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Question 1 (Alternative proof of zero-one law). The k-round Ehrenfeucht–Fräıssé game
is played on a pair of graphs (G1, G2) by two players, Spoiler and Duplicator. We require
both graphs to contain at least k vertices.

In the first round, Spoiler chooses a vertex on one of the graphs, and then Duplicator
chooses a vertex on the other graph. We let a1 be the vertex chosen in G1, and b1 be the
vertex chosen in G2.

In the second round, Spoiler again chooses a vertex on one of the graphs, and Du-
plicator chooses a vertex on the other graph. Both players are forced to choose vertices
not already chosen (different from a1, b1). We let a2, b2 be the vertices chosen in G1, G2

(respectively).
All subsequent rounds proceed in the same way. After k rounds, we end up with

k vertices a1, . . . , ak in G1 and k vertices b1, . . . , bk in G2. Duplicator’s goal is that the
following property is satisfied: for all i, j, there is an edge (ai, aj) in G1 iff there is an edge
(bi, bj) in G2. We say that Duplicator wins if Duplicator has a strategy which guarantees
that her goal is fulfilled.

For every first-order formula φ in the language of graphs, there is a constant k such
that if Duplicator wins (G1, G2) then G1 ⊢ φ (that is, φ is satisfied for G1) iff G2 ⊢ φ.

(a) Show that for each k there is a function e(n) = o(1) such that if G1 ∼ G(n1, 1/2)
and G2 ∼ G(n2, 1/2) then Duplicator wins (G1, G2) with probability at least 1 −
e(min(n1, n2)).

Answer. The argument is similar to the back-and-forth argument that we saw in
class. Suppose without loss of generality that at round ℓ, Spoiler chooses a vertex
aℓ from G1. Let A ⊆ [ℓ − 1] be the indices of vertices adjacent to aℓ, and let
B ⊆ [ℓ− 1] be the indices of vertices not adjacent to aℓ. Duplicator will attempt to
find a vertex bℓ in G2 which is adjacent to the vertices {bi : i ∈ A} and not adjacent
to the vertices {bj : j ∈ B}. If Duplicator is always successful, she wins the game.

Let n = min(n1, n2). The probability that a particular vertex in G2 satisfies the
conditions is 2−(ℓ−1), and so the probability that all remaining vertices do not satisfy
the condition is at most (1 − 21−ℓ)n−ℓ+1 ≤ e−(n−k)2−k

. Hence the probability that
Duplicator fails to find a proper vertex at any stage is at most

e(n) = ke−(n−k)2−k

.

It is easy to check that e(n) = o(1), completing the proof.
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(b) Show that for each φ there is a function e′(n) = o(1) such that for each n, either
Pr[G(n, 1/2) ⊢ φ] ≤ e′(n) or Pr[G(n, 1/2) ⊢ φ] ≥ 1− e′(n).

Answer. Let k be the constant such that if Duplicator wins (G1, G2) then G1 ⊢ φ
iff G2 ⊢ φ. Let pn = Pr[G(n, 1/2) ⊢ φ]. If G1, G2 ∼ G(n, 1/2), then according to
the previous item, with probability at least 1 − e(n) we have G1 ⊢ φ iff G2 ⊢ φ.
Since the probability of the latter event is by definition p2n + (1− pn)

2, we deduce

1− e(n) ≤ p2n + (1− pn)
2 = 2p2n − 2pn + 1.

Rearranging, this gives
2pn(1− pn) ≤ e(n).

If pn ≥ 1/2 then 2pn ≥ 1 and so 1− pn ≤ e(n), implying pn ≥ 1− e(n). Similarly,
if pn ≤ 1/2 then pn ≤ e(n). Hence we can take e′(n) = e(n).

(c) Show that for each φ, either Pr[G(n, 1/2) ⊢ φ] → 0 or Pr[G(n, 1/2) ⊢ φ] → 1.

