Analysis of Boolean functions on exotic domains

Yuval Filmus
Technion – Israel Institute of Technology
PART I
What is analysis of Boolean functions?
Analysis of Boolean functions is the study of Boolean-valued functions from a spectral perspective.
Analysis of Boolean functions is the study of Boolean-valued functions from a spectral perspective.

(mostly) \{0,1\} or \{±1\}

the study of Boolean-valued functions from a spectral perspective.
Analysis of Boolean functions is the study of Boolean-valued functions from a spectral perspective. (mostly) \{0,1\} or \{\pm 1\} Fourier analysis, representation theory, or equivalent from a spectral perspective.
Analysis of Boolean functions is the study of Boolean-valued functions from a spectral perspective. (mostly) \{0,1\} or \{\pm1\}

Fourier analysis, representation theory, or equivalent from a spectral perspective.

The functions are usually over a finite domain.
Where do Boolean functions come from?
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)
- Subset of vertices in a graph (theoretical computer science)
Where do Boolean functions come from?

- Collection of subsets of a finite set (extremal combinatorics)
- Voting scheme (social choice theory)
- Graph property (random graph theory, percolation)
- Obstructions to decoding (coding theory)
- Subset of vertices in a graph (theoretical computer science)
- Classification function (statistical learning theory)
Functions on which domain?
Functions on which domain?

- Most of the time, functions are over \(\{0, 1\}^n \)
Functions on which domain?

- Most of the time, functions are over $\{0, 1\}^n$
- More rarely, over other product domains
Functions on which domain?

- Most of the time, functions are over $\{0, 1\}^n$.
- More rarely, over other product domains.
- Some applications: over finite groups or over $\binom{[n]}{k}$.

Known as the “slice” or the Johnson association scheme.
Erdős–Ko–Rado theory
Erdős–Ko–Rado theory

- Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$
Erdős–Ko–Rado theory

• Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$
Erdős–Ko–Rado theory

• Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$

• Extremal families: “stars”
Erdős–Ko–Rado theory

• Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$.

• Extremal families: “stars”

• Analysis: almost extremal families close to stars

Every two sets intersect
Erdős–Ko–Rado theory

- Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$

- Extremal families: “stars”

- Analysis: almost extremal families close to stars

Every two sets intersect

“Stability”
Erdős–Ko–Rado theory

• Erdős–Ko–Rado theorem: if \(k < n/2 \) then an intersecting family \(\mathcal{F} \subseteq \binom{[n]}{k} \) satisfies \(|\mathcal{F}| \leq \binom{n-1}{k-1} \)

• Extremal families: “stars”

• Analysis: almost extremal families close to stars

• Ellis–Friedgut–Pilpel: if any two permutations in \(\mathcal{F} \subseteq S_n \) agree on at least \(t \) points then \(|\mathcal{F}| \leq (n - t)! \)
Erdős–Ko–Rado theory

• Erdős–Ko–Rado theorem: if $k < n/2$ then an intersecting family $\mathcal{F} \subseteq \binom{[n]}{k}$ satisfies $|\mathcal{F}| \leq \binom{n-1}{k-1}$

• Extremal families: “stars”

• Analysis: almost extremal families close to stars

• Ellis–Friedgut–Pilpel: if any two permutations in $\mathcal{F} \subseteq S_n$ agree on at least t points then $|\mathcal{F}| \leq (n-t)!$

• Only known proof through Analysis
PART II
Structure theorems
• If a Boolean function on \(\{0, 1\}^n \) satisfies

\[
f(x_1, \ldots, x_n) = C + \sum_{i=1}^{n} a_i x_i
\]

then it is a “dictatorship” (depends on one coordinate)
Friedgut–Kalai–Naor

• If a Boolean function on \(\{0, 1\}^n \) satisfies
 \[
 f(x_1, \ldots, x_n) = C + \sum_{i=1}^{n} a_i x_i
 \]
 then it is a “dictatorship” (depends on one coordinate)

• Friedgut–Kalai–Naor: a Boolean function satisfying
 \[
 f(x_1, \ldots, x_n) \approx C + \sum_{i=1}^{n} a_i x_i
 \]
 is close to a Boolean dictatorship
Friedgut–Kalai–Naor

• If a Boolean function on $\{0, 1\}^n$ satisfies
 \[f(x_1, \ldots, x_n) = C + \sum_{i=1}^{n} a_i x_i \]
 then it is a “dictatorship” (depends on one coordinate)

• Friedgut–Kalai–Naor: a Boolean function satisfying
 \[f(x_1, \ldots, x_n) \approx C + \sum_{i=1}^{n} a_i x_i \]
 is close to a Boolean dictatorship

