Random Graphs — Week 4

Yuval Filmus

November 13, 2019

1 Rest of the distribution

The Bonferroni inequalities can be extended to \(\Pr[X = t] \) for arbitrary \(t \). Here is an alternative route for analyzing this probability.

We know that with high probability, all triangles \(G(n, c/n) \) are vertex disjoint. This is because the density of the following two graphs is larger than 1: two triangles sharing a vertex, and two triangles sharing an edge. Hence roughly speaking, for the graph to contain \(t \) triangles, there need to be \(t \) disjoint triangles that it contains, the other \(n - 3t \) vertices supporting no triangles.

In order to formalize this idea, we will bound \(\Pr[X = t] \) from both directions, starting with the upper bound. If \(G \sim G(n, c/n) \) contains exactly \(t \) triangles, then either \(G \) contains two triangles which are non-vertex-disjoint (this happens with probability \(o(1) \)), or it contains \(t \) disjoint triangles, the other \(n - 3t \) vertices supporting no triangles. Therefore

\[
\Pr[X = t] \leq o(1) + \frac{1}{t!} \left(\binom{n}{3} \binom{n - 3}{3} \cdots \binom{n - 3(t - 1)}{3} \right) \left(\frac{c}{n} \right)^{3t} \Pr[G(n-3t, c/n) \text{ is triangle-free}].
\]

Carefully repeating our calculations in the preceding section, we see that the probability that \(G(n-3t, c/n) \) is triangle-free tends to \(e^{-c^3/6} \). Therefore the second summand is asymptotic to \(\frac{1}{t!} \left(\frac{c^3}{6} \right)^k e^{-c^3/6} \). In total,

\[
\Pr[X = t] \leq e^{-c^3/6} \frac{(c^3/6)^k}{k!} + o(1).
\]

For the lower bound, for every \(k \)-tuple \(\tau \) of vertex-disjoint triangles we construct an event \(E_\tau \) in which the only triangles are \(\tau \). Since the events are disjoint, it will follow that \(\Pr[X = t] \geq \sum_\tau \Pr[E_\tau] \). The event \(E_\tau \) is as follows:

1. The triangles in \(\tau \) belong to \(G \), and there are no other edges among these \(3k \) vertices.
2. The graph on the remaining \(n - 3k \) vertices is triangle-free, and contains at most \(n \log n \) edges.
3. There are no other triangles in \(G \).

The probability that the first condition holds is

\[
(c/n)^{3k} (1 - c/n)^{\binom{k}{2} - 3k} = (1 - o(1))(c/n)^{3k}.
\]
The expected number of edges in $G(n - 3k, c/n)$ is at most $n^2 \cdot (c/n) = cn$, and so Markov’s inequality shows that it contains more than $n \log n$ edges with probability $o(1)$. Therefore the second condition holds with probability $e^{-c^3/6} - o(1)$.

Note that the first two conditions are independent, since the first one depends only on the edges among the $3k$ triangle vertices, and the second one depends only on the edges among the remaining $n - 3k$ vertices. The third condition will only depend on the remaining edges.

Now suppose that the first two conditions hold. There are two ways in which the graph can contain a triangle other than the ones in τ. First, there could be a triangle sharing an edge with one of the triangles in τ. There are $3k(n - 3k)$ such potential triangles, and each of them belongs to G with probability $(c/n)^2$, and so this case happens with probability $O(1/n)$.

Second, there could be a triangle sharing a vertex with one of the triangles in τ. Such a triangle should contain one of the $n \log n$ edges involving the remaining $n - 3k$ vertices. There are $3kn \log n$ such potential triangles, and each of them belongs to G with probability $(c/n)^2$, so this case happens with probability $O(\log n/n)$. In total, assuming the first two conditions, the third one is met with probability $1 - o(1)$.

Summarizing,

$$\Pr[\mathcal{E}_\tau] = (1 - o(1))(c/n)^{3k} \cdot (e^{-c^3/6} - o(1)) \cdot (1 - o(1)) \sim e^{-c^3/6}(c/n)^{3k}.$$

There are $\frac{1}{k!}(\begin{pmatrix} n \\ 3 \end{pmatrix}) \cdots (\begin{pmatrix} n - 3(k-1) \\ 3 \end{pmatrix}) \sim \frac{1}{k!}(n^3/6)^k$ possible τ, and so, since the events \mathcal{E}_τ are disjoint,

$$\Pr[X = k] \geq \sum_\tau \Pr[\mathcal{E}_\tau] \sim \frac{(n^3/6)^k}{k!} \cdot e^{-c^3/6}(c/n)^{3k} = e^{-c^3/6}(c^3/6)^k/k!.$$

Combining this with the upper bound, we conclude

$$\Pr[X = k] \to e^{-c^3/6}(c^3/6)^k/k!.$$

2 Where do we go from here?

One obvious question is generalizing the Poisson limit law to other graphs. Such a law doesn’t hold for all graphs, but it does hold for all strictly balanced graphs, which are graphs for which $m(H) = d(H)$ (balanced), and Moreover the maximum is achieved uniquely.

A different question is what happens when p is above the threshold. When $np \to \infty$ and $n^2(1 - p) \to \infty$, the distribution of the number of triangles is roughly normal, in the sense that for every fixed t,

$$\Pr\left[\frac{X - \mathbb{E}[X]}{\sqrt{\mathbb{V}[X]}} < t\right] \to \Pr[N(0,1) < t].$$

One is also interested in large deviation properties. For each $\epsilon > 0$, the probability that $X < (1 - \epsilon)\mathbb{E}[X]$ or that $X > (1 + \epsilon)\mathbb{E}[X]$ behaves asymptotically as e^{-Cn^2}, where C depends on ϵ and on the direction. The lower tail ($X < (1 - \epsilon)\mathbb{E}[X]$) is much easier to analyze than the upper tail.