Answer. We use the notation of the preceding item. In that item, we showed that
for each n, either pn ≤ e(n) or pn ≥ 1− e(n). Let N be such that for each n ≥ N ,
it holds that e(n) < 1/3; such an N exists since e(n) → 0.

Suppose that pn ≤ e(n) and pm ≥ 1 − e(m) for some N ≤ n,m. If we repeat the
argument of the preceding item with G1 ∼ G(n, 1/2) and G2 ∼ G(m, 1/2), then we
get

1− e(min(n,m)) ≤ pnpm + (1− pn)(1− pm) ≤ e(n) + e(m),

contradicting e(n), e(m) < 1/3.

It follows that either pn ≤ e(n) for all n ≥ N or pn ≥ 1 − e(n) for all n ≥ N . In
the former case, Pr[G(n, 1/2) ⊢ φ] → 0, and in the latter case, Pr[G(n, 1/2) ⊢ φ] →
1.

Question 2 (Failure of zero-one law for colored graphs). A colored graph is a graph in
which each vertex v has a color c(v) ∈ N. Given a distribution π on N, let Gπ(n, 1/2) be
the colored graph obtained by coloring each vertex in G(n, 1/2) according to π indepen-
dently.

We say that two colored graphs G1, G2 are isomorphic if there is an isomorphism f
of graphs between G1 and G2 that respects the coloring, that is, c(v) = c(f(v)).

(a) Show that if G1, G2 ∼ Gπ(ℵ0, 1/2) then almost surely, G1 and G2 are isomorphic
(as colored graphs).

Answer. The argument is very similar to the proof given in class, and so will only be
sketched. Let vi be an enumeration of all vertices in both graphs. We will construct
partial isomorphisms ∅ = f0 ⊆ f1 ⊆ · · · ⊆ fi ⊆ · · · , with the promise that v1, . . . , vi
are in the support of fi. The function f =

󰁖
i fi is then an isomorphism between

G1 and G2.
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The base case is f0 = ∅. At step i, we have to ensure that vi is in the support of
fi. If vi is already in the support of fi−1, then we can take fi = fi−1. Otherwise,
suppose that c(vi) = c, so that π(c) > 0. A given vertex on the other graph can be
matched to vi with probability at least 2−(i−1)π(c) > 0. Since there are infinitely
many potential vertices, almost surely one of them can be matched to vi, thus
forming fi.

The failure probability at each step is zero. Since there are only countably many
steps, the total failure probability is also zero. In other words, the construction
succeeds almost surely.

(b) Let π have a Poisson distribution with expectation 1: Pr[π = k] = e−1/k!. Show
that

Pr[Gπ(k!, 1/2) contains a color appearing exactly once] → e−1−e−1

.

Answer. First, note that

Pr[π > k] = e−1

∞󰁛

ℓ=k+1

1

ℓ!
=

e−1

(k + 1)!

∞󰁛

ℓ=0

1

(k + 1) · · · (k + 1 + ℓ)
≤

e−1

(k + 1)!

∞󰁛

ℓ=0

1

ℓ!
=

1

(k + 1)!
.

It follows that the probability that any vertex has a color other than 0, . . . , k is at
most k!/(k + 1)! = 1/(k + 1) = o(1).

Let ℓ ∈ {0, . . . , k − 1}. The probability that at most one vertex is colored ℓ is at
most

󰀕
1− e−1

ℓ!

󰀖k!

+ k!
e−1

ℓ!

󰀕
1− e−1

ℓ!

󰀖k!−1

≤ e−e−1k!/ℓ! + (1− e−1)−1e−1k!

ℓ!
e−e−1k!/ℓ! =

O(ke−k/e).

Since k2e−k/e = o(1), we conclude that with probability 1 − o(1), all colors in
{0, . . . , k − 1} appear at least twice.

Finally, the expected number of vertices colored k is e−1, and so, as shown in class,
the distribution of the number of vertices colored k tends to a Poisson distribution
with expectation e−1. Hence the probability that exactly one vertex is colored k
tends to e−1−e−1

.

