
Random Graphs — Week 11

Yuval Filmus

January 8, 2020

1 Kruskal’s algorithm

Suppose that the weight w(e) of each edge e ∈ Kn is chosen uniformly in [0, 1]. What is
the expected weight of a minimum spanning tree?

Recall Kruskal’s algorithm for constructing a minimum spanning tree: go over the
edges in increasing order of weight, and add each edge which connects two different
connected components.

Let Gp denote the graph consisting of all edges whose weight is less than p, so that
Gp ∼ G(n, p). If this graph consists of κ(Gp) connected components, then Kruskal’s
algorithm will add exactly κ(Gp)−1 edges outside of Gp, that is, exactly κ(Gp)−1 edges
whose weight is at least p. In other words, if we denote by T the tree constructed by
Kruskal’s algorithm, then

#{e ∈ T : w(e) ≥ p} = κ(Gp)− 1.

Now suppose that we choose p uniformly in [0, 1]. An edge e ∈ T satisfies w(e) ≥ p
with probability exactly w(e). Hence

∑
e∈T

w(e) =

∫ 1

0

#{e ∈ T : w(e) ≥ p} dp =

∫ 1

0

[κ(Gp)− 1] dp.

In particular, denoting by w(T) the total weight of the tree,

E[w(T)] =

∫ 1

0

E[κ(Gp)− 1] dp.

Recall that the threshold of connectivity is around logn
n

. More accurately, for constant

c, the probability that Gp is connected when p = logn+c
n

tends to e−e
−c

. In particular,

if p ≥ 3 logn
n

, then the probability that Gp is connected is 1− o(1/n) (this requires some
calculation), and so

E[κ(Gp)− 1] ≤ nPr[Gp not connected] = o(1).

Hence the contribution of p ≥ 3 logn
n

to E[w(T)] is negligible.
In their classical paper on the evolution of random graphs, Erdős and Rényi showed

that G(n, p) undergoes a phase transition around p = 1/n. When p � 1/n, most

1

components are small trees, and when p = c/n for c > 1, there is in addition a so-called
giant component, occupying a linear number of vertices. This suggests that when trying
to estimate κ(Gp), we concentrate on trees.

Let Tk be the number of tree components of size k. Using Cayley’s formula, we get

E
Gp

[Tk] =

(
n

k

)
kk−2pk−1(1− p)k(n−k)+(k

2)−(k−1).

We are only interested in p = O(log n/n). When k is small enough, we will have

E
Gp

[Tk] ∼ nk

k!
kk−2pk−1(1− p)kn.

For this to hold, we need nk ∼ nk (which holds as long as k = o(
√
n)), and (1−p)Θ(k2) ∼ 1

(which holds as long as k = o(
√

1/p) = o(
√
n/ log n).

Every other component contains a spanning tree as well as an additional edge. The
number of such arrangements is at most kk−2

(
k
2

)
≤ 1

2
kk. Hence using a very rough union

bound, we can bound the expected number of nontree components Ck of size k by

E
Gp

[Ck] ≤ 1

2

(
n

k

)
kkpk(1− p)k(n−k) ≤ 1

2
(1− p)−k2 · (npe1−np)k,

using
(
n
k

)
≤ (en/k)k and 1 − p ≤ e−p. When k = o(

√
n/ log n), we have (1 − p)−k2 ∼ 1

as before. The function ce1−c attains its maximum value 1 at the point c = 1, and this
shows that when k = o(

√
n/ log n), it is always the case that

E
Gp

[Ck] ≤ 1

2
+ o(1).

Finally, we have to deal with large k, but this is easy: there are at most n/K compo-
nents of size larger than K. Therefore

E[κ(Gp)− 1] = (1 + o(1))
K∑
k=1

nk

k!
kk−2pk−1(1− p)kn +O(K + n/K).

Choosing (say) K = n1/3, we get K + n/K = o(n
logn

), and so

E[w(T)] = (1 + o(1))

∫ 3 logn
n

0

K∑
k=1

nk

k!
kk−2pk−1(1− p)kn dp+ o(1).

We would like to extend the range of the integral all the way to 1. Indeed, if p ≥ 3 logn
n

then (1− p)n ≤ e−pn ≤ 1/n3, and so∫ 1

3 logn
n

nk

k!
kk−2pk−1(1− p)kn dp ≤ nk

k!
kk−2 · 1

n3k
=
kk−2

k!
· 1

n2k
≤ 1

nk
.

This is neglibigle even when summed over k = 1, . . . , K, and so we get

E[w(T)] = (1 + o(1))
K∑
k=1

nk

k!
kk−2

∫ 1

0

pk−1(1− p)kn dp+ o(1).

2

It is a classical calculation that
∫ 1

0
pa(1− p)b dp = a!b!