• F.: same holds over $\binom{n}{k}$
• If a Boolean function on $\{0, 1\}^n$ satisfies

$$f(x_1, \ldots, x_n) = C + \sum_{i=1}^{n} a_i x_i$$

then it is a “dictatorship” (depends on one coordinate)

• Friedgut–Kalai–Naor: a Boolean function satisfying

$$f(x_1, \ldots, x_n) \approx C + \sum_{i=1}^{n} a_i x_i$$

is close to a Boolean dictatorship

• F.: same holds over $\binom{n}{k}$

Implies stability for Erdős–Ko–Rado
Which functions on S_n are dictatorships?
Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n?
Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n?
- Think of S_n as group of $n \times n$ permutation matrices with entries x_{ij}
Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n?
- Think of S_n as group of $n \times n$ permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}
Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n?
- Think of S_n as group of $n \times n$ permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}
- Ellis–Friedgut–Pilpel: a Boolean linear function either depends on image of some point or on inverse image of some point
Which functions on S_n are dictatorships?

- What is the analog of a linear function for S_n?
- Think of S_n as group of $n \times n$ permutation matrices with entries x_{ij}
- Linear function: linear combination of x_{ij}
- Ellis–Friedgut–Pilpel: a Boolean linear function either depends on image of some point or on inverse image of some point

Dictatorship on S_n
Friedgut–Kalai–Naor on S_n
Friedgut–Kalai–Naor on S_n

- $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship
Friedgut–Kalai–Naor on S_n

- $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship

- Ellis–F–Friedgut (τ):
 Every Boolean function of magnitude c/n (for c small)
 which is close to a linear function is close to a maximum of c entries
Friedgut–Kalai–Naor on S_n

- $\max(x_{11}, x_{22})$ close to $x_{11} + x_{22}$ but not to a dictatorship

- Ellis–F.–Friedgut (1):
 Every Boolean function of magnitude c/n (for c small) which is close to a linear function is close to a maximum of c entries

- Ellis–F.–Friedgut (2):
 Every balanced Boolean function close to a linear function is close to a dictatorship
Higher-degree analogues
Higher-degree analogues

• Nisan–Szegedy: If a Boolean function equals a degree d polynomial then it is a $C(d)$-“junta” (depends on $C(d)$ coordinates)
Higher-degree analogues

- Nisan–Szegedy: If a Boolean function equals a degree d polynomial then it is a $C(d)$-“junta” (depends on $C(d)$ coordinates)

- Kindler–Safra: If a Boolean function is close to a degree d polynomial then it is close to a $C(d)$-junta
Higher-degree analogues

- Nisan–Szegedy: If a Boolean function equals a degree d polynomial then it is a $C(d)$-“junta” (depends on $C(d)$ coordinates)

- Kindler–Safra: If a Boolean function is close to a degree d polynomial then it is close to a $C(d)$-junta

- F.–Kindler–Mossel–Wimmer: Same true for slice
Higher-degree analogues

- Nisan–Szegedy: If a Boolean function equals a degree d polynomial then it is a $C(d)$-“junta” (depends on $C(d)$ coordinates)
- Kindler–Safra: If a Boolean function is close to a degree d polynomial then it is close to a $C(d)$-junta
- F.–Kindler–Mossel–Wimmer: Same true for slice
 - Stability for t-intersecting families of sets
Higher-degree analogues

• Nisan–Szegedy: If a Boolean function equals a degree d polynomial then it is a $C(d)$-“junta” (depends on $C(d)$ coordinates)

• Kindler–Safra: If a Boolean function is close to a degree d polynomial then it is close to a $C(d)$-junta

• F.–Kindler–Mossel–Wimmer: Same true for slice
 • Stability for t-intersecting families of sets

• Ellis–F.–Friedgut (3): Same true for S_n for sparse functions
PART III
Invariance principle
Central limit theorem
Central limit theorem

- Suppose x_i are random ± 1 variables
Central limit theorem

• Suppose x_i are random ±1 variables

• Under what conditions does

$$\sum_{i} \alpha_i x_i$$

have a roughly normal distribution?
Central limit theorem

• Suppose x_i are random ± 1 variables

• Under what conditions does

$$\sum_{i} \alpha_i x_i$$

have a roughly normal distribution?

• Berry–Esséen: as long as no α_i is too prominent
Lindeberg replacement trick
Lindeberg replacement trick

• How to prove Berry–Esséen?
Lindeberg replacement trick

- How to prove Berry–Esséen?
- Replace each x_i by standard Gaussian g_i:
Lindeberg replacement trick

• How to prove Berry–Esséen?