(c) The first-order language of colored graphs is defined similarly to the first-order
language of graphs, together with the additional basic predicate c(x) = c(y). Show
that the zero-one law doesn’t hold for the first-order language of colored graphs
with respect to the sequence Gπ, where π is the distribution from the preceding
item.
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Answer. Consider the following sentence:

φ = ∃x∀y(c(x) = c(y)) ⇔ (x = y).

The sentence expresses the fact that there exists a color which appears exactly once.
As the previous item shows, Pr[Gπ(k!, 1/2)] tends to a limit different from 0, 1.

Question 3 (Quasirandom permutations1). The symmetric group Sn consists of all per-
mutations of [n] := {1, . . . , n}. We think of permutations as sequences of length n.

For a permutation π ∈ Sn and a “pattern” τ ∈ Sk, the density t(π, τ) is the prob-
ability that if we sample k distinct indices i1, . . . , ik ∈ [n] then the relative order of
π(i1), . . . , π(ik) is the same as τ . For example,

t(13245, 123) =
7

10
, t(13245, 213) =

2

10
, t(13245, 132) =

1

10
,

since 134, 135, 124, 125, 145, 345, 245 have relative order 123; 324, 325 have relative order
213; and 132 has relative order 132.

For each n, let πn ∈ Sn. The sequence 󰂓π is k-quasirandom if for all τ ∈ Sk,

t(πn, τ) →
1

k!
.

The sequence 󰂓π is quasirandom if it is k-quasirandom for each k. As an example, if πn is
chosen uniformly random permutation for each n, then 󰂓π is quasirandom almost surely.

(a) Show that if 󰂓π is (k + 1)-quasirandom then it is k-quasirandom.

Answer. We can sample a k-tuple of indices by first sampling a (k + 1)-tuple of
indices and then removing a random index. This implies that if τ ∈ Sk then

t(π, τ) =
󰁛

σ∈Sk+1

t(π, σ)t(σ, τ).

If we choose σ at random from Sk+1 then Eσ[t(σ, τ))] = 1/k!. Hence

t(πn, τ) =
󰁛

σ∈Sk+1

t(πn, σ)t(σ, τ) →
󰁛

σ∈Sk+1

1

(k + 1)!
t(σ, τ) =

1

k!
.

(b) Give an example of a 2-quasirandom sequence which is not 3-quasirandom.2

1After Král’ and Pikhurko, Quasirandom permutations are characterized by 4-point densities, GAFA
vol. 23, pp. 570–579, 2013.

2There are also examples of 3-quasirandom sequences which are not 4-quasirandom, but they are
more complicated. One example is described in the paper of Král’ and Pikhurko mentioned above, and
another one in Cooper and Petrarca, Symmetric and asymptotically symmetric permutations.

4

https://arxiv.org/pdf/1205.3074.pdf
https://arxiv.org/pdf/0801.4181.pdf


Answer. Let πn be the following permutation:

⌊n
2
⌋+ 1, ⌊n

2
⌋+ 1, n, 1, 2, . . . , ⌊n

2
⌋.

This permutation is composed of two halves, of sizes ⌈n
2
⌉, ⌊n

2
⌋. If we choose two

indices i < j at random, they fall on the same half with probability 1/2±O(1/n) and
on different halves with probability 1/2±O(1/n). In the former case, π(i) < π(j),
and in the latter case, π(i) > π(j). Therefore the sequence is 2-quasirandom.

In contrast, t(πn, 132) = t(πn, 213) = t(πn, 321) = 0, and so the sequence is not
3-quasirandom.

A permuton is a probability distribution µ over [0, 1]2 such that if (x, y) ∼ µ then the
marginal distributions of x and y are uniform over [0, 1]. Given a permuton µ, for each n
we can draw a random permutation π ∼ P (n, µ) as follows. Let (x1, y1), . . . , (xn, yn) be
n independent samples of µ. We arrange the xi in order, and let π consist of the relative
order of the yi. (Since the marginal distributions are uniform over [0, 1], almost surely all
xi and all yi are distinct.) For example, if µ is the uniform distribution over [0, 1]2 then
P (n, µ) is a uniformly random permutation in Sn.

