Random Graphs — Week 1

Yuval Filmus

October 30, 2019

1 Erdős–Rényi random graphs

For most of the class, we will be concerned with the $G(n, p)$ model of random graphs, also known as Erd˝os–R´enyi random graphs. In this model, there is a fixed vertex set $[n] = \{1, \ldots, n\}$, and each of the potential $\binom{n}{2}$ $n \choose 2$ edges is included with probability p independently. When $p = 1/2$, this is the same as picking a uniformly random graph on the vertex set $[n]$.

Erdős and Rényi actually considered the related $G(n, m)$ model, in which we choose a random graph on the vertex set [n] with exactly m edges. The models $G(n, p)$ and $G(n, m)$ have similar behavior, where $m = p\binom{n}{2}$ $n \choose 2$ is the expected number of edges in $G(n, p).$

2 Monotone properties

Let $c(p)$ be the probability that a random $G(n, p)$ graph contains a triangle. This is an example of a *monotone property*: if a graph contains a triangle, then it will still contain a triangle if we add more edges to it.

We claim that $c(p)$ is a continuous, strictly increasing function of p. To prove that $c(p)$ is increasing, we use the technique of *coupling*.

Lemma 1. If $p \leq q$ then $c(p) \leq c(q)$.

Proof 1. Sample G_1 from the distribution $G(n, p)$. For each edge absent from G_1 , add it with probability $r := \frac{q-p}{1-p}$ $\frac{q-p}{1-p}$ (independently), and call the resulting graph G_2 . The probability that a specific edge belongs to G_2 is $p + (1 - p)r = q$, and so G_2 has the distribution $G(n, q)$.

The resulting distribution (G_1, G_2) on pairs of graphs is a *coupling* of the distributions $G(n, p)$ and $G(n, q)$. This means that its marginals have these distributions. Furthermore, the construction guarantees that $G_1 \subseteq G_2$ always.

We can now prove the lemma:

$$
c(p) = Pr[G_1 \text{ contains a triangle}] \le Pr[G_2 \text{ contains a triangle}] = c(q).
$$

Proof 2. Here is another way to construct the same coupling. Consider the complete graph K_n . For each edge, choose a weight according to the uniform distribution on

 $[0, 1]$. Let G_p be the graph consisting of all edges whose weight is at most p, and define G_q analogously. Then (G_p, G_q) is a coupling of $G(n, p), G(n, q)$ such that $G_p \subseteq G_q$ always.

The fact that $c(p)$ is continuous and strictly increasing follows from the fact that $c(p)$ is a polynomial.

Lemma 2. The function $c(p)$ is a polynomial of degree at most $\binom{n}{2}$ $\binom{n}{2}$, and so is continuous and strictly increasing.

Proof. Let G be the set of all graphs on [n] containing a triangle. For each $G \in \mathcal{G}$, the probability that G is sampled from $G(n, p)$ is $p^{|G|}(1-p)^{\binom{n}{2}-|G|}$, where $|G|$ is the number of edges in G; note that this is a polynomial in p. Therefore $c(p) = \sum_{G \in \mathcal{G}} p^{|G|} (1-p)^{\binom{n}{2}-|G|}$ is a polynomial.

Since $c(p)$ is a polynomial, it is continuous. Since it is increasing and nonconstant (as $c(0) = 0$ and $c(1) = 1$, it must be strictly increasing. \Box

We can define the *critical probability* of containing a triangle to be the probability p^* such that $c(p^*) = 1/2$ (the value $1/2$ here is arbitrary; any constant will do). How can we determine p^* ?

3 Appearance of triangles

Let us denote by X the number of triangles in a $G(n, p)$ graph. Using linearity of expectation, it is not difficult to calculate the expected number of triangles:

$$
\mathbb{E}[X] = \binom{n}{3} p^3 \sim \frac{(np)^3}{6}.
$$

Here $\binom{n}{3}$ $\binom{n}{3}$ is the number of potential triangles, and p^3 is the probability that $G(n, p)$ contains a specific triangle.

This formula suggests that p^* should be of order of magnitude $1/n$, since when $p \ll$ $1/n$, the expected number of triangles is very small, and when $p \gg 1/n$, it is very large. In order to show that this is indeed the case, we will need to use the *first moment method* as well as the second moment method.

3.1 First moment method

Markov's inequality implies that if $\mathbb{E}[X]$ is small, then it is unlikely that $X \neq 0$, since

$$
\Pr[X > 0] = \Pr[X \ge 1] \le \mathbb{E}[X].
$$

(In this particular case, the same bound also follows from the union bound.)