• Replace each x_i by standard Gaussian g_i:

$$\sum_i \alpha_i x_i \approx \sum_i \alpha_i g_i$$
Lindeberg replacement trick

• How to prove Berry–Esséen?
• Replace each x_i by standard Gaussian g_i:

$$\sum_i \alpha_i x_i \approx \sum_i \alpha_i g_i$$

• Properties of Gaussians imply

$$\sum_i \alpha_i g_i \sim N(0, \sum_i \alpha_i^2)$$
Invariance principle
Invariance principle

- Mossel–O’Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials
Invariance principle

- Mossel–O’Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials
- This time we need all the variable influences to be small
Invariance principle

- Mossel–O’Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials.
- This time we need all the variable influences to be small.
- Implies that Majority vote is the voting rule most resistant to noise (asymptotically).
Invariance principle

- Mossel–O’Donnel–Oleszkiewicz noticed that the same trick works for low-degree polynomials.
- This time we need all the variable influences to be small.
- Implies that Majority vote is the voting rule most resistant to noise (asymptotically).
- Important corollaries in theoretical computer science.
Caveat
Caveat

- Invariance principle only applies to (low-degree) multilinear polynomials.
Caveat

- Invariance principle only applies to (low-degree) \textit{multilinear polynomials}

- For example, $x_1^2 + \ldots + x_n^2$ is constant while $g_1^2 + \ldots + g_n^2$ is not
Invariance principle only applies to (low-degree) multilinear polynomials

For example, $x_1^2 + \ldots + x_n^2$ is constant while $g_1^2 + \ldots + g_n^2$ is not

Not a problem, since any function on Boolean cube has unique multilinear representation ("Fourier expansion")
Invariance principle on the slice
Invariance principle on the slice

- Relevant distributions:
Invariance principle on the slice

- Relevant distributions:
 - (s_1, \ldots, s_n): uniform distribution on k-slice
Invariance principle on the slice

- Relevant distributions:
 - \((s_1,\ldots,s_n)\): uniform distribution on \(k\)-slice
 - \((x_1,\ldots,x_n)\): product distribution with same marginals (\(\text{Ber}(k/n)\))
Invariance principle on the slice

- Relevant distributions:
 - \((s_1,...,s_n)\): uniform distribution on \(k\)-slice
 - \((x_1,...,x_n)\): product distribution with same marginals \(\text{Ber}(k/n)\)
 - \((g_1,...,g_n)\): Gaussian product distribution with same mean and variance
Invariance principle on the slice

- Relevant distributions:
 - \((s_1, \ldots, s_n)\): uniform distribution on \(k\)-slice
 - \((x_1, \ldots, x_n)\): product distribution with same marginals \((\text{Ber}(k/n))\)
 - \((g_1, \ldots, g_n)\): Gaussian product distribution with same mean and variance
 - \(s_1 + \ldots + s_n\) constant but \(x_1 + \ldots + x_n\) isn’t!
Invariance principle on the slice
Invariance principle on the slice

• Solution (Dunkl): Consider only multilinear polynomials satisfying:

\[\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0 \]
Invariance principle on the slice

- Solution (Dunkl): Consider only multilinear polynomials satisfying:
 \[\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0 \]

- Every function on slice has a unique multilinear representation of this form
Invariance principle on the slice

- Solution (Dunkl): Consider only multilinear polynomials satisfying:

\[\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0 \]

- Every function on slice has a unique multilinear representation of this form

- F.–Kindler–Mossel–Wimmer, F.–Mossel: invariance principle holds for such polynomials
Invariance principle on the slice

• Solution (Dunkl): Consider only multilinear polynomials satisfying:

\[\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} = 0 \]

• Every function on slice has a unique multilinear representation of this form

• F.–Kindler–Mossel–Wimmer, F.–Mossel: invariance principle holds for such polynomials

• Corollary: Majority is Stablest on the slice
Invariance principle on the slice

- Solution (Dunkl): Consider only multilinear polynomials satisfying:
 - Every function on slice has a unique multilinear representation of this form
 - F. Kindler–Mossel–Wimmer: invariance principle holds for such polynomials

Corollary: Majority is Stablest on the slice

\[\sum_{x \in \{-1,1\}^n} f(x) = \sum_{x \in \{-1,1\}^n \mid \sum x_i = 0} f(x) \]

Middle slice is a representative section of the Boolean cube from the point of view of low-degree “harmonic” multilinear polynomials

Invariance principle on the slice
PART IV
Gelfand–Tsetlin basis for the slice
Fourier analysis on the slice
Fourier analysis on the slice