For τ ∈ Sk, let t(µ, τ) be the probability that if we take k samples (xi, yi) from µ and
arrange the xi in order, then the relative order of the yi is τ .

(c) Show that Eπ∼P (n,µ)[t(π, τ)] = t(µ, τ). (In fact, more is true: if πn ∼ P (n, µ) for
each n independently, then almost surely t(π, τ) → t(µ, τ).)

Answer. We can choose π together with a random k-subset of π by drawing n
samples (xi, yi) from µ, choosing k of them, arranging the xi in order, and letting π
be the relative order of the yi. The expected value of t(π, τ) is then the probability
that the relative order of the chosen samples is τ . But this process is the same as
the one used to define t(µ, τ).

A permuton µ is k-quasirandom if for each τ ∈ Sk, t(µ, τ) = 1/k!. A permuton µ is
quasirandom if it is k-quasirandom for all k. As in the case of individual distributions,
it is not hard to show that a (k + 1)-quasirandom permuton is also k-quasirandom.
Furthermore, if µ is a (k-)quasirandom permuton and for each n we sample πn ∼ P (n, µ),
then almost surely 󰂓π is (k-)quasirandom (where we think of πn as a constant random
variable).

In the rest of this exercise, we show that if µ is a 4-quasirandom permuton, then it is
in fact quasirandom (the constant 4 is optimal). This implies that if 󰂓π is a 4-quasirandom
sequence of random permutations, then it is in fact quasirandom.

(d) Let Fµ(X, Y ) = Pr(x,y)∼µ[x ≤ X, y ≤ Y ] be the CDF of µ. Show that

E
(X,Y )∼µ

[Fµ(X, Y )2] = Pr
(xi,yi)∼µ

[x1, x2 ≤ x3; y1, y2 ≤ y3].
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Answer. For fixed X, Y ,

Fµ(X, Y )2 = Pr
(x,y)∼µ

[x ≤ X, y ≤ Y ]2 =

Pr
(x1,y1)∼µ

[x1 ≤ X, y1 ≤ Y ] Pr
(x2,y2)∼µ

[x2 ≤ X, y2 ≤ Y ] = Pr
(x1,y1)∼µ
(x2,y2)∼µ

[x1, x2 ≤ X, y1, y2 ≤ Y ].

The required formula follows by taking expectation over (X, Y ) ∼ µ.

(e) Deduce that E(X,Y )∼µ[Fµ(X, Y )2] = 1/9, using only the fact that µ is 3-quasirandom.

Answer. We can write

Pr
(xi,yi)∼µ

[x1, x2 ≤ x3, y1, y2 ≤ y3] =

1

6
Pr

(xi,yi)∼µ
[y1, y2 ≤ y3 | x1 ≤ x2 ≤ x3] +

1

6
Pr

(xi,yi)∼µ
[y2, y1 ≤ y3 | x2 ≤ x1 ≤ x3],

since the probability that x1, x2, x3 have any particular order is 1/6. Since µ is
3-quasirandom, each of the probabilities above is 2/6 = 1/3, for a total of 1/6 ·
1/3 + 1/6 · 1/3 = 1/9.

(f) Show that

E
(X,Y )∼µ

[Fµ(X, Y )XY ] = Pr
(xi,yi)∼µ

[x1, x2 ≤ x4; y1, y3 ≤ y4].

Hint: if (x, y) ∼ µ then since the marginals x and y are uniform over [0, 1], then
Pr[x ≤ X] = X and Pr[y ≤ Y ] = Y .

Answer. For fixed X, Y ,

Fµ(X, Y )XY = Pr
(x1,y1)∼µ

[x1 ≤ X, y1 ≤ X] Pr
(x2,y2)∼µ

[x2 ≤ X] Pr
(x3,y3)∼µ

[y3 ≤ Y ] =

Pr
(xi,yi)∼µ

[x1, x2 ≤ X, y1, y3 ≤ Y ].

