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1 Moments of number of triangles

The threshold for appearance of a triangle is around p = 1/n. How many triangles does
G(n, p) contains when p = c/n? We have already seen that the expected number of
triangles is E[X] ∼ (np)3/6 = c3/6. In order to understand more about the distribution,
we need to compute higher moments of X.

Let us start with the second moment, which we have essentially already computed.
It will be a bit nicer to compute

E


X
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=



S<T∈([n]
3 )

Pr[△S,△T ∈ G(n, p)] =


S<T∈([n]
3 )

p|△S∪△T |.

(Here S < T is with respect to some arbitrary ordering of

[n]
3


.) Just as in the preceding

section, we need to look at the possible ways in which △S,△T can intersect:

• S, T are disjoint. There are 1
2


n
3


n−3
3


∼ 1

2
n6/62 such pairs, and each one contributes

p6 to the sum, for a total of ∼ 1
2
c6/62.

• S, T intersect at a vertex. There are 1
2


n
3


· 3 ·


n−3
2


= O(n5) such pairs, and each

one contributes p6 to the sum, for a total of o(1).

• S, T intersect at an edge. There are 1
2


n
3


· 3 ·


n−3
1


= O(n4) such pairs, and each

one contributes p5 to the sum, for a total of o(1).

Note that S cannot equal T . In total,
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2
.

We can estimate higher moments in a similar way:

E


X

k


=



S1<···<Sk

p|S1∪···∪Sk|.

The only asymptotically non-vanishing contribution is going to come from k-tuples of
disjoint triangles. To see this, we break the sum according to the isomorphism type of
S1 ∪ · · · ∪ Sk:
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=



T



S1<···<Sk
S1∪···∪Sk≈T

pe(T ) =


T

NTp
e(T ),
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where NT is the number of potential copies of T . If T is a union of k disjoint triangles,
then

NT =
1

k!


n

3


n− 3

3


· · ·


n− 3(k − 1)

3


∼ 1

k!


n3

6

k

,

and so the corresponding summand contributes 1
k!
(n3/6)k(c/n)3k = 1

k!
(c3/6)k to the sum.

For the other summands, since T is a union of triangles, each vertex has degree at
least 2, and so 2e(T ) ≥ 2v(T ) (since 2e(T ) is the sum of the degrees). If T is not a disjoint
union, then one of the degrees is larger than 2, and so e(T ) > v(T ). The contribution
of any such T to the sum is at most nv(T )pe(T ) = O(nv(T )−e(T )) = o(1). Since there are
finitely such T , we conclude that
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X
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∼ 1
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c3

6

k

∼ E[X]k

k!
.

Essentially, what this means is that X behaves as the sum of independent random
variables. Indeed, consider a random variable Y which is the sum of m Bernoulli random
variables Yi with Pr[Y1 = 1] = λ/m. Then E[Y ] = λ, and more generally,

E


Y

k


=



1≤i1<···<ik≤m

λk =


m

k


λ

m

k

∼ λk

k!
.

2 Poisson approximation

What is the distribution of Y ? We can estimate it explicitly:

Pr[Y = t] =


m

t


λ

m

t 
1− λ

m

m−t

∼ e−λλ
t

t!
.

This distribution is known as the Poisson distribution.
The calculations above suggest that the number of triangles in G(n, c/n) should have

roughly Poisson distribution, with λ = c3/6. The proof is a small exercise in calculus.
We will first calculate the probability of having no triangles. The idea is to use the
inclusion-exclusion formula:

Pr[X = 0] = 1−


S1∈([n]
3 )

Pr[△S1 ∈ G(n, p)] +


S1<S2∈([n]
3 )

Pr[△S1 ,△S2 ∈ G(n, p)] + · · · .

In fact, we will need to use a stronger form of the formula, in which we cut the sum
in the middle. The stronger form, known as the Bonferroni inequalities, states that the
direction of the error matches that of the following term. So for example

Pr[X = 0] ≤ 1

≥ 1−


S1∈([n]
3 )

Pr[△S1 ∈ G(n, p)]

≤ 1−


S1∈([n]
3 )

Pr[△S1 ∈ G(n, p)] +


S1<S2∈([n]
3 )

Pr[△S1 ,△S2 ∈ G(n, p)]
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and so on (we prove this later). Observe that the ℓth summand is exactly E[

X
ℓ


]. Now

comes the calculus part.
Denote the ℓth partial summand by Σℓ (Σ0 = 1, and so on), so that Σ2ℓ+1 ≤ Pr[X =

0] ≤ Σ2ℓ. The calculations above show that

sℓ := lim
n→∞

Σℓ = 1− λ+
λ2

2
− · · · ± λk

k!
.

We also know that

lim
ℓ→∞

sℓ =


k≥0

(−1)k
λk

k!
= e−λ.

Therefore, for every  > 0 we can find ℓ so that |s2ℓ − e−λ|, |s2ℓ+1 − e−λ| ≤ /2. We can
also find N such that for n ≥ N , |Σ2ℓ − s2ℓ|, |Σ2ℓ+1 − s2ℓ+1| ≤ /2. In total, we deduce
that for n ≥ N ,

Pr[X = 0] ≤ Σ2ℓ ≤ s2ℓ +


2
≤ e−λ + ,

and similarly Pr[X = 0] ≥ e−λ − . In total, |Pr[X = 0]− e−λ| ≤ . Since this holds for
every  > 0, it follows that Pr[X = 0] → e−λ.

3 Rest of the distribution

The Bonferroni inequalities can be extended to Pr[X = t] for arbitrary t. Here is an
alternative route for analyzing this probability.