(a+b+1)!
, and so

E[w(T)] = (1 + o(1))
K∑
k=1

nk

k!
kk−2 (k − 1)!(kn)!

(k(n+ 1))!
+ o(1).

For the relevant values of k, we have (k(n+ 1))!/(kn)! ∼ (kn)k, and so

E[w(T)] = (1 + o(1))
K∑
k=1

nk

k!
kk−2 · (k − 1)!

(kn)k
+ o(1) = (1 + o(1))

K∑
k=1

1

k3
+ o(1).

Since the series
∑∞

k=1 1/k3 converges and K →∞, we can finally conclude that

E[w(T)] =
∞∑
k=1

1

k3
= ζ(3).

Apéry showed that the constant ζ(3) is irrational.

2 Dijkstra’s algorithm

Suppose that the weight w(e) of each edge e ∈ Kn is chosen according to the unit-mean
exponential distribution. What is the expected minimum distance between two fixed
vertices? Given a vertex x, what is the expected minimum distance to the farthest away
vertex y?

We are considering here the exponential distribution since it is easier to deal with.
However, the same result holds for the uniform distribution as well, and similarly, the
result on Kruskal’s algorithm also holds for the exponential distribution. The reason is
that the only relevant weights are very close to zero, and the two distributions have very
similar density functions around zero.

We can generate an exponential random variable as follows: at each infinitesimal
interval of length ε, we stop the process with probability ε, and otherwise we continue.
If instead of stopping we just ‘mark’ the spot, then after N intervals we have roughly N
marks, showing that the expected time until the first mark is 1. This point of view will
be useful in the sequel.

Recall Dijkstra’s algorithm for constructing a shortest path tree rooted at a given
vertex 1. At each point in time, we consider all possible ways of adding an edge to the
tree. We add the edge which results in the shortest distance from the root.

Let us see what happens when we run Dijkstra’s algorithm starting at the vertex 1.
The relevant edge weights are w(1, 2), . . . , w(1, n), and we think of them as generated
according to the process above. At each interval of length ε, we stop the process with
probability (n− 1)ε (using the estimate ε2 = 0). Equivalently, at each interval of length
ε/(n − 1), we stop the process with probability ε, speeding up the original process by
a factor of n − 1. Hence the first edge is added at time 1/(n − 1) in expectation. The
vertex it is pointing at is uniform over 2, . . . , n, but let’s assume for simplicity that it is
vertex 2.

3

We continue running the process for w(1, 3), . . . , w(1, n), but now new weights come
into play: w(2, 3), . . . , w(2, n). Since there are 2(n− 2) processes in play, the additional
time we have to wait before the second edge is added is 1/[2(n− 2)] in expectation.

Continuing in this fashion, we see that the expected total running time of the process,
which is also the expected distance to the farthest vertex, is

n−1∑
k=1

1

k(n− k)
=

1

n

n−1∑
k=1

[
1

k
+

1

n− k

]
=

2Hn−1

n
∼ 2 lnn

n
.

We can also compute the variance of the distance to the farthest vertex. The variance
of an exponential random variable of mean µ is µ2. Since variance of independent random
variables is additive, the variance of the distance to the farthest vertex is

n−1∑
k=1

1

(k(n− k))2
=

1

n2

n−1∑
k=1

(
1

k
+

1

n− k

)2

=
2

n2

n−1∑
k=1

1

k2
+

2

n2

n−1∑
k=1

1

k(n− k)
=

2

n2

(
π2

6
−O

(
1

n

))
+

4Hn−1

n3
=

π2

3n2
−O

(
1

n

)
.

Applying Chebyshev’s inequality, we deduce that for any f(n) = ω(1), with high

probability the distance to the farthest distance is in the interval [2 lnn−f(n)
n

, 2 lnn+f(n)
n

].
In the analysis above, we assumed that the vertices are discovered in the order

1, 2, . . . , n, but in reality, after the first vertex, the other n− 1 vertices are discovered in
random order. In particular, the position of vertex 2 in this order is uniform, and so the
expected distance from vertex 1 to vertex 2 is

1

n− 1

n−1∑
`=1

∑̀
k=1

1

k(n− k)
=

1

n(n− 1)

n−1∑
`=1

∑̀
k=1

[
1

k
+

1

n− k

]
=

1

n(n− 1)

n−1∑
k=1

[
n− k
k

+
n− k
n− k

]
=

1

n− 1

n−1∑
k=1

1

k
=
Hn−1

n− 1
∼ lnn

n
.

The variance is O(1
n2) in this case as well, though the calculation is slightly more

complicated, and left to the reader.
One can also show that the expected maximum distance between two vertices is

∼ 3 lnn
n

, but the argument is more involved.

4

