Berge proved the following theorem: if \(\mathcal{B} \) is a field of sets then either \(\mathcal{B} \) or \(\mathcal{B} - \emptyset \) can be partitioned into pairs of disjoint sets. Since the paper is (apparently) not available online, we reproduce his proof here.

The proof is by induction on \(|\mathcal{B}|\). The base cases \(\mathcal{B} = \emptyset \) and \(\mathcal{B} = \{\emptyset\} \) are trivial, so suppose \(|\mathcal{B}| \geq 2\), and choose some \(x \) such that \(\{x\} \in \mathcal{B} \). We decompose \(\mathcal{B} \) into three sets: \(X = \{A \in \mathcal{B} : x \in A\} \), \(Y = \{A - x : A \in X\} \), \(Z = \mathcal{B} \setminus X \setminus Y \).

Note \(\emptyset \in Y \) and \(|Y \cup Z| < |\mathcal{B}|\). By the induction hypothesis, there is a matching \(M_1 \) on \(Y \) or \(Y - \emptyset \), and a matching \(M_2 \) on \(Y \cup Z \) or \(Y \cup Z - \emptyset \). We will construct a new matching \(M \) in which every element of \(\mathcal{B} \) is matched, except perhaps the empty set. The multigraph on \(Y \cup Z \) formed by taking the union of \(M_1 \) and \(M_2 \) consists of paths and cycles, which can be classified as follows:

- **Cycles** \(A_1, \ldots, A_\ell \) in which edges from \(M_1 \) and \(M_2 \) alternate. Note that \(A_i \in Y \) and \(\ell \) is even. The matching \(M \) includes \(\{A_1, A_2 + x\}, \{A_2, A_3 + x\}, \ldots, \{A_\ell, A_1 + x\} \).

- **Edges** \(A_1, A_2 \) taken from \(M_2 \). The matching \(M \) includes \(\{A_1, A_2\} \).

- **Paths** \(A_1, \ldots, A_\ell \) in which the edges alternate \(M_2 \) and \(M_1 \) and \(A_1 \in Z \). Note that \(A_2, \ldots, A_{\ell - 1} \in Y \) and either \(A_\ell \in Z \) or \(A_\ell = \emptyset \). In the former case, the matching \(M \) includes \(\{A_1, A_2 + x\}, \{A_2, A_3 + x\}, \ldots, \{A_{\ell - 2}, A_{\ell - 1} + x\}, \{A_{\ell - 1}, A_\ell\} \). In the latter case, the matching \(M \) includes \(\{A_1, A_2 + x\}, \{A_2, A_3 + x\}, \ldots, \{A_{\ell - 2}, A_{\ell - 1} + x\}, \{A_{\ell - 1}, A_\ell + x\} \), and \(A_\ell = \emptyset \) remains unmatched.