
Random Graphs — Week 7

Yuval Filmus

December 6, 2019

1 Finding a clique in G(n, 1/2)

Last week we saw that with high probability, ω(G(n, 1/2)) ≈ 2 log2 n (recall that ω(G)
is the size of the maximum clique in G; similarly, α(G) is the size of the maximum
independent set in G). Can we find such a clique?

Going over all sets of 2 log2 n vertices, we can find such a clique in quasipolynomial
time nO(logn). But can we do it in polynomial time?

The following algorithm comes to mind. Start with an arbitrary vertex. Remove all
of its non-neighbors, and repeat. How well does this algorithm perform? Intuitively, each
vertex we add cuts the number of vertices by one half, so the algorithm should terminate
after roughly log2 n steps.

Indeed, let Ni be the number of vertices which are connected to the first i vertices of
the clique (if there are less than i vertices in the clique, we define Ni = 0). Then N0 = n,
and

E[Ni+1 | Ni] =

󰀫
Ni−1

2
if Ni ≥ 1,

0 otherwise.

In both cases, E[Ni+1 | Ni] ≤ Ni/2, and so a simple induction shows that

E[Nk] ≤
n

2k
.

Let pk be the probability that the algorithm constructs a clique of size at least k. If
this happens, then Nk−1 ≥ 1, and so

pk = Pr[Nk−1 ≥ 1] ≤ n

2k−1
.

In particular, if k = log2 n + C, then pk ≤ 1/2C−1. Hence if C → ∞, then with high
probability the algorithm constructs a clique of size less than log2 n+ C.

Proving a lower bound requires using the second moment method, which is more
difficult. We will use an elegant analysis found in lecture notes of Luca Trevisan.

Here is another way to consider the algorithm. Fix some arbitrary order v1, . . . , vn
of the vertices. Go over them one by one, and add to the clique any vertex which is
connected to the previous vertices in the clique. Let i1, i2, . . . be the indices of vertices
added to the clique. Then i1 = 1, and i2− i1 has roughly a geometric distribution G(1/2)

1



— with the caveat that we could run out of vertices. Similarly, i3 − i2 has roughly a
geometric distribution G(1/4), and so on.

The problem with the idea presented above is that we could run out of vertices. This
is however easy to fix: we just use infinitely many vertices, only the first n of which are
“real”! Now iℓ+1 − iℓ ∼ G(2−ℓ) (where i0 = 0). The size of the clique is the maximum k
such that ik ≤ n.

We can calculate E[iℓ+1 − iℓ] = 2ℓ, and so

E[ik] =
k−1󰁛

ℓ=0

2ℓ = 2k − 1.

Let k = log2 n− C. Then

Pr[ik > n] <
E[ik]
n

<
n/2C

n
= 2−C

It follows that if C = ω(1), then with high probability ik ≤ n, that is, the algorithm finds
a clique of size at least log2 n− C.

It is conjectured that no efficient algorithm can find a clique of size (1 + 󰂃) log2 n in
G(n, 1/2), even with constant success probability.

2 Planted clique

Finding the maximum clique in G(n, 1/2) seems hard. What if we force the graph to
contain a larger clique? Does it make it easier to find the clique? The standard model
in this case is G(n, 1/2, k), in which we choose a random k-clique, and then put in every
other edge with probability 1/2.

First, let us verify that unless k is very small, G(n, 1/2, k) only contains a single
k-clique (with high probability).

Lemma 1. If k = ω(log n log log n), then with high probability, G(n, 1/2, k) contains a
single k-clique. In particular, ω(G(n, 1/2, k)) = k with high probability.

Proof. With high probability, the vertices outside the planted clique do not support a
clique of size log2(n− k) ≤ log2 n.

Assuming this, any k-clique different from the planted clique must contain a vertex
connected to at least k − log2 n vertices from the planted clique. This happens with
probability at most

n

󰀕
k

log2 n

󰀖
2−(k−log2 n) ≤ n2klog2 n

2k
= 2(2+log2 k) log2 n−k = o(1).

2.1 Kučera’s algorithm

Perhaps the simplest observation is that the vertices of the planted clique have higher
degree than non-clique vertices. This is because the degree of a normal vertex is dis-
tributed Bin(n − 1, 1/2), whereas the degree of a vertex belonging to the planted clique
is distributed k − 1 + Bin(n− k, 1/2), with expectation n−k

2
+ k − 1 = n−1

2
+ k−1

2
.

2



How large should k be so that we are able to distinguish between these two distribu-
tions? To answer this question, we need to appeal to a large deviation bound such as
the Chernoff bound. One formulation of this bound (called Hoeffding’s inequality) is as
follows:

Pr[Bin(m, p) ≤ (p− 󰂃)m],Pr[Bin(m, p) ≥ (p+ 󰂃)m] ≤ e−2󰂃2m.

The degree of a normal vertex has distribution roughly Bin(n, 1/2), and there are
roughly n such vertices. Chernoff’s bound predicts that the maximal degree is around

n/2 + 󰂃n, where e−2󰂃2n = 1/n, that is, 2󰂃2n = log n, which implies that 󰂃 =
󰁴

logn
2n

, and

so 󰂃n =
󰁴

1
2
n log n. This means that for the algorithm to have any chance of success, we

need k−1
2

≥
󰁴

1
2
n log n, that is, k ≥ C

√
n log n for some appropriate C > 0.

Conversely, the Chernoff bound shows that with high probability, all the degrees of
normal vertices are at most (say) n/2 +

√
n log n, whereas all the degrees of the planted

clique vertices are at least (say) n/2 + k/2−
√
n log k. In particular, for large enough C,

we can find the planted clique simply by taking the k vertices of maximal degree.

2.2 Partial enumeration

Using a simple idea, we can replace the constant C by any other constant C0. The idea is
to “guess” a few vertices of the clique. Suppose that somebody revealed to us ℓ vertices
from the clique. Looking only at their common neighbors, we reduce the number of
vertices from ℓ to roughly k − ℓ + n−k

2ℓ
≈ n/2ℓ, while reducing the planted clique from k

to k− ℓ. In effect, we have increased the value of C0 by a factor of (almost) 2ℓ. Choosing
ℓ = log2(C/C0), we can apply Kučera’s algorithm.

In practice, nobody is going to give us ℓ vertices of the clique. However, we can
go over all subsets of ℓ vertices, increasing the running time by a factor of O(nℓ). For
the correct choice of ℓ vertices, we will manage to find the planted clique. (Recall that
with high probability, G(n, 1/2, k) contains a unique k-clique, and so we cannot find the
“wrong” clique.)

3


