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Question 1. Let Xk be the number of k-cliques in G(n, 1/2). Recall that

Nk := E[Xk] =

(
n

k

)
2−(k

2)

and
E[X2

k ]

E[Xk]2
=

k∑
`=0

(
k
`

)(
n−k
k−`

)(
n
k

) 2(`
2) =:

k∑
`=0

J`.

Let k0 be the maximal k such that Nk ≥ 1, and recall that k0 = 2 log2 n− 2 log2 log2 n+
O(1). The goal of this exercise is to show that with high probability, G(n, 1/2) contains
a k-clique, for k = k0 − 1.

(a) Calculate J`+1/J`.

Answer. We have

J`+1

J`
=

(
k
`+1

)(
k
`

) ( n−k
k−`−1

)(
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k−`

) 2(`+1
2 )−(`
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2`.

(b) Calculate (J`+2/J`+1)/(J`+1/J`).

Answer. We have

J`+2

J`+1

/
J`+1

J`
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(k − `− 1)2

(k − `)2
· `+ 1

`+ 2
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)2(
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`+ 2

)(
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)
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(c) Show that there exists N1 such that if n ≥ N1 and 0 ≤ ` ≤ 1
2

log2 n then J`+1 < J`.

Answer. If ` ≤ 1
2

log2 n then

J`+1

J`
≤ k2

n− 2k

√
n = O

(
log2 n√

n

)
.

Hence for large enough n, J`+1/J` < 1.
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(d) Show that there exists N2 such that if n ≥ N2 and k > ` ≥ 3
2

log2 n then J`+1 > J`.

Answer. If ` ≥ 3
2

log2 n then

J`+1

J`
≥ 1

k(n− k)
n3/2 = Ω

( √
n

log n

)
.

Hence for large enough n, J`+1/J` > 1.

(e) Show that there exists N3 such that if n ≥ N3 then the sequence J`+1/J` is increasing
for 1

2
log2 n ≤ ` ≤ 3

2
log2 n.

Answer. If 1
2

log2 n ≤ ` ≤ 3
2

log2 n then

J`+2

J`+1

/
J`+1

J`
≥(

1− 1

(1− o(1))2 log2 n− 3
2

log2 n

)2(
1− 1

1
2

log2 n+ 2

)(
1− 1

n−O(log n)

)
· 2 =

2− o(1).

Hence for large enough n, the double ratio is strictly larger than 1.

(f) Deduce that forN ≥ max(N1, N2, N3) the sequence J0, . . . , Jk is unimodal (decreasing
and then increasing, with perhaps two identical values at the middle).

Answer. Suppose that N ≥ max(N1, N2, N3), and let ρ` = J`+1/J`. The foregoing
shows that ρ0, . . . , ρ 1

2
log2 n

< 1, ρ 3
2
log2 n

, . . . , ρk−1 > 1, and the sequence ρ 1
2
log2 n

, . . . , ρ 3
2
log2 n

is increasing. This means that for some 1
2

log2 n ≤ `0 <
3
2

log2 n, it holds that ρ` ≤ 1
if ` ≤ `0 while ρ` ≥ 1 if ` > `0, which is what we wanted to show.

(g) Deduce that for N ≥ max(N1, N2, N3) the maximum of J1, . . . , Jk is attained at one
of the endpoints.

Answer. Suppose that N ≥ max(N1, N2, N3). Since J0, . . . , Jk is unimodal, the max-
imum of any subsequence is attained at an endpoint.

(h) Conclude that E[X2
k ]/E[Xk]

2 = 1 + o(1), and so with high probability G(n, 1/2)
contains a k-clique.

Answer. We can assume that N ≥ max(N1, N2, N3). In the lecture notes, we have
shown that J1, Jk = o(1/ log n). Therefore J1 + · · ·+ Jk = o(1). Since J0 = 1− o(1),
it follows that J0 + · · ·+ Jk = 1 + o(1).

Question 2. In this exercise, we will empirically explore algorithms for finding cliques
in G(n, 1/2).
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(a) Consider the heuristic which constructs a clique by iteratively picking an arbitrary
vertex which is connected to all vertices chosen so far. How large a clique does this
heuristic find, when n = 1000?

Answer. I get roughly 9.7 on average, with a standard deviation of roughly 0.76. The
largest clique found in 105 experiments was 14, and the smallest 7.

(b) Modify this heuristic by always picking a vertex of maximal degree. Does this improve
on the original heuristic when n = 1000?

Answer. I get roughly 11.3 on average, with a standard deviation of 3.49. The largest
clique found in 105 experiments was 26, and the smallest 7.

(c) Optional: Come up with a better heuristic.

In both cases, I suggest performing at least 104 experiments. In each experiment, generate
a G(n, 1/2) random graph, run the heuristic, and record the result. After running all
experiments, report the average, using two significant digits.