We know that with high probability, all triangles G(n, c/n) are vertex disjoint. This
is because the density of the following two graphs is larger than 1: two triangles sharing
a vertex, and two triangles sharing an edge. Hence roughly speaking, for the graph to
contain t triangles, there need to be t disjoint triangles that it contains, the other n− 3t
vertices supporting no triangles.

In order to formalize this idea, we will bound Pr[X = t] from both directions, starting
with the upper bound. If G ∼ G(n, c/n) contains exactly t triangles, then either G con-
tains two triangles which are non-vertex-disjoint (this happens with probability o(1)), or
it contains t disjoint triangles, the other n−3t vertices supporting no triangles. Therefore

Pr[X = t] ≤ o(1)+
1

t!


n

3


n− 3

3


· · ·


n− 3(t− 1)

3

 c

n

3t

Pr[G(n−3t, c/n) is triangle-free].

Carefully repeating our calculations in the preceding section, we see that the probability
that G(n − 3t, c/n) is triangle-free tends to e−c3/6. Therefore the second summand is
asymptotic to 1

k!
(c3/6)ke−c3/6. In total,

Pr[X = t] ≤ e−c3/6 (c
3/6)k

k!
+ o(1).

For the lower bound, for every k-tuple τ of vertex-disjoint triangles we construct an
event Eτ in which the only triangles are τ . Since the events are disjoint, it will follow
that Pr[X = t] ≥


τ Pr[Eτ ]. The event Eτ is as follows:

1. The triangles in τ belong to G, and there are no other edges among these 3k vertices.
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2. The graph on the remaining n − 3k vertices is triangle-free, and contains at most
n log n edges.

3. There are no other triangles in G.

The probability that the first condition holds is

(c/n)3k(1− c/n)(
k
2)−3k = (1− o(1))(c/n)3k.

The expected number of edges in G(n − 3k, c/n) is at most n2 · (c/n) = cn, and so
Markov’s inequality shows that it contains more than n log n edges with probability o(1).
Therefore the second condition holds with probability e−c3/6 − o(1).

Note that the first two conditions are independent, since the first one depends only
on the edges among the 3k triangle vertices, and the second one depends only on the
edges among the remaining n− 3k vertices. The third condition will only depend on the
remaining edges.

Now suppose that the first two conditions hold. There are two ways in which the graph
can contain a triangle other than the ones in τ . First, there could be a triangle sharing
an edge with one of the triangles in τ . There are 3k(n − 3k) such potential triangles,
and each of them belongs to G with probability (c/n)2, and so this case happens with
probability O(1/n).

Second, there could be a triangle sharing a vertex with one of the triangles in τ .
Such a triangle should contain one of the n log n edges involving the remaining n − 3k
vertices. There are 3kn log n such potential triangles, and each of them belongs to G with
probability (c/n)2, so this case happens with probability O(log n/n). In total, assuming
the first two conditions, the third one is met with probability 1− o(1).

Summarizing,

Pr[Eτ ] = (1− o(1))(c/n)3k · (e−c3/6 − o(1)) · (1− o(1)) ∼ e−c3/6(c/n)3k.

There are 1
k!


n
3


n−3
3


· · ·


n−3(k−1)

3


∼ 1

k!
(n3/6)k possible τ , and so, since the events Eτ are

disjoint,

Pr[X = k] ≥


τ

Pr[Eτ ] ∼
(n3/6)k

k!
· e−c3/6(c/n)3k = e−c3/6 (c

3/6)k

k!
.

Combining this with the upper bound, we conclude

Pr[X = k] −→ e−c3/6 (c
3/6)k

k!
.

4 Bonferroni inequalities

Finally, let us prove the Bonferroni inequalities. Suppose that E1, . . . , Em are events. We
want to bound the probability that none of the events happen by an expression of the
form

pk := 1−
m

i=1

Pr[Ei] +


1≤i<j≤m

Pr[Ei ∧ Ej]− · · · ±


1≤i1<···<ik≤m

Pr[E1 ∧ · · · ∧ Ek].

4



Consider any point x in the sample space, and suppose that it belongs to t of the events.
Its contribution to the sum above is Pr[x] times the polynomial

Pk(t) = 1− t+


t

2


− · · · ±


t

k


.

Note that Pk(0) = 1 and for 1 ≤ t ≤ k,

Pk(t) = 1− t+


t

2


− · · · ±


t

t


= 0.

Therefore the roots of Pk are t = 1, . . . , t = k. The sign of Pk is constant for all t > k.
Since Pk(t) ∼ (−1)ktk/k!, it follows that when t > k, Pk(t) is positive if k is even and
negative if k is odd.

Consequently, when k is even, the contribution of x to q := Pr[¬E1 ∧ · · · ∧ ¬Ek] is
always bounded above by its contribution to pk, and when k is odd, it is bounded below.
Therefore q ≤ pk for even k and q ≥ pk for odd k.

5 Where do we go from here?

One obvious question is generalizing the Poisson limit law to other graphs. Such a law
doesn’t hold for all graphs, but it does hold for all strictly balanced graphs, which are
graphs for which m(H) = d(H) (balanced), and moreover the maximum is achieved
uniquely.

A different question is what happens when p is above the threshold. When np → ∞
and n2(1− p) → ∞, the distribution of the number of triangles is roughly normal, in the
sense that for every fixed t,

Pr


X − E[X]

V[X]
< t


→ Pr[N(0, 1) < t].

One is also interested in large deviation properties. For each  > 0, the probability
that X < (1− )E[X] or that X > (1 + )E[X] behaves asymptotically as e−Cn2

, where
C depends on  and on the direction. The lower tail (X < (1 − )E[X]) is much easier
to analyze than the upper tail.

A different large deviation question asks for the probability that G(n, p) contains a
triangle when p = o(1/n). I’m not sure what is the answer to this question!
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