The required formula follows by taking expectation over (X, Y ) ∼ µ.

(g) Deduce that E(X,Y )∼µ[Fµ(X, Y )XY ] = 1/9, using the fact that µ is 4-quasirandom.

Answer. We use the formula from the preceding item. The probability that x1, x2 ≤
x4 is 1/3. Fixing any order of the xi, the relative order of the yi is uniform, since
µ is 4-quasirandom. Hence the probability that y1, y3 ≤ y4 is 1/3. In total, the
probability is 1/3 · 1/3 = 1/9.
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(h) Let λ be the permuton corresponding to two independent samples of the uniform
distribution over [0, 1]. Show that λ is quasirandom and Fλ(X, Y ) = XY .

Answer. Let (x1, y1), . . . , (xn, yn) be independent samples from λ. The relative
order of the yi after ordering the xi has the same distribution as the relative order
of the yi conditioned on x1 < x2 < · · · < xn. Since the yi are independent from the
xi, this relative order is uniformly random. This implies that λ is quasirandom.

If z is sampled from the uniform distribution over [0, 1] then Pr[z ≤ Z] = Z, and
this implies the formula Fλ(X, Y ) = XY .

(i) Show that

E
(Z,W )∼λ

[Fµ(Z,W )2] = Pr
(Xi,Yi)∼µ

[x1, x2 ≤ x3; y1, y2 ≤ y4].

Hint: use two samples of µ to generate one sample of λ.

Answer. If (x3, y3), (x4, y4) ∼ µ then (x3, y4) ∼ λ. Hence

E
(Z,W )∼λ

[Fµ(Z,W )2] = E
(x3,y3)∼µ
(x4,y4)∼µ

[F (x3, y4)
2].

For fixed x3, y4,

Fµ(x3, y4)
2 = E

(x1,y1)∼µ
(x2,y2)∼µ

[x1, x2 ≤ x3; y1, y2 ≤ y4].

The required formula follows by taking expectation over (x3, y3), (x4, y4).

(j) Deduce that E(Z,W )∼λ[Fµ(Z,W )2] = 1/9, using the fact that µ is 4-quasirandom.

Answer. The probability that x1, x2 ≤ x3 is 1/3. Since µ is 4-quasirandom, condi-
tioned on any fixed ordering of the xi, the probability that y1, y2 ≤ y4 is 1/3. In
total, the probability is 1/3 · 1/3 = 1/9.

(k) Show that

E
(Z,W )∼λ

[Fµ(Z,W )ZW ] = Pr
(x,y)∼µ
(zi,wi)∼λ

[x, z1 ≤ z2; y, w1 ≤ w2] =
1

4
E

(X,Y )∼µ
[(1−X2)(1−Y 2)].

Answer. Let (x, y) ∼ µ and (z1, w1), (z2, w2) ∼ λ. Then Fµ(z2, w2) = Pr[x ≤ z2, y ≤
w2] and z2w2 = Pr[z1 ≤ z2, w1 ≤ w2]. This explains the first equality.

For the second equality, note that for fixed z,

Pr[z, z1 ≤ z2] = Pr[z2 ≥ z]E
z2
[Pr[z1 ≤ z2 | z2 ≥ z]] = (1− z)E

z2
[z2 | z2 ≥ z] =

1− z2

2
,

since E[z2 | z2 ≥ z] = 1+z
2
. Similarly, Pr[w,w1 ≤ w2] =

1−w2

2
. Taking expectation

over (x, y) ∼ µ, we obtain the second equality.
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(l) Show that

A := E
(X,Y )∼µ

[Fµ(X, Y )XY ]2 =
1

81
.

Answer. This follows directly from (g).

(m) Show that

B := E
(X,Y )∼µ

[Fµ(X, Y )2] E
(X,Y )∼µ

[X2Y 2] =
4

9
E

(Z,W )∼λ
[Fµ(Z,W )ZW ]− 1

27
.

