (1): 
Every Boolean function of magnitude c/n (for c small) 
which is close to a linear function is close to a maximum 
of c entries

• Ellis–F.–Friedgut (2): 
Every balanced Boolean function close to a linear function 
is close to a dictatorship
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Higher-degree analogues

• Nisan–Szegedy: If a Boolean function equals a degree d 
polynomial then it is a C(d)-“junta” (depends on C(d) coordinates)

• Kindler–Safra: If a Boolean function is close to a degree d 
polynomial then it is close to a C(d)-junta

• F.–Kindler–Mossel–Wimmer: Same true for slice

• Stability for t-intersecting families of sets

• Ellis–F.–Friedgut (3): Same true for Sn for sparse functions
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• Suppose xi are random ±1 variables

• Under what conditions does 
 
 
have a roughly normal distribution?

• Berry–Esséen: as long as no αi is too prominent

X

i
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Lindeberg replacement trick

• How to prove Berry–Esséen?

• Replace each xi by standard Gaussian gi: 
 

• Properties of Gaussians imply

X

i

�ixi ⇡
X

i

�igi

X

i

�igi ⇠ N(0,
X

i

�2
i )
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Invariance principle

• Mossel–O’Donnel–Oleszkiewicz noticed that the 
same trick works for low-degree polynomials

• This time we need all the variable influences to be small

• Implies that Majority vote is the voting rule most 
resistant to noise (asymptotically)

• Important corollaries in theoretical computer science
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Caveat

• Invariance principle only applies to (low-degree) 
multilinear polynomials

• For example, x12+...+xn2 is constant while g12+...+gn2 is not

• Not a problem, since any function on Boolean cube has 
unique multilinear representation 
(“Fourier expansion”)
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• Relevant distributions:

• (s1,...,sn): uniform distribution on k–slice

• (x1,...,xn): product distribution with same 
marginals (Ber(k/n))

• (g1,...,gn): Gaussian product distribution with 
same mean and variance

• s1+...+sn constant but x1+...+xn isn’t!
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Invariance principle 
on the slice

• Solution (Dunkl): Consider only multilinear 
polynomials satisfying: 
 

• Every function on slice has a unique multilinear 
representation of this form

• F.–Kindler–Mossel–Wimmer, F.–Mossel: 
invariance principle holds for such polynomials

• Corollary: Majority is Stablest on the slice

nX

i=1

�f

�xi
= 0

Middle slice is a 
representative section of the 

Boolean cube
from the point of view of
low-degree “harmonic” 

multilinear polynomials



PART IV 
Gelfand–Tsetlin basis 

for the slice 



Fourier analysis on the slice



Fourier analysis on the slice

• On the Boolean cube we have Fourier analysis on Zn
2



Fourier analysis on the slice

• On the Boolean cube we have Fourier analysis on

• On Sn we have representation theory

Zn
2



Fourier analysis on the slice

• On the Boolean cube we have Fourier analysis on

• On Sn we have representation theory

• On the slice we also have representation theory: 
every multilinear “harmonic” polynomial decomposes 
as sum of its homogeneous parts 
(part of general theory of association schemes)

Zn
2
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• Srinivasan constructs (implicitly) a canonical 
orthogonal basis for functions on the slice

• Basis is orthogonal with respect to all 
symmetric measures on x1,...,xn!

• Basis depends on order of coordinates
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• F. gives explicit construction of the basis

• Definition:                                                              if 

• Basis consists of all non-zero functions 
 

• Norm of        proportional to norm of

A = (a1, . . . , a`) < B = (b1, . . . , b`)

a1 < b1, . . . , a` < b`, b1 < · · · < b`

�B =
X

A<B

(xa1 � xb1) · · · (xa` � xb`)

�B

(x1 � x2) · · · (x2|B|�1 � x2|B|)
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Implications

• For small d, norm of                                               roughly 
identical for uniform distribution on k-slice and 
corresponding product distribution

• Basis implies that same is true for all low-degree 
harmonic polynomials! (F.–Mossel: basis-free argument)

• Basis is explicit orthogonal basis of eigenvectors for 
Johnson and Kneser graphs

• Simplifies Wimmer’s proof of Friedgut’s junta theorem 
on the slice

(x1 � x2) · · · (x2d�1 � x2d)
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OPEN QUESTIONS

• More exotic domains:

• k-dimensional vector subspaces of 
n-dimensional vector space over finite field

• Other groups

• “Multi-slice”

• More theorems on slice and symmetric group



THE END 


