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1 Ramsey’s theorem

A well-known puzzle asks to show that among six people, there are either three mutual
friends or three mutual enemies. Ramsey’s theorem is a far-reaching generalization. The
Ramsey number R(a, b) is the minimal n such that every graph on n vertices either
contains a clique of size a or an independent set of size b.

Theorem 1.
R(ℵ0,ℵ0) = ℵ0.

Proof. The lower bound is obvious. Let v0 be an arbitrary vertex. Out of the infinitely
many remaining vertices, either there are infinitely many neighbors of v0, or infinitely
many non-neighbors of v0. In the former case, we color v0 blue, and remove all non-
neighbors. In the latter case, we color v0 red, and remove all neighbors. Now let v1 be
an arbitrary vertex different from v0, and repeat the same process.

In this way, we construct an infinite sequence v0, v1, v2, . . . of vertices. There are either
infinitely many blue vertices or infinitely many red vertices. By construction, any two
blue vertices are connected to one another, and any two red vertices are not connected
to one another. Hence we either get an infinite clique, or an infinite independent set.

The infinite version of Ramsey’s theorem implies, via compactness, that R(a, b) < ∞
for any a, b < ∞. Following essentially the same argument as the proof of the infinite
Ramsey theorem, we can get concrete bounds.

Theorem 2.

R(a, b) ≤
󰀕
a+ b− 2

a− 1

󰀖
.

Proof. The proof is by induction on min(a, b). If a = 1 then clearly we can take n = 1.
Suppose now that a, b ≥ 2, and consider a graph with

󰀃
a+b−2
a−1

󰀄
vertices. Fix some vertex

v. Since 󰀕
a+ b− 2

a− 1

󰀖
=

󰀕
a+ b− 3

a− 2

󰀖
+

󰀕
a+ b− 3

a− 1

󰀖
,

either v has at least
󰀃
a+b−3
a−2

󰀄
neighbors, or it has at least

󰀃
a+b−3
a−1

󰀄
non-neighbors.

In the first case, consider the graph induced by the neighbors of v. By induction, it
contains either a clique of size a− 1 or an independent set of size b. In the former case,

1



we can add v to obtain a clique of size a, and in the latter case, we already have an
independent set of size b.

The second case is similar. Considering the graph induced by the non-neighbors of
v, we obtain either a clique of size a or an independent set of size b− 1, which together
with v forms an independent set of size b.

Taking a = b = 3, we obtain R(3, 3) ≤
󰀃
4
2

󰀄
= 6, which is the statement of the puzzle.

This is tight: C5 is a graph on five vertices containing neither a triangle nor a triangle of
missing edges (to see this, note that the complement of C5 is just another C5).

The most interesting case of Ramsey’s theorem is when a = b. In this case, the upper
bound in the theorem is 󰀕

2a− 2

a− 1

󰀖
= Θ

󰀕
4a√
a

󰀖
.

Turning the theorem around, it shows that every graph on n vertices contains either a
clique or an independent set of size roughly 1

2
log n (logarithm is base 2). Is this tight?

We can use a random graph to show that the bound is tight up to constant factors.
The expected number of k-cliques in G(n, 1/2) is

󰀕
n

k

󰀖
2−(

k
2) ≤

󰀓en
k

󰀔k

2−k(k−1)/2 =

󰀣
e
√
2n

k2k/2

󰀤k

.

If k = 2 log n then this quantity is o(1), and so with high probability G(n, 1/2) doesn’t
contain a clique of size 2 log n. Due to symmetry, the same holds for independent sets.
In particular, there exists a graph on n vertices with neither a clique nor an independent
set of size 2 log n.

Amazingly, no explicit construction of such a graph is known! However, it is con-
jectured that the Paley graph is a Ramsey graph (its clique number and independence
number are both O(log n)). For an odd prime p, the Paley graph has vertices 1, . . . , p−1,
and we connect two vertices i, j if their difference i− j is a quadratic residue modulo p,
that is, if there exists k such that k2 ≡ i− j (mod p). It is not hard to check that exactly
half the integers in 1, . . . , p − 1 are quadratic residues, and so the density of the Paley
graph is 1/2. The Paley graph is known to be quasirandom, that it, for every graph H,
the number of copies of H is close to the expected number of copies in G(n, 1/2).

The best constructions of graphs with no large cliques or independent sets employ
non-malleable extractors. The record-holder is Xin Li, who constructed a graph in which
there are no cliques or independent sets of size (log n)C log(3) n/ log(4) n, where log(k) is the
logarithm function, iterated k times.

2 Clique number

Let Nk be the expected number of k-cliques in G(n, 1/2):

Nk =

󰀕
n

k

󰀖
2−(

k
2) =

nk

k!
2−k

k−1
2 .
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We will be interested for values of k around 2 log n. For such values,

nk

nk
=

n

n
· n− 1

n
· · · n− k + 1

n
=

󰀕
1− 1

n

󰀖
· · ·

󰀕
1− k − 1

n

󰀖
≥ 1− k(k − 1)/2

n
= 1− o(1).

Applying Stirling’s approximation, we obtain

Nk ∼
nk

√
2πk(k/e)k

=
1√
2πk

󰀣
e
√
2n

k2k/2

󰀤k

.

We can guess that the critical value of k is obtained around the solution to k2k/2 = n,
which is k ≈ 2 log n− 2 log log n. Indeed, if k = 2 log n− 2 log log n+ C then

k2k/2 ∼ 2 log n · n

log n
· 2C = 2C+1n,

and so

Nk ∼
((e/

√
2)/2C)k√
2πk

.

This shows that the maximal k such that Nk ≥ 1 is

k0 = 2 log n− 2 log log n+O(1).

Indeed, if C = 1 then (e/
√
2)/2C < 1, and so Nk = o(1), while if C = 0 then (e/

√
2)/2C >

1.9 and so Nk ≳ 1.9k/
√
2πk → ∞.

As we have seen above, if k is within constant distance of k0 then k2k/2 = Θ(n), and
so

Nk+1

Nk

=
n− k

k + 1
2−k ≈ n

k2k
=

nk

(k2k/2)2
= Θ

󰀕
nk

n2

󰀖
= Θ

󰀕
log n

n

󰀖
.

In other words, the expected number of k-cliques drops sharply as we increase k. In
particular, this implies that

Nk0−1 = Ω

󰀕
n

log n

󰀖
, Nk0+2 = O

󰀕
log n

n

󰀖
.

Thus, with high probability, G(n, 1/2) doesn’t contain a (k0 + 2)-clique. In contrast,
a second moment argument shows that with high probability, G(n, 1/2) does contain
a (k0 − 1)-clique, an argument which we outline below. This shows that with high
probability, G(n, 1/2) does contain a (k0−1)-clique. Since with high probability it doesn’t
contain a (k0 + 2)-clique, we conclude that the clique number is, with high probability,
one of k0 − 1, k0, k0 + 1. With slightly more finesse, one is able to whittle down this list
to only two values, and for most n, to only one value.

If Xk is the number of k-cliques, then enumerating the size r of the intersection of
two k-cliques, we get

E[X2
k ] =

k󰁛

r=0

󰀕
n

k

󰀖󰀕
k

r

󰀖󰀕
n− k

k − r

󰀖
(1/2)2(

k
2)−(

r
2).
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We are interested in
E[X2

k ]

E[Xk]2
=

k󰁛

r=0

󰀃
k
r

󰀄󰀃
n−k
k−r

󰀄
󰀃
n
k

󰀄 2(
r
2),

which we want to show is 1 + o(1). Note that the coefficients
󰀃
k
r

󰀄󰀃
n−k
k−r

󰀄
/
󰀃
n
k

󰀄
are those of a

hypergeometric distribution, corresponding to the following process: given that we have
identified k vertices as one k-clique, we are again drawing k vertices, and r is the number
of those which belong to the first clique.

Let us denote the r’th summand by Jr. We have

J0 =

󰀃
n−k
k

󰀄
󰀃
n
k

󰀄 ≈
󰀕
1− k

n

󰀖k

≈ 1− k2

n
= 1−O

󰀕
log2 n

n

󰀖
,

J1 =
k
󰀃
n−k
k−1

󰀄
󰀃
n
k

󰀄 =
k
󰀃
n−k
k−1

󰀄

n
k

󰀃
n−1
k−1

󰀄 ≈ k2

n

󰀕
1− k

n

󰀖k−1

= O

󰀕
log2 n

n

󰀖
,

Jk =
2(

k
2)

󰀃
n
k

󰀄 =
1

Nk

= O

󰀕
log n

n

󰀖
,

the last estimate holding for k = k0 − 1.
In the homework assignment, you will show that the sequence J0, . . . , Jk is unimodal,

implying that E[X2
k ]/E[Xk]

2 = 1 + o(1), as needed.

4


