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1 Erdos—Rényi random graphs

For most of the class, we will be concerned with the G(n,p) model of random graphs,
also known as FErdés-Rényi random graphs. In this model, there is a fixed vertex set
n] = {1,...,n}, and each of the potential (;L) edges is included with probability p
independently. When p = 1/2, this is the same as picking a uniformly random graph on
the vertex set [n].

Erdés and Rényi actually considered the related G(n, m) model, in which we choose
a random graph on the vertex set [n] with exactly m edges. The models G(n,p) and
G(n,m) have similar behavior, where m = p(}) is the expected number of edges in

G(n,p).

2 Monotone properties

Let ¢(p) be the probability that a random G(n,p) graph contains a triangle. This is an
example of a monotone property: if a graph contains a triangle, then it will still contain
a triangle if we add more edges to it.

We claim that ¢(p) is a continuous, strictly increasing function of p. To prove that
¢(p) is increasing, we use the technique of coupling.

Lemma 1. If p < q then ¢(p) < c(q).

Proof 1. Sample G; from the distribution G(n,p). For each edge absent from Gy, add
it with probability r = {-£ (independently), and call the resulting graph Gs. The
probability that a specific edge belongs to Gs is p + (1 — p)r = ¢, and so G5 has the
distribution G(n, q).

The resulting distribution (G, G3) on pairs of graphs is a coupling of the distributions
G(n,p) and G(n, q). This means that its marginals have these distributions. Furthermore,
the construction guarantees that G; C G5 always.

We can now prove the lemma:
¢(p) = Pr[G; contains a triangle] < Pr[Gy contains a triangle] = ¢(q). O

Proof 2. Here is another way to construct the same coupling. Consider the complete
graph K,. For each edge, choose a weight according to the uniform distribution on



[0,1]. Let G}, be the graph consisting of all edges whose weight is at most p, and define
G, analogously. Then (G,,G,) is a coupling of G(n,p),G(n,q) such that G, C G,
always. O

The fact that ¢(p) is continuous and strictly increasing follows from the fact that ¢(p)
is a polynomial.

Lemma 2. The function c¢(p) is a polynomial of degree at most (g), and so is continuous
and strictly increasing.

Proof. Let G be the set of all graphs on [n] containing a triangle. For each G € G, the

probability that G is sampled from G'(n, p) is p!®!(1—p) (QL)_'G‘, where |G| is the number of
edges in G; note that this is a polynomial in p. Therefore c¢(p) = > 4 pl¢l(1 —p) (5)-1c1
is a polynomial.

Since ¢(p) is a polynomial, it is continuous. Since it is increasing and nonconstant (as
¢(0) =0 and ¢(1) = 1), it must be strictly increasing. O

We can define the critical probability of containing a triangle to be the probability p*
such that ¢(p*) = 1/2 (the value 1/2 here is arbitrary; any constant will do). How can
we determine p*?

3 Appearance of triangles

Let us denote by X the number of triangles in a G(n,p) graph. Using linearity of
expectation, it is not difficult to calculate the expected number of triangles:

E[X] = (Z)pg _ (np)?

Here (g) is the number of potential triangles, and p?® is the probability that G(n,p)
contains a specific triangle.

This formula suggests that p* should be of order of magnitude 1/n, since when p <
1/n, the expected number of triangles is very small, and when p > 1/n, it is very large.
In order to show that this is indeed the case, we will need to use the first moment method
as well as the second moment method.
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3.1 First moment method
Markov’s inequality implies that if E[X] is small, then it is unlikely that X # 0, since
Pr[X > 0] = Pr[X > 1] < E[X].

(In this particular case, the same bound also follows from the union bound.)
Using this, we immediately get that when p < 1/n, a G(n, p) graph typically doesn’t
contain any triangles.

Theorem 1. If p = o(1/n) then with high probability, G(n,p) contains no triangles.
(This means that Prgcmp)|G contains a triangle] = o(1).)
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3.2 Second moment method

Markov’s inequality only allows us to bound the probability that X is much larger than
its expectation. To bound the probability that X is much smaller than its expectation,
we use Chebyshev’s inequality:

VIX]
E[X]

Calculating V[X] is straightforward, if a bit tiring. Since V[X] = E[X?] — E[X]? and
we already know E[X], it remains to compute E[X?]. We can write X as the sum of
indicator variables Ig, where S goes over all subsets of [n] of size 3, and Ig indicates that
the graph contains the triangle formed by S. Expanding E[X?], we get

Pr[X = 0] < Pr[|X — E[X]| > E[X]] <

EX?]= > E[IsIy]= »_ Pr[G contains Ag, Ar].
s1e('y) sTe(')

The probability that the graph contains both triangles supported on S and on 1" depends
on the total number of edges in both triangles:

e If S =T then the two triangles share all edges, and so the probability is p®. There
are (3) such pairs.

e If [SNT| = 2 then the two triangles share one edge, and so the probability is p°.
There are 12(2) such pairs (together, the two triangles form a K4 with one missing
edge; we need to choose which edge is missing, and which of the two degree 2
vertices belongs to S).

e Otherwise, the two triangles might share a vertex, but they share no edge, and so
the probability is pS.

In total, we get

Therefore

VIX] = <n) (p* —p%) +12 (Z) (»° = 1°) = O(n’p’ + n'p”).

Since E[X] = O(n?p?), the quantity in Chebyshev’s inequality is

VX O(n’*p® +n'p°) 11
A )

]
2 n3p3 n_2p

Theorem 2. If p = w(1/n), then with high probability G(n,p) contains a triangle.
Proof. It p = w(1/n) then pn = w(1), and so

ViX] 1 1y 1 L
EWP‘Owa+mWQ‘wm+wmn‘<”

Therefore, by Chebyshev’s inequality we get Pr[X = 0] = o(1). O
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Where do we go from here?

Our investigation has so far led to interesting results, but leaves many questions open,
such as the following:

1.

The theorems state what happens when p < 1/n and when p > 1/n, but leave
a gap in the middle. What happens when p = ¢/n, for constant ¢? In particular,
what is the probability that the graph contains a triangle? More generally, what is
the distribution of the number of triangles?

. What is the approximate distribution of the number of triangles when p = w(1/n)?

What is the probability that the number of triangles deviates significantly from the
average? What does the graph look like in the latter case?

. What is the probability that the graph does contain a triangle when p = o(1/n)?
. What if we want a guarantee which is better than just “with high probability”?

. What happens if we replace triangle with a different graph?

Do the triangles “bunch up” in specific parts of the graph?

We will see answers to some of these questions in future weeks.



