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1 Semicircle law

The average deviation of the degree of a vertex from its mean n/2 is of order
√
n, but

the worst deviation is of order
√
n log n. We can improve on this using spectral methods.

Let A be a matrix such that A(i, i) = 1, A(i, j) = 1 if there is an edge (i, j), and
A(i, j) = −1 if there is no edge (i, j). Let λ1, . . . , λn be the eigenvalues of A. Then

n∑
i=1

λ2
i = TrA2 =

∑
i,j

A(i, j)2 = n2.

Therefore we can expect the magnitude of the eigenvalues to be roughly
√
n.

Wigner’s celebrated semicircle law states that after normalizing by
√
n, the empirical

distribution of eigenvalues tends to the distribution on [−2, 2] whose density is given by√
4−t2
2π

(this is just an upper semicircle of radius 2), in the sense that for any constant
−2 ≤ α ≤ β ≤ 2, the number of eigenvalues in the range [α

√
n, β
√
n] is

n

∫ β

α

√
4− t2
2π

dt± o(n).

In particular, the number of eigenvalues whose magnitude is larger than, say, 3
√
n is o(n).

Compare this to the degree distribution, in which the standard deviation is roughly 1
2

√
n,

but the number of vertices whose degree is at least , say, n
2

+ 100
√
n is Θ(n).

Füredi and Komlós showed1 that with high probability, all eigenvalues of A are at
most (2 + ε)

√
n in magnitude (for an arbitrary fixed ε > 0). This suggests that planted

cliques of size Θ(
√
n) can be detected this way: if the graph contains a k-clique, then

λmax(A) ≥ k, since the indicator function f of the clique satisfies

f ′Af

f ′f
=
k2

k
= k.

2 Lovász theta function

There are several ways of detecting cliques of size Θ(
√
n). We will explain one which uses

the Lovász theta function.

1Actually their proof has a mistake, but the mistake can be corrected
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Let G = (V,E) be an arbitrary graph, and let A be a symmetric V × V matrix such
that A(i, j) = 1 whenever i = j or (i, j) ∈ E (we call such matrices legal or valid for G).
If f is the indicator function of a clique of size ` then

λmax(A) ≥ f ′Af

f ′f
=
`2

`
= `.

Therefore ω(A) ≤ λmax(A). Furthermore, if equality holds then f is an eigenvector of A,
corresponding to an eigenvalue of `.

The Lovász theta function θ(G) is defined as the best upper bound obtainable this
way. The theta function can be computed efficiently (up to an arbitrarily small error)
using semidefinite programming.

2.1 Erdős–Ko–Rado theorem (bonus)

As an aside, we mention that many intersection theorems can be proved using the Lovász
theta function. For example, let us sketch a proof of the Erdős–Ko–Rado theorem, which
states that if k ≤ n/2 then any subset of

(
[n]
k

)
(all subsets of {1, . . . , n} of size k) in which

any two sets intersect must have size at most
(
n−1
k−1

)
; this is achieved by the family of all

sets containing some fixed element.
The Kneser graph is the graph on

(
[n]
k

)
in which two sets are connected if they are

disjoint. The degree of each vertex is
(
n−k
k

)
, and this is an eigenvalue of the graph (that is,

of its adjacency matrix A), corresponding to the constant 1 vector. The other eigenvalues
of the graph are (−1)d

(
n−k−d
k−d

)
for 1 ≤ d ≤ k, with multiplicity

(
n
d

)
−
(
n
d−1

)
.

Now consider the matrix J − cA, where J is the all 1s matrix. The constant 1 vector
is an eigenvector of J corresponding to the eigenvalue

(
n
k

)
, and all other eigenvalues are 0.

Hence the eigenvalues of J − cA are
(
n
k

)
− c
(
n−k
k

)
and (−1)d+1c

(
n−k−d
k−d

)
for 1 ≤ d ≤ k.

The maximal eigenvalue is thus

max

((
n

k

)
− c
(
n− k
k

)
, c

(
n− k − 1

k − 1

))
.

The best choice of c is the one that makes both of these equal, namely

c =

(
n
k

)(
n−k
k

)
+
(
n−k−1
k−1

) =

(
n
k

)(
1 + n−k

k

) (
n−k−1
k−1

) =

(
n
k

)
n
k
·
(
n−k−1
k−1

) .
The maximal eigenvalue is thus(

n
k

)
n
k
·
(
n−k−1
k−1

) · (n− k − 1

k − 1

)
=
k

n
·
(
n

k

)
=

(
n− 1

k − 1

)
.

