Fourier analysis: Introduction

Yuval Filmus
October 17, 2017

1. Let \(f: \{-1,1\}^n \to \mathbb{R} \). (Note: sometimes \(\{-1,1\} \) is replaced by \(\{0,1\} \).)
 (a) Show that \(f(x_1, \ldots, x_n) \) can be written as a multilinear polynomial.
 (b) Show that the multilinear expansion is unique.

 The multilinear expansion of \(f \) is known as its Fourier expansion:
 \[
 f(x_1, \ldots, x_n) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S, \quad \text{where} \quad \chi_S = \prod_{i \in S} x_i.
 \]

 The coefficients \(\hat{f}(S) \) are known as the Fourier coefficients, and the functions \(\chi_S \) are known as the Fourier characters.

2. (a) Show that the Fourier characters constitute an orthonormal basis for \(\mathbb{R}[\{-1,1\}^n] \)
 with respect to the inner product
 \[
 \langle f, g \rangle = \mathbb{E}[fg] := 2^{-n} \sum_{x \in \{-1,1\}^n} f(x)g(x).
 \]
 (b) Show that \(\hat{f}(S) = \langle f, \chi_S \rangle \).
 (c) What is \(\hat{f}() \)?
 (d) Let \(\|f\|^2 := \langle f, f \rangle = \mathbb{E}[f^2] \). Show that \(\|f\|^2 = \sum_S \hat{f}(S)^2 \).
 (e) Parseval’s identity: Show that \(\sum_{S \neq \emptyset} \hat{f}(S)^2 = \mathbb{V}[f] \).

3. Suppose \(F \subseteq \{-1,1\}^n \). Let \(\mu(F) = |F|/2^n \). We can associate with \(F \) its indicator function \(f = 1_F \), given by \(f(x) = 1 \) if \(x \in F \) and \(f(x) = 0 \) if \(x \notin F \). A function whose range is \(\{0,1\} \) (or sometimes \(\{1,-1\} \)) is called Boolean.
 (a) Show that \(\hat{f}(\emptyset) = \mu(F) \).
 (b) Show that \(\sum_S \hat{f}(S)^2 = \mu(F) \).

4. Linearity testing: Let \(f: \{-1,1\}^n \to \{-1,1\} \).
 (a) Show that the Fourier characters satisfy \(\chi_S(xy) = \chi_S(x)\chi_S(y) \), where \((xy)_i = x_i y_i \).

\(^1\)All monomials are products of distinct variables, i.e., no monomial is divisible by \(x_i^2 \).
(b) Show that the Fourier characters satisfy $\chi_S(x)\chi_T(x) = \chi_{S \triangle T}(x)$, where \triangle signifies symmetric difference.

c) Show that $E[\chi_S] = 1_{S = \emptyset}$.

d) Show that $\sum_S \hat{f}(S)^2 = 1$.

(e) Prove the following formula:
$$
\mathbb{E}_{x,y \sim \{-1,1\}^n} [f(x)f(y)f(xy)] = \sum_S \hat{f}(S)^3.
$$

(f) Prove that
$$
\mathbb{P}_{x,y \sim \{-1,1\}^n} [f(x)f(y) = f(xy)] = \frac{1}{2} + \frac{1}{2} \sum_S \hat{f}(S)^3.
$$

(g) Suppose that $\mathbb{P}[f(x)f(y) = f(xy)] \geq 1 - \epsilon$. Show that
$$
\max_S \hat{f}(S) \geq 1 - 2\epsilon.
$$

(h) Show that if f, g are two $\{-1,1\}$-valued functions then
$$
\mathbb{P}[f = g] = \frac{1}{2} + \frac{1}{2} \mathbb{E}[fg].
$$

(i) Deduce that if $\mathbb{P}[f(x)f(y) = f(xy)] \geq 1 - \epsilon$ then there exists S such that
$$
\mathbb{P}[f = \chi_S] \geq 1 - \epsilon.
$$

(j) Deduce that if $\mathbb{P}[f(x)f(y) = f(xy)] \geq \frac{1}{2} + \delta$ then there exists S such that the correlation between f and χ_S (i.e., $\mathbb{E}[f\chi_S]$) is at least δ.

Homework Let Ω_d be the set of all dth roots of unity. Show that every function $f : \Omega_d^n \to \mathbb{R}$ has a unique expansion as a polynomial in which in every monomial, the degree of every variable is smaller than d.

Challenge Let $k \leq n/2$ and define
$$
\binom{[n]}{k} = \{ (x_1, \ldots, x_n) \in \{0,1\}^n : x_1 + \cdots + x_n = k \}.
$$

Show that every function $f : \binom{[n]}{k} \to \mathbb{R}$ has a unique expansion as a multilinear polynomial P of degree at most k satisfying
$$
\frac{\partial P}{\partial x_1} + \cdots + \frac{\partial P}{\partial x_n} = 0.
$$