- On the Boolean cube we have Fourier analysis on \mathbb{Z}_2^n
Fourier analysis on the slice

- On the Boolean cube we have Fourier analysis on \mathbb{Z}_2^n
- On S_n we have representation theory
Fourier analysis on the slice

• On the Boolean cube we have Fourier analysis on \mathbb{Z}_2^n

• On S_n we have representation theory

• On the slice we also have representation theory: every multilinear “harmonic” polynomial decomposes as sum of its homogeneous parts (part of general theory of association schemes)
Gelfand–Tsetlin basis
Gelfand–Tsetlin basis

- Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice
Gelfand–Tsetlin basis

- Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice
- Basis is orthogonal with respect to all symmetric measures on x_1, \ldots, x_n!
Gelfand–Tsetlin basis

- Srinivasan constructs (implicitly) a canonical orthogonal basis for functions on the slice
- Basis is orthogonal with respect to all symmetric measures on x_1, \ldots, x_n
- Basis depends on order of coordinates
Explicit basis
Explicit basis

• F. gives explicit construction of the basis
Explicit basis

- F. gives explicit construction of the basis
- Definition: $A = (a_1, \ldots, a_\ell) < B = (b_1, \ldots, b_\ell)$ if
 $$a_1 < b_1, \ldots, a_\ell < b_\ell, b_1 < \cdots < b_\ell$$
Explicit basis

- F. gives explicit construction of the basis
- Definition: \(A = (a_1, \ldots, a_\ell) < B = (b_1, \ldots, b_\ell) \) if \(a_1 < b_1, \ldots, a_\ell < b_\ell, b_1 < \cdots < b_\ell \)
- Basis consists of all non-zero functions

\[
\chi_B = \sum_{A < B} (x_{a_1} - x_{b_1}) \cdots (x_{a_\ell} - x_{b_\ell})
\]
Explicit basis

- F. gives explicit construction of the basis
- **Definition:** \(A = (a_1, \ldots, a_\ell) < B = (b_1, \ldots, b_\ell) \) if
 \[
 a_1 < b_1, \ldots, a_\ell < b_\ell, b_1 < \cdots < b_\ell
 \]
- Basis consists of all non-zero functions

 \[
 \chi_B = \sum_{A<B} (x_{a_1} - x_{b_1}) \cdots (x_{a_\ell} - x_{b_\ell})
 \]

- Norm of \(\chi_B \) proportional to norm of

 \[
 (x_1 - x_2) \cdots (x_2|B|^1_1 - x_2|B|)
 \]
Implications
Implications

- For small d, norm of $(x_1 - x_2) \cdots (x_{2d-1} - x_{2d})$ roughly identical for uniform distribution on k-slice and corresponding product distribution.
Implications

- For small d, norm of $(x_1 - x_2) \cdots (x_{2d-1} - x_{2d})$ roughly identical for uniform distribution on k-slice and corresponding product distribution.

- Basis implies that same is true for all low-degree harmonic polynomials! (F.–Mossel: basis-free argument)
Implications

- For small d, norm of $(x_1 - x_2) \cdots (x_{2d-1} - x_{2d})$ roughly identical for uniform distribution on k-slice and corresponding product distribution

- Basis implies that same is true for all low-degree harmonic polynomials! (F.-Mossel: basis-free argument)

- Basis is explicit orthogonal basis of eigenvectors for Johnson and Kneser graphs
Implications

- For small d, norm of $(x_1 - x_2) \cdots (x_{2d-1} - x_{2d})$ roughly identical for uniform distribution on k-slice and corresponding product distribution

- Basis implies that same is true for all low-degree harmonic polynomials! (F.–Mossel: basis-free argument)

- Basis is explicit orthogonal basis of eigenvectors for Johnson and Kneser graphs

- Simplifies Wimmer’s proof of Friedgut’s junta theorem on the slice
OPEN QUESTIONS
OPEN QUESTIONS

• More exotic domains:
OPEN QUESTIONS

• More exotic domains:

 • k-dimensional vector subspaces of n-dimensional vector space over finite field
OPEN QUESTIONS

- More exotic domains:
 - k-dimensional vector subspaces of n-dimensional vector space over finite field
- Other groups
OPEN QUESTIONS

• More exotic domains:
 • k-dimensional vector subspaces of n-dimensional vector space over finite field
 • Other groups
 • “Multi-slice”
OPEN QUESTIONS

• More exotic domains:

 • k-dimensional vector subspaces of n-dimensional vector space over finite field

• Other groups

• “Multi-slice”

• More theorems on slice and symmetric group
THE END