Hint: if (X, Y ) ∼ µ then E[X2] = E[Y 2] = 1/3 since X, Y are individually uniform
over [0, 1].

Answer. The first factor is 1/9 by (e). For the second factor, use (k) to obtain

E
(Z,W )∼λ

[Fµ(Z,W )ZW ] =
1

4
− 1

4
E

(X,Y )∼µ
[X2]− 1

4
E

(X,Y )∼µ
[Y 2] +

1

4
E

(X,Y )∼µ
[X2Y 2] =

1

12
+

1

4
E

(X,Y )∼µ
[X2Y 2],

using the hint. Rearranging,

E
(X,Y )∼µ

[X2Y 2] = 4 E
(Z,W )∼λ

[Fµ(Z,W )ZW ]− 1

3
.

Multiplying the two factors, we obtain the stated formula.

(n) Show that

C :=
4

9

󰁵
E

(Z,W )∼λ
[Fµ(Z,W )2]

󰁵
E

(Z,W )∼λ
[Z2W 2]− 1

27
=

1

81
.

Answer. The first expectation equals 1/9 due to (j). The same holds for the second
expectation, since ZW = Fλ(Z,W ) and λ is quasirandom. Altogether, we get

C =
4

9
· 1
9
− 1

27
=

4− 3

81
=

1

81
.

(o) Explain why always A ≤ B ≤ C.

Answer. Both follow from the Cauchy–Schwarz inequality.

(p) Since A = C = 1/81, both inequalities are tight. Show that this implies that
Fµ(XY ) = XY and so µ = λ is quasirandom.
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Answer. For the Cauchy–Schwarz inequality E[fg]2 ≤ E[f 2]E[g2] to be tight, we
need f ∝ g. In our case, this means that we need

Fµ(X, Y ) ∝ XY.

Clearly Fµ(1, 1) = 1, and so the constant of proportionality is 1, that is, Fµ(X, Y ) =
XY = Fλ(X, Y ). Since this holds for all X, Y , we conclude that µ = λ (up to
measure zero), and so µ is quasirandom.

Question 4 (Dijkstra’s algorithm on the uniform weight distribution). In this question
we will generalize the analysis of Dijkstra’s algorithm from exponential weights to uniform
weights. We will use U([0, 1]) to denote the uniform distribution over [0, 1], and Exp(1)
to denote the unit mean exponential distribution, given by Pr[Exp(1) ≥ t] = e−t.

(a) Let X ∼ U([0, 1]) and Y = log 1
1−X

. Show that Y ∼ Exp(1).

Answer. Clearly Y ≥ 0. Since x 󰀁→ log 1
1−x

is monotone increasing with inverse
y 󰀁→ 1− e−y,

Pr[Y ≥ t] = Pr

󰀗
log

1

1−X
≥ t

󰀘
= Pr[X ≥ 1− e−t] = e−t.

(b) Consider the coupling (X, Y ) from the preceding item. Show that

Y (1− Y/2) ≤ X ≤ Y.

Answer. Since X = 1− e−Y , this follows from Y − Y 2/2 ≤ X ≤ Y .

(c) Suppose that w1, w2 are two sets of edge weights that satisfy w1(e) ≤ Cw2(e) for
all edges e. Let d1(x, y), d2(x, y) be the shortest distance from x to y according to
the two sets of edge weights. Show that d1(x, y) ≤ Cd2(x, y).

Answer. Consider any shortest path from x to y according to w2. The cost of this
path according to w1 is at most Cd2(x, y).

(d) For a distribution D supported on R+, let TD be the expected distance from vertex 1
to the farthest vertex, when weights are chosen according to D independently. Show
that

TU([0,1]) ≤ TExp(1).