Using this, we immediately get that when $p \ll 1/n$, a $G(n, p)$ graph typically doesn't contain any triangles.

Theorem 1. If $p = o(1/n)$ then with high probability, $G(n, p)$ contains no triangles. (This means that $Pr_{G \sim G(n,p)}[G \text{ contains a triangle}] = o(1).$)

3.2 Second moment method

Markov's inequality only allows us to bound the probability that X is much larger than its expectation. To bound the probability that X is much smaller than its expectation, we use Chebyshev's inequality:

$$
\Pr[X=0] \le \Pr[|X - \mathbb{E}[X]| \ge \mathbb{E}[X]] \le \frac{\mathbb{V}[X]}{\mathbb{E}[X]^2}.
$$

Calculating $\mathbb{V}[X]$ is straightforward, if a bit tiring. Since $\mathbb{V}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$ and we already know $\mathbb{E}[X]$, it remains to compute $\mathbb{E}[X^2]$. We can write X as the sum of indicator variables I_S , where S goes over all subsets of $[n]$ of size 3, and I_S indicates that the graph contains the triangle formed by S. Expanding $\mathbb{E}[X^2]$, we get

$$
\mathbb{E}[X^2] = \sum_{S,T \in \binom{[n]}{3}} \mathbb{E}[I_S I_T] = \sum_{S,T \in \binom{[n]}{3}} \Pr[G \text{ contains } \triangle_S, \triangle_T].
$$

The probability that the graph contains both triangles supported on S and on T depends on the total number of edges in both triangles:

- If $S = T$ then the two triangles share all edges, and so the probability is $p³$. There are $\binom{n}{3}$ $n \choose 3$ such pairs.
- If $|S \cap T| = 2$ then the two triangles share one edge, and so the probability is p^5 . There are $12\binom{n}{4}$ $\binom{n}{4}$ such pairs (together, the two triangles form a K_4 with one missing edge; we need to choose which edge is missing, and which of the two degree 2 vertices belongs to S).
- Otherwise, the two triangles might share a vertex, but they share no edge, and so the probability is p^6 .

In total, we get

$$
\mathbb{E}[X^2] = \binom{n}{3} p^3 + 12\binom{n}{4} p^5 + \left(\binom{n}{3}^2 - \binom{n}{3} - 12\binom{n}{4}\right) p^6.
$$

Therefore

$$
\mathbb{V}[X] = \binom{n}{3} (p^3 - p^6) + 12 \binom{n}{4} (p^5 - p^6) = O(n^3 p^3 + n^4 p^5).
$$

Since $\mathbb{E}[X] = \Theta(n^3p^3)$, the quantity in Chebyshev's inequality is

$$
\frac{\mathbb{V}[X]}{\mathbb{E}[X]^2} = \frac{O(n^3p^3 + n^4p^5)}{\Theta(n^6p^6)} = O\left(\frac{1}{n^3p^3} + \frac{1}{n^2p}\right).
$$

Theorem 2. If $p = \omega(1/n)$, then with high probability $G(n, p)$ contains a triangle. *Proof.* If $p = \omega(1/n)$ then $pn = \omega(1)$, and so

$$
\frac{\mathbb{V}[X]}{\mathbb{E}[X]^2} = O\left(\frac{1}{(np)^3} + \frac{1}{n(np)}\right) = \frac{1}{\omega(1)} + \frac{1}{n\omega(1)} = o(1).
$$

Therefore, by Chebyshev's inequality we get $Pr[X = 0] = o(1)$.

 \Box

4 Where do we go from here?

Our investigation has so far led to interesting results, but leaves many questions open, such as the following:

- 1. The theorems state what happens when $p \ll 1/n$ and when $p \gg 1/n$, but leave a gap in the middle. What happens when $p = c/n$, for constant c? In particular, what is the probability that the graph contains a triangle? More generally, what is the distribution of the number of triangles?
- 2. What is the approximate distribution of the number of triangles when $p = \omega(1/n)$? What is the probability that the number of triangles deviates significantly from the average? What does the graph look like in the latter case?
- 3. What is the probability that the graph does contain a triangle when $p = o(1/n)$?
- 4. What if we want a guarantee which is better than just "with high probability"?
- 5. What happens if we replace triangle with a different graph?
- 6. Do the triangles "bunch up" in specific parts of the graph?

We will see answers to some of these questions in future weeks.