Due to speed considerations, I recommend using a compiled language like C/C++/Java
rather than an interepreted language such as Python/Matlab.

Note. Both experiments were run on the same graphs. C code is attached in the appendix.

Question 3. Let pn,k be the probability that the heuristic in Question 2(a) constructs a
clique of size k when run on G(n, 1/2).

(a) Write a recurrence relation for pn,k.

Answer. The base case is p0,0 = 1 and p0,k = 0 for k 6= 0. There are two ways to get
a clique of size k at time n: either we had a clique of size k at time n−1 and the new
vertex was not connected to the k clique vertices (which happens with probability
1 − 2−k), or we had a clique of size k − 1 at time n − 1 and the new vertex was
connected to the k−1 clique vertices (which happens with probability 2−(k−1)). This
leads to the recurrence

pn,k = (1− 2−k)pn−1,k + 2−(k−1)pn−1,k−1.

(b) Compute the expected size of the clique when n = 1000 exactly (but display the
result as a decimal). You can use a computer algebra system such as Mathematica,
Maple or Sage, or a library such as libgmp, which supports multi-precision integer
or floating point arithmetic.

Answer. The expected number of vertices in the clique is 9.69399833091716, and the
standard deviation is 0.760935117399371.

Here is sample code in Sage:
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def d i s t r i b u t i o n (n ) :
p = [ 1 ]
for m in range (1 , n+1):

p = [ 0 ] + [ ( 1 − 2ˆ(−k ) ) ∗ p [ k ] + 2ˆ(−(k−1)) ∗ p [ k−1] for k in range (1 ,m) ] + [ p [m−1] ∗ 2ˆ(−(m−1)) ]
return p

RR(sum(p ∗ x for (p , x ) in enumerate ( d i s t r i b u t i o n ( 1000 ) ) ) )

Question 4 (Bonus). Let H := .−. In the last assignment we calculated the probability
that G(n, c/n) contains no copy of H. Now we calculate the entire distribution:

pk := lim
n→∞

Pr[G(n, c/n) contains exactly k copies of H].

Say that a triangle has type t = (a, b, c) if 0 ≤ a ≤ b ≤ c and the degrees of vertices
in the triangle are 2 + a, 2 + b, 2 + c (that is, the triangle has a edges dangling from one
vertex, b edges from another, and c from the remaining vertex). Let |t| = a+ b+ c.

Fix an arbitrary ordering on types. For a vector τ = (t1, . . . , tm) of non-decreasing
types, define

qτ = lim
n→∞

Pr[G(n, c/n) contains exactly m triangles, of types t1, . . . , tm].

Let |τ | =
∑m

i=1 |ti|.

(a) Show that with high probability, any two copies of H in G(n, c/n) are either disjoint
or share a triangle.

Answer. Let H1, H2 be two non-vertex-disjoint copies of H, which intersect at a
subgraph K. The density of H1 ∪H2 is

e(H1) + e(H2)− e(K)

v(H1) + v(H2)− v(K)
=

8− d(K)v(K)

8− v(K)
,

where d(K) = e(K)/v(K). If d(K) < 1 then the density of H1 ∪H2 is larger than 1,
and so with high probability it doesn’t appear inG(n, c/n). The only proper subgraph
K of H with d(K) ≥ 1 is the triangle.

(b) Show that

pk =
∑
|τ |=k

qτ .

(Hint: use part (a) and modify the argument of Question 3 in Assignment 1.)

Answer. For every τ such that |τ | = k, if G(n, c/n) contains exactly the triangles
described by τ , then it has exactly k copies of H. Furthermore, these events are
disjoint for different τ . This shows that for every finite collection T of such τ ,

pk ≥
∑
τ∈T

qτ .

This shows, in particular, that qk :=
∑
|τ |=k qτ converges. For every ε > 0 we can

find a finite set T such that
∑

τ∈T qτ ≥ qk − ε, and so for every ε > 0, pk ≥ qk − ε. It
follows that pk ≥ qk.
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In the other direction, let Tm be the set of all vectors τ such that |τ | = k and τ
contains at most m types; note that Tm is finite. If G(n, c/n) contains exactly k
copies of H then it either contains two non-vertex-disjoint copies of H which don’t
intersect in a triangle (which happens with probability o(1)), or more than m triangles
(which happens with some limiting probability εm), or conforms to one of the vectors
in Tm. Hence

pk ≤
∑
τ∈Tm

qτ + εm.

In the previous assignment we showed that εm → 0. Since
∑

τ∈Tm qτ → qk, it follows
that pk ≤ qk.

(c) Calculate qτ .

Answer. Let s1 ≺ · · · ≺ s` be the different types appearing in τ , say si appears ri
times. The number of choices for the triangles (with ordered vertices) is

∼ n3
∑

i ri∏
i ri!

