In this worksheet we will explore a different interpretation of entropy.

The twenty questions game is a game between two players, Alice and Bob. Bob chooses a distribution μ over $[n]$ and sends it to Alice. Bob then draws an element $x \sim \mu$, and Alice’s task is to find x using Yes/No questions. The game proceeds in rounds. At each round, Alice asks Bob a question of the form “$x \in S$?”, and Bob answers truthfully. The game ends when Alice knows x, that is, when there is a unique element in the support of μ which is consistent with all of Bob’s answers. The cost of a strategy for Alice is the average number of questions that Alice asks until she knows x, where the average is taken with respect to μ. The optimal cost of μ, denoted $c(\mu)$, is the minimal cost of a strategy for Alice.

1. Show that $c(\mu)$ equals $T(\mu)$, the cost of a Huffman code for μ (assuming we only need to supply codewords for elements in the support of μ).

 A distribution μ is dyadic if the probability of every element in the support of μ is of the form 2^{-m} (for integer m). It is constant if $\mu(x) = 1$ for some x.

2. Show that $c(\mu) = H(\mu)$ iff μ is dyadic.

Let Q be a collection of subsets of $[n]$. A Q-strategy for Alice is one in which she always asks questions of the form “$x \in S$?” for $S \in Q$. A collection Q is optimal (for n) if for every μ there is a Q-strategy with cost $c(\mu)$.

3. Show that Q is optimal iff for every dyadic μ there is a Q-strategy with cost $H(\mu)$.

4. A collection Q is a dyadic hitter if for every non-constant dyadic μ there is a set $S \in Q$ such that $\mu(S) = 1/2$.

 (a) Show that Q is optimal iff it is a dyadic hitter.
 (b) Show that in the definition of dyadic hitter, we can assume that μ has full support.

Let Opt(n) be the minimal size of an optimal set of questions for n.

5. **Lower bound:** A (k, r)-almost-uniform distribution is one in which the probabilities of the elements are $2^{k-1}, \ldots, 2^{k-r}, 2^{k-r}, \ldots, 2^{k-1}, 2^{-r}$.

 (a) Suppose that $2^k = \alpha n$. Obtain a lower bound on Opt(n) by considering all $(k, n-2^k)$-almost-uniform distributions.
 (b) Optimizing over α, find the best C so that Opt(n) $\geq C^{n-o(n)}$ for infinitely many n.

6. **Simple upper bound:** Let $Q = \{A: A \subseteq \lfloor n/2 \rfloor \text{ or } A \supseteq \lceil n/2 \rceil\}$.

 Show that Q is optimal, and deduce an upper bound on Opt(n).

7. **Tight upper bound:** For a non-constant dyadic μ having full support, let $D(\mu) = \{|S: \mu(S) = 1/2\}$. Suppose that there exists $p(n) > 0$ such that for each such μ, there exists i such that $|D(\mu) \cap \binom{[n]}{i}| \geq p(n)\binom{n}{i}$.

 (a) Find a reasonable upper bound on the number of non-constant dyadic μ.
 (b) Show that Opt(n) $\leq n^{O(1)}/p(n)$.
 (c) Show that Opt(n) $\leq C^{n+o(n)}$, where C is the constant from the lower bound. (Hard!)