Since J−cA is a valid matrix for the complement of the Kneser graph, we deduce that any
intersecting family (which is a clique in the complement of the Kneser graph) contains
at most

(
n−1
k−1

)
sets.
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3 Feige–Krauthgamer algorithm

Clearly θ(G(n, 1/2, k)) ≥ k. It turns out that with high probability, θ(G(n, 1/2, k)) = k.
To show this, we exhibit a legal matrix M satisfying λmax(M) ≤ k.

Our starting point is the matrix A in which A(i, i) = 1, A(i, j) = 1 if (i, j) is an edge,
and A(i, j) = −1 otherwise. If we arrange the vertices so that the clique vertices appear
first, then the matrix looks as follows: (

B C ′

C D

)
Here B is a k × k matrix consisting only of 1s, C is an (n− k)× k matrix in which each
entry is ±1 with equal probability, and D is an (n−k)× (n−k) symmetric square matrix
with 1s on the diagonal, and all other entries (considered in pairs) are equally likely to
be ±1.

Let f be the characteristic vector of the clique. Then Af ≈ kf . Indeed, if we write
f = (1 0) (the first part of length k, the second part of length n− k), then Af = (k Cf).
We would like to fix A to a matrix M such that Mf = kf .

Let C1, . . . , Cn−k be the rows of C. Then Cif is simply the sum of the ith row of f .
The simplest way to “kill” Cf is to subtract from each of the k entries in Ci the value
(
∑

j Cij)/k. However, we are not allowed to do this, since we cannot change the 1-entries
of C. Instead, if there are Si entries equal to −1 in Ci (so

∑
j Cij = −Si + (k − Si) =

k − 2Si), then we subtract from each of them (k − 2Si)/Si.
To analyze the spectrum of M , let us generate G(n, 1/2, k) in two steps: first gener-

ating a graph G ∼ G(n, 1/2), and then adding the clique. Let U be the A-matrix which
corresponds to G (defined in the same way as above), let V = A−U , and let W = M−A.
Let λi(Q) be the i’th largest eigenvalue of the matrix Q. Then:

1. U is a random symmetric sign matrix with 1s on the diagonal, so by Füredi–Komlós,
with high probability λ1(U) ≤ 3

√
n.

2. V is a random symmetric matrix with 0s on the diagonal, 0, 2 entries chosen uni-
formly at random in the top left k×k corner, and zeroes elsewhere. To understand
its spectrum, it suffices to consider only the top left k × k corner. Given a ran-
dom sign matrix V ′ with 1s on the diagonal, we can generate V using the formula
V = J − V ′, where J is the k × k all-1s matrix.

According to Füredi–Komlós, with high probability λ1(−V ′) ≤ 3
√
k. Since J has

rank 1, linear algebra tells us that λ2(V ) ≤ 3
√
k.

3. We bound λ1(W ) using the identity λ1(W ) ≤
√

Tr(W 2), where Tr(W 2) is just the

sum of entries. If si =
∑k

j=1Cij ∼ Bin(k, 1/2), then Si = (k − si)/2 and so

Tr(W 2) = 2
n−k∑
i=1

Si ·
(
si
Si

)2

= 8
n−k∑
i=1

s2
i

(k − si)2
.

The distribution of si is concentrated around k/2, and in particular, a Chernoff
bound shows that the probability that si /∈ [k/3, 2k/3] is at most e−Ω(k). For
k = ω(log n), this shows that with high probability, each summand is Θ(k2/k2) = 1,
and so λ1(W ) = O(

√
n).

3



If k = C
√
n for large enough constant C, then this shows that λ2(M) ≤ λ1(U) +

λ2(V ) + λ1(W ) = O(
√
n) < k. Since Mf = kf , it follows that λ1(M) = k, and further-

more, the eigenspace of k is spanned by f .
This shows that with high probability, θ(G(n, 1/2, k)) = k. Furthermore, unless

we are unlucky, we should be able to recover the clique from the first eigenvector. In
general, we can recover the clique using the following observation: the probability that
θ(G(n, 1/2, k)) = k is 1− o(1/n). If we remove a vertex from the graph, we get a sample
from either G(n− 1, 1/2, k) or G(n− 1, 1/2, k− 1), depending on whether we removed a
vertex of the planted clique or not. Using the theta function, we can distinguish between
these two cases.
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