.

For a triangle of type si = (ai, bi, ci), let σi = 1 if all of ai, bi, ci are different, σi = 2 if
two are identical, and σi = 3 if all are identical. The number of choices for the edges
emanating from the triangles is

∼
∏
i

(nai+bi+ci/σi)
ri .

The probability for this particular choice is

∼ (c/n)
∑

i(3+ai+bi+ci)ri ·
(

1− c

n

)3n∑
i ri · e−c3/6 ∼ (c/n)

∑
i(3+ai+bi+ci)rie−3c

∑
i ri−c3/6.

In total,

qτ =
c3

∑
i ri∏

i ri!
·
∏
i

(e−3c/σi)
ri · e−c3/6 =

∏
i

(c3e−3c/σi)
ri

ri!
· e−c3/6.

(d) Let τ be a vector not including any isolated triangles. Calculate zτ , which is the sum
of qτ ′ over all vectors τ ′ obtained from τ by adding an arbitrary number of isolated
triangles.

Answer. Using the notation of the previous item, if we add k isolated triangles then
there is an additional factor of

(c3e−3c/6)k

k!
.

Summing this over all k, we obtain

ec
3e−3c/6.

Therefore

zτ =
c3

∑
i ri∏

i ri!
·
∏
i

(e−3c/σi)
ri · e−c3/6 =

∏
i

(c3e−3c/σi)
ri

ri!
· e−(1−e−3c)c3/6.
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(e) Calculate p0, p1, p2.

Answer. Let z = e−(1−e
−3c)c3/6. Then

z(0,0,1) =
c3e−3c

2
· z,

z(0,0,1),(0,0,1) =
c6e−6c

8
· z,

z(0,0,2) =
c6e−6c

2
· z.

Therefore

p0 = e−(1−e
−3c)c3/6,

p1 = e−(1−e
−3c)c3/6 · 1

2
c3e−3c,

p2 = e−(1−e
−3c)c3/6 · 5

8
(c3e−3c)2.
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Sample code for Question 2.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>

#define MAXN (1000)

int graph [MAXN] [MAXN] = {0} ;

void randomize ( int n) {
for ( int i = 0 ; i < n ; i++) {

graph [ i ] [ i ] = 0 ;
for ( int j = 0 ; j < i ; j++)

graph [ i ] [ j ] = graph [ j ] [ i ] = random ( ) & 1 ;
}

}

int c l i q u e [MAXN] ;

int random cl iquer ( int n) {
int nc l i que = 0 , v = 0 , i ;

c l i q u e [ n c l i que++] = v++;

while ( v < n) {
for ( i = 0 ; i < nc l i que ; i++)

i f ( graph [ i ] [ v ] == 0)
break ;

i f ( i == nc l i que )
c l i q u e [ n c l i que++] = v++;

else
v++;

}

return nc l i que ;
}

int degree [MAXN] ;

int g r e e dy c l i q u e r ( int n) {
int nc l i que = 0 ;

for ( int i = 0 ; i < n ; i++) {
degree [ i ] = 0 ;
for ( int j = 0 ; j < n ; j++)

degree [ i ] += graph [ i ] [ j ] ;
}

while ( n c l i que < n) {
int best = −1, bestv = −1;
for ( int v = 0 ; v < n ; v++) {

int i ;
for ( i = 0 ; i < nc l i que ; i++)

i f ( graph [ i ] [ v ] == 0)
break ;

i f ( i < nc l i que )
continue ;

i f ( degree [ v ] > best )
bestv = v ;

}
i f ( bestv == −1)

return nc l i que ;
c l i q u e [ n c l i que++] = bestv ;

}
return nc l i que ;

}

int histogram [MAXN+1] = {0} ;
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int main ( int argc , char ∗argv [ ] ) {
i f ( argc < 3) {

f p r i n t f ( s tde r r , ” usage : %s n t r i a l s [ random/greedy ]\n” , ∗argv ) ;
e x i t ( 1 ) ;

}

int n = a to i (∗++argv ) ;
int t r i a l s = a t o i (∗++argv ) ;
int (∗ c l i q u e r ) ( int ) = random cl iquer ;
i f (∗++argv != 0) {

i f ( strcmp (∗ argv , ”random” ) == 0)
c l i q u e r = random cl iquer ;

else i f ( strcmp (∗ argv , ” greedy ” ) == 0)
c l i q u e r = g r e edy c l i q u e r ;

else {
f p r i n t f ( s tde r r , ”unknown h e u r i s t i c %s \n” , ∗argv ) ;
e x i t ( 2 ) ;

}
}

i f (n > MAXN) {
f p r i n t f ( s tde r r , ”n > %d\n” , MAXN) ;
e x i t ( 3 ) ;

}

srandