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1 Erdős–Rényi random graphs

For most of the class, we will be concerned with the G(n, p) model of random graphs,
also known as Erdős–Rényi random graphs. In this model, there is a fixed vertex set
[n] = {1, . . . , n}, and each of the potential

(
n
2

)
edges is included with probability p

independently. When p = 1/2, this is the same as picking a uniformly random graph on
the vertex set [n].

Erdős and Rényi actually considered the related G(n,m) model, in which we choose
a random graph on the vertex set [n] with exactly m edges. The models G(n, p) and
G(n,m) have similar behavior, where m = p

(
n
2

)
is the expected number of edges in

G(n, p).

2 Monotone properties

Let c(p) be the probability that a random G(n, p) graph contains a triangle. This is an
example of a monotone property : if a graph contains a triangle, then it will still contain
a triangle if we add more edges to it.

We claim that c(p) is a continuous, strictly increasing function of p. To prove that
c(p) is increasing, we use the technique of coupling.

Lemma 1. If p ≤ q then c(p) ≤ c(q).

Proof 1. Sample G1 from the distribution G(n, p). For each edge absent from G1, add
it with probability r := q−p

1−p (independently), and call the resulting graph G2. The

probability that a specific edge belongs to G2 is p + (1 − p)r = q, and so G2 has the
distribution G(n, q).

The resulting distribution (G1, G2) on pairs of graphs is a coupling of the distributions
G(n, p) and G(n, q). This means that its marginals have these distributions. Furthermore,
the construction guarantees that G1 ⊆ G2 always.

We can now prove the lemma:

c(p) = Pr[G1 contains a triangle] ≤ Pr[G2 contains a triangle] = c(q).

Proof 2. Here is another way to construct the same coupling. Consider the complete
graph Kn. For each edge, choose a weight according to the uniform distribution on
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[0, 1]. Let Gp be the graph consisting of all edges whose weight is at most p, and define
Gq analogously. Then (Gp, Gq) is a coupling of G(n, p), G(n, q) such that Gp ⊆ Gq

always.

The fact that c(p) is continuous and strictly increasing follows from the fact that c(p)
is a polynomial.

Lemma 2. The function c(p) is a polynomial of degree at most
(
n
2

)
, and so is continuous

and strictly increasing.

Proof. Let G be the set of all graphs on [n] containing a triangle. For each G ∈ G, the

probability that G is sampled from G(n, p) is p|G|(1−p)(
n
2)−|G|, where |G| is the number of

edges in G; note that this is a polynomial in p. Therefore c(p) =
∑

G∈G p
|G|(1− p)(

n
2)−|G|

is a polynomial.
Since c(p) is a polynomial, it is continuous. Since it is increasing and nonconstant (as

c(0) = 0 and c(1) = 1), it must be strictly increasing.

We can define the critical probability of containing a triangle to be the probability p∗

such that c(p∗) = 1/2 (the value 1/2 here is arbitrary; any constant will do). How can
we determine p∗?

3 Appearance of triangles

Let us denote by X the number of triangles in a G(n, p) graph. Using linearity of
expectation, it is not difficult to calculate the expected number of triangles:

E[X] =

(
n

3

)
p3 ∼ (np)3

6
.

Here
(
n
3

)
is the number of potential triangles, and p3 is the probability that G(n, p)

contains a specific triangle.
This formula suggests that p∗ should be of order of magnitude 1/n, since when p �

1/n, the expected number of triangles is very small, and when p� 1/n, it is very large.
In order to show that this is indeed the case, we will need to use the first moment method
as well as the second moment method.

3.1 First moment method

Markov’s inequality implies that if E[X] is small, then it is unlikely that X 6= 0, since

Pr[X > 0] = Pr[X ≥ 1] ≤ E[X].

(In this particular case, the same bound also follows from the union bound.)
Using this, we immediately get that when p� 1/n, a G(n, p) graph typically doesn’t

contain any triangles.

Theorem 1. If p = o(1/n) then with high probability, G(n, p) contains no triangles.
(This means that PrG∼G(n,p)[G contains a triangle] = o(1).)
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3.2 Second moment method

Markov’s inequality only allows us to bound the probability that X is much larger than
its expectation. To bound the probability that X is much smaller than its expectation,
we use Chebyshev’s inequality:

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]] ≤ V[X]

E[X]2
.

Calculating V[X] is straightforward, if a bit tiring. Since V[X] = E[X2]− E[X]2 and
we already know E[X], it remains to compute E[X2]. We can write X as the sum of
indicator variables IS, where S goes over all subsets of [n] of size 3, and IS indicates that
the graph contains the triangle formed by S. Expanding E[X2], we get

E[X2] =
∑

S,T∈([n]
3 )

E[ISIT ] =
∑

S,T∈([n]
3 )

Pr[G contains 4S,4T ].

The probability that the graph contains both triangles supported on S and on T depends
on the total number of edges in both triangles:

• If S = T then the two triangles share all edges, and so the probability is p3. There
are

(
n
3

)
such pairs.

• If |S ∩ T | = 2 then the two triangles share one edge, and so the probability is p5.
There are 12

(
n
4

)
such pairs (together, the two triangles form a K4 with one missing

edge; we need to choose which edge is missing, and which of the two degree 2
vertices belongs to S).

• Otherwise, the two triangles might share a vertex, but they share no edge, and so
the probability is p6.

In total, we get

E[X2] =

(
n

3

)
p3 + 12

(
n

4

)
p5 +

((
n

3

)2

−
(
n

3

)
− 12

(
n

4

))
p6.

Therefore

V[X] =

(
n

3

)
(p3 − p6) + 12

(
n

4

)
(p5 − p6) = O(n3p3 + n4p5).

Since E[X] = Θ(n3p3), the quantity in Chebyshev’s inequality is

V[X]

E[X]2
=

O(n3p3 + n4p5)

Θ(n6p6)
= O

(
1

n3p3
+

1

n2p

)
.

Theorem 2. If p = ω(1/n), then with high probability G(n, p) contains a triangle.

Proof. If p = ω(1/n) then pn = ω(1), and so

V[X]

E[X]2
= O

(
1

(np)3
+

1

n(np)

)
=

1

ω(1)
+

1

nω(1)
= o(1).

Therefore, by Chebyshev’s inequality we get Pr[X = 0] = o(1).
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4 Where do we go from here?

Our investigation has so far led to interesting results, but leaves many questions open,
such as the following:

1. The theorems state what happens when p � 1/n and when p � 1/n, but leave
a gap in the middle. What happens when p = c/n, for constant c? In particular,
what is the probability that the graph contains a triangle? More generally, what is
the distribution of the number of triangles?

2. What is the approximate distribution of the number of triangles when p = ω(1/n)?
What is the probability that the number of triangles deviates significantly from the
average? What does the graph look like in the latter case?

3. What is the probability that the graph does contain a triangle when p = o(1/n)?

4. What if we want a guarantee which is better than just “with high probability”?

5. What happens if we replace triangle with a different graph?

6. Do the triangles “bunch up” in specific parts of the graph?

We will see answers to some of these questions in future weeks.
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