Answer. Using the coupling described above, choose two sets of weights w1, w2 such
that the weights in w1 have distribution U([0, 1]), the weights in w2 have distribution
Exp(1), and w1 ≤ w2 pointwise. Then d1(x, y) ≤ d2(x, y) for all x, y. This implies
that the distance from vertex 1 to the farthest vertex under w1 is at most the same
under w2. The item follows by taking expectations.
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Proving a bound in the other direction is more tricky. For each edge e, we construct
three different weights w1(e), w2(e), w3(e) as follows. We choose w1(e) ∼ U([0, 1]) and let
w2(e) = log 1

1−w1(e)
, so that w2(e) ∼ Exp(1). For an 󰂃 ∈ (0, 1/2) to be determined, we

choose w3(e) = max(w1(e), (1− 󰂃)w2(e)).

(e) We showed in class that TExp(1) ∼ 2 logn
n

. Let δ = ω
󰀃
logn
n

󰀄
. Show that with high

probability, the shortest path tree for vertex 1 under edge weights w1 only contains
edges of weight at most δ.

Answer. With high probability, the distance from vertex 1 to the farthest vertex
under w2 is at most δ. Hence the same holds under w1. In particular, the shortest
path tree for vertex 1 only contains edges whose weight is at most δ.

(f) Show that if 󰂃 = ω
󰀃
logn
n

󰀄
then with high probability, the shortest path trees for

vertex 1 under w1 and under w3 are identical.

Answer. According to the preceding item, with high probability the shortest path
tree for vertex 1 under w1 contains edges of weight at most 󰂃.

If the shortest path trees are not identical, then since w1(e) ≤ w3(e), the shortest
path tree under w1 must contain an edge e such that w1(e) < (1− 󰂃)w2(e). In view
of item (b), this implies that w2(e) < 2󰂃, and so w1(e) = 1− e−w2(e) > 1− e−2󰂃 > 󰂃
(since 2󰂃 < 1). We conclude that the shortest path trees are identical with high
probability.

(g) Let τ1, τ2, τ3 be the distances from vertex 1 to the farthest vertex under w1, w2, w3,
respectively. We showed in class that V[τ2] = O(1/n2). Using Cauchy–Schwarz,
show that if δ = ω

󰀃
logn
n

󰀄
then

E[τ21τ2>δ] = o(E[τ2]).

(Here 1τ2>δ is the indicator variable for the event τ2 > δ.)

Answer. Since V[τ2] = O(1/n2), it follows that E[τ 22 ] ≤ (1 + o(1))E[τ2]2. Hence

E[τ21τ2>δ] ≤
󰁴

E[τ 22 ] ·
󰁳

Pr[τ2 > δ] ≤ (1 + o(1))E[τ2] · o(1) = o(E[τ2]).

(h) Show that if 󰂃 = ω
󰀃
logn
n

󰀄
then TU([0,1]) ≥ (1 − 󰂃 − o(1))TExp(1), and conclude that

TU([0,1]) ∼ 2 logn
n

.

Answer. We know that Pr[τ2 ≤ 󰂃] = 1 − o(1), and given that event, τ1 = τ3 ≥
(1− 󰂃)τ2 (see the proof of item (f)). Therefore

TU([0,1]) = E[τ1] ≥ Pr[τ2 ≤ 󰂃]E[τ1 | τ2 ≤ 󰂃] ≥ (1− 󰂃) Pr[τ2 ≤ 󰂃]E[τ2 | τ2 ≤ 󰂃].

Now

Pr[τ2 ≤ 󰂃]E[τ2 | τ2 ≤ 󰂃] = E[τ2 · 1τ2≤󰂃] = E[τ2]− E[τ2 · 1τ2>󰂃] = (1− o(1))E[τ2],
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using the preceding item. In total,

TU([0,1]) ≥ (1− 󰂃− o(1))TExp(1).

Choosing 󰂃 = o(1), for example 󰂃 = 1/
√
n, we deduce that TU([0,1]) ≥ (1 −

o(1))TExp(1). Since also TU([0,1]) ≤ TExp(1), we conclude that TU([0,1]) ∼ TExp(1).
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