Random Graphs — Week 8

Yuval Filmus

December 1, 2019

1 Semicircle law

The average deviation of the degree of a vertex from its mean n/2 is of order \sqrt{n} , but the worst deviation is of order $\sqrt{n \log n}$. We can improve on this using spectral methods.

Let A be a matrix such that A(i, i) = 1, A(i, j) = 1 if there is an edge (i, j), and A(i, j) = -1 if there is no edge (i, j). Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

$$\sum_{i=1}^{n} \lambda_i^2 = \operatorname{Tr} A^2 = \sum_{i,j} A(i,j)^2 = n^2.$$

Therefore we can expect the magnitude of the eigenvalues to be roughly \sqrt{n} .

Wigner's celebrated *semicircle law* states that after normalizing by \sqrt{n} , the empirical distribution of eigenvalues tends to the distribution on [-2, 2] whose density is given by $\frac{\sqrt{4-t^2}}{2\pi}$ (this is just an upper semicircle of radius 2), in the sense that for any constant $-2 \leq \alpha \leq \beta \leq 2$, the number of eigenvalues in the range $[\alpha \sqrt{n}, \beta \sqrt{n}]$ is

$$n\int_{\alpha}^{\beta} \frac{\sqrt{4-t^2}}{2\pi} dt \pm o(n).$$

In particular, the number of eigenvalues whose magnitude is larger than, say, $3\sqrt{n}$ is o(n). Compare this to the degree distribution, in which the standard deviation is roughly $\frac{1}{2}\sqrt{n}$, but the number of vertices whose degree is at least , say, $\frac{n}{2} + 100\sqrt{n}$ is $\Theta(n)$.

Füredi and Komlós showed¹ that with high probability, all eigenvalues of A are at most $(2 + \epsilon)\sqrt{n}$ in magnitude (for an arbitrary fixed $\epsilon > 0$). This suggests that planted cliques of size $\Theta(\sqrt{n})$ can be detected this way: if the graph contains a k-clique, then $\lambda_{\max}(A) \ge k$, since the indicator function f of the clique satisfies

$$\frac{f'Af}{f'f} = \frac{k^2}{k} = k$$

2 Lovász theta function

There are several ways of detecting cliques of size $\Theta(\sqrt{n})$. We will explain one which uses the Lovász theta function.

¹Actually their proof has a mistake, but the mistake can be corrected

Let G = (V, E) be an arbitrary graph, and let A be a symmetric $V \times V$ matrix such that A(i, j) = 1 whenever i = j or $(i, j) \in E$ (we call such matrices *legal* or *valid* for G). If f is the indicator function of a clique of size ℓ then

$$\lambda_{\max}(A) \ge \frac{f'Af}{f'f} = \frac{\ell^2}{\ell} = \ell.$$

Therefore $\omega(A) \leq \lambda_{\max}(A)$. Furthermore, if equality holds then f is an eigenvector of A, corresponding to an eigenvalue of ℓ .

The Lovász theta function $\theta(G)$ is defined as the best upper bound obtainable this way. The theta function can be computed efficiently (up to an arbitrarily small error) using semidefinite programming.

2.1 Erdős–Ko–Rado theorem (bonus)

As an aside, we mention that many intersection theorems can be proved using the Lovász theta function. For example, let us sketch a proof of the Erdős–Ko–Rado theorem, which states that if $k \leq n/2$ then any subset of $\binom{[n]}{k}$ (all subsets of $\{1, \ldots, n\}$ of size k) in which any two sets intersect must have size at most $\binom{n-1}{k-1}$; this is achieved by the family of all sets containing some fixed element.

The Kneser graph is the graph on $\binom{[n]}{k}$ in which two sets are connected if they are disjoint. The degree of each vertex is $\binom{n-k}{k}$, and this is an eigenvalue of the graph (that is, of its adjacency matrix A), corresponding to the constant 1 vector. The other eigenvalues of the graph are $(-1)^d \binom{n-k-d}{k-d}$ for $1 \le d \le k$, with multiplicity $\binom{n}{d} - \binom{n}{d-1}$. Now consider the matrix J - cA, where J is the all 1s matrix. The constant 1 vector

Now consider the matrix J - cA, where J is the all 1s matrix. The constant 1 vector is an eigenvector of J corresponding to the eigenvalue $\binom{n}{k}$, and all other eigenvalues are 0. Hence the eigenvalues of J - cA are $\binom{n}{k} - c\binom{n-k}{k}$ and $(-1)^{d+1}c\binom{n-k-d}{k-d}$ for $1 \le d \le k$. The maximal eigenvalue is thus

$$\max\left(\binom{n}{k} - c\binom{n-k}{k}, c\binom{n-k-1}{k-1}\right).$$

The best choice of c is the one that makes both of these equal, namely

$$c = \frac{\binom{n}{k}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \frac{\binom{n}{k}}{\left(1 + \frac{n-k}{k}\right)\binom{n-k-1}{k-1}} = \frac{\binom{n}{k}}{\frac{n}{k} \cdot \binom{n-k-1}{k-1}}$$

The maximal eigenvalue is thus

$$\frac{\binom{n}{k}}{\frac{n}{k} \cdot \binom{n-k-1}{k-1}} \cdot \binom{n-k-1}{k-1} = \frac{k}{n} \cdot \binom{n}{k} = \binom{n-1}{k-1}.$$

Since J-cA is a valid matrix for the *complement* of the Kneser graph, we deduce that any intersecting family (which is a clique in the complement of the Kneser graph) contains at most $\binom{n-1}{k-1}$ sets.

3 Feige–Krauthgamer algorithm

Clearly $\theta(G(n, 1/2, k)) \ge k$. It turns out that with high probability, $\theta(G(n, 1/2, k)) = k$. To show this, we exhibit a legal matrix M satisfying $\lambda_{\max}(M) \le k$.

Our starting point is the matrix A in which A(i, i) = 1, A(i, j) = 1 if (i, j) is an edge, and A(i, j) = -1 otherwise. If we arrange the vertices so that the clique vertices appear first, then the matrix looks as follows:

$$\begin{pmatrix} B & C' \\ C & D \end{pmatrix}$$

Here B is a $k \times k$ matrix consisting only of 1s, C is an $(n-k) \times k$ matrix in which each entry is ± 1 with equal probability, and D is an $(n-k) \times (n-k)$ symmetric square matrix with 1s on the diagonal, and all other entries (considered in pairs) are equally likely to be ± 1 .

Let f be the characteristic vector of the clique. Then $Af \approx kf$. Indeed, if we write $f = (1 \ 0)$ (the first part of length k, the second part of length n - k), then $Af = (k \ Cf)$. We would like to fix A to a matrix M such that Mf = kf.

Let C_1, \ldots, C_{n-k} be the rows of C. Then $C_i f$ is simply the sum of the *i*th row of f. The simplest way to "kill" Cf is to subtract from each of the k entries in C_i the value $(\sum_j C_{ij})/k$. However, we are not allowed to do this, since we cannot change the 1-entries of C. Instead, if there are S_i entries equal to -1 in C_i (so $\sum_j C_{ij} = -S_i + (k - S_i) = k - 2S_i$), then we subtract from each of them $(k - 2S_i)/S_i$.

To analyze the spectrum of M, let us generate G(n, 1/2, k) in two steps: first generating a graph $G \sim G(n, 1/2)$, and then adding the clique. Let U be the A-matrix which corresponds to G (defined in the same way as above), let V = A - U, and let W = M - A. Let $\lambda_i(Q)$ be the *i*'th largest eigenvalue of the matrix Q. Then:

- 1. U is a random symmetric sign matrix with 1s on the diagonal, so by Füredi–Komlós, with high probability $\lambda_1(U) \leq 3\sqrt{n}$.
- 2. V is a random symmetric matrix with 0s on the diagonal, 0, 2 entries chosen uniformly at random in the top left $k \times k$ corner, and zeroes elsewhere. To understand its spectrum, it suffices to consider only the top left $k \times k$ corner. Given a random sign matrix V' with 1s on the diagonal, we can generate V using the formula V = J V', where J is the $k \times k$ all-1s matrix.

According to Füredi–Komlós, with high probability $\lambda_1(-V') \leq 3\sqrt{k}$. Since J has rank 1, linear algebra tells us that $\lambda_2(V) \leq 3\sqrt{k}$.

3. We bound $\lambda_1(W)$ using the identity $\lambda_1(W) \leq \sqrt{\operatorname{Tr}(W^2)}$, where $\operatorname{Tr}(W^2)$ is just the sum of entries. If $s_i = \sum_{j=1}^k C_{ij} \sim \operatorname{Bin}(k, 1/2)$, then $S_i = (k - s_i)/2$ and so

$$Tr(W^2) = 2\sum_{i=1}^{n-k} S_i \cdot \left(\frac{s_i}{S_i}\right)^2 = 8\sum_{i=1}^{n-k} \frac{s_i^2}{(k-s_i)^2}.$$

The distribution of s_i is concentrated around k/2, and in particular, a Chernoff bound shows that the probability that $s_i \notin [k/3, 2k/3]$ is at most $e^{-\Omega(k)}$. For $k = \omega(\log n)$, this shows that with high probability, each summand is $\Theta(k^2/k^2) = 1$, and so $\lambda_1(W) = O(\sqrt{n})$. If $k = C\sqrt{n}$ for large enough constant C, then this shows that $\lambda_2(M) \leq \lambda_1(U) + \lambda_2(V) + \lambda_1(W) = O(\sqrt{n}) < k$. Since Mf = kf, it follows that $\lambda_1(M) = k$, and furthermore, the eigenspace of k is spanned by f.

This shows that with high probability, $\theta(G(n, 1/2, k)) = k$. Furthermore, unless we are unlucky, we should be able to recover the clique from the first eigenvector. In general, we can recover the clique using the following observation: the probability that $\theta(G(n, 1/2, k)) = k$ is 1 - o(1/n). If we remove a vertex from the graph, we get a sample from either G(n - 1, 1/2, k) or G(n - 1, 1/2, k - 1), depending on whether we removed a vertex of the planted clique or not. Using the theta function, we can distinguish between these two cases.