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1 Rest of the distribution

The Bonferroni inequalities can be extended to Pr[X = t] for arbitrary t. Here is an
alternative route for analyzing this probability.

We know that with high probability, all triangles G(n, c/n) are vertex disjoint. This
is because the density of the following two graphs is larger than 1: two triangles sharing
a vertex, and two triangles sharing an edge. Hence roughly speaking, for the graph to
contain t triangles, there need to be t disjoint triangles that it contains, the other n− 3t
vertices supporting no triangles.

In order to formalize this idea, we will bound Pr[X = t] from both directions, starting
with the upper bound. If G ∼ G(n, c/n) contains exactly t triangles, then either G con-
tains two triangles which are non-vertex-disjoint (this happens with probability o(1)), or
it contains t disjoint triangles, the other n−3t vertices supporting no triangles. Therefore

Pr[X = t] ≤ o(1)+
1

t!

(
n

3

)(
n− 3

3

)
· · ·
(
n− 3(t− 1)

3

)( c
n

)3t
Pr[G(n−3t, c/n) is triangle-free].

Carefully repeating our calculations in the preceding section, we see that the probability
that G(n − 3t, c/n) is triangle-free tends to e−c

3/6. Therefore the second summand is
asymptotic to 1

k!
(c3/6)ke−c

3/6. In total,

Pr[X = t] ≤ e−c
3/6 (c3/6)k

k!
+ o(1).

For the lower bound, for every k-tuple τ of vertex-disjoint triangles we construct an
event Eτ in which the only triangles are τ . Since the events are disjoint, it will follow
that Pr[X = t] ≥

∑
τ Pr[Eτ ]. The event Eτ is as follows:

1. The triangles in τ belong to G, and there are no other edges among these 3k vertices.

2. The graph on the remaining n − 3k vertices is triangle-free, and contains at most
n log n edges.

3. There are no other triangles in G.

The probability that the first condition holds is

(c/n)3k(1− c/n)(
k
2)−3k = (1− o(1))(c/n)3k.
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The expected number of edges in G(n − 3k, c/n) is at most n2 · (c/n) = cn, and so
Markov’s inequality shows that it contains more than n log n edges with probability o(1).
Therefore the second condition holds with probability e−c

3/6 − o(1).
Note that the first two conditions are independent, since the first one depends only

on the edges among the 3k triangle vertices, and the second one depends only on the
edges among the remaining n− 3k vertices. The third condition will only depend on the
remaining edges.

Now suppose that the first two conditions hold. There are two ways in which the graph
can contain a triangle other than the ones in τ . First, there could be a triangle sharing
an edge with one of the triangles in τ . There are 3k(n − 3k) such potential triangles,
and each of them belongs to G with probability (c/n)2, and so this case happens with
probability O(1/n).

Second, there could be a triangle sharing a vertex with one of the triangles in τ .
Such a triangle should contain one of the n log n edges involving the remaining n − 3k
vertices. There are 3kn log n such potential triangles, and each of them belongs to G with
probability (c/n)2, so this case happens with probability O(log n/n). In total, assuming
the first two conditions, the third one is met with probability 1− o(1).

Summarizing,

Pr[Eτ ] = (1− o(1))(c/n)3k · (e−c3/6 − o(1)) · (1− o(1)) ∼ e−c
3/6(c/n)3k.

There are 1
k!

(
n
3

)(
n−3
3

)
· · ·
(
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3

)
∼ 1

k!
(n3/6)k possible τ , and so, since the events Eτ are

disjoint,

Pr[X = k] ≥
∑
τ

Pr[Eτ ] ∼
(n3/6)k

k!
· e−c3/6(c/n)3k = e−c

3/6 (c3/6)k

k!
.

Combining this with the upper bound, we conclude

Pr[X = k] −→ e−c
3/6 (c3/6)k

k!
.

2 Where do we go from here?

One obvious question is generalizing the Poisson limit law to other graphs. Such a law
doesn’t hold for all graphs, but it does hold for all strictly balanced graphs, which are
graphs for which m(H) = d(H) (balanced), and moreover the maximum is achieved
uniquely.

A different question is what happens when p is above the threshold. When np→∞
and n2(1− p)→∞, the distribution of the number of triangles is roughly normal, in the
sense that for every fixed t,

Pr

[
X − E[X]√

V[X]
< t

]
→ Pr[N(0, 1) < t].

One is also interested in large deviation properties. For each ε > 0, the probability
that X < (1− ε)E[X] or that X > (1 + ε)E[X] behaves asymptotically as e−Cn

2
, where

C depends on ε and on the direction. The lower tail (X < (1 − ε)E[X]) is much easier
to analyze than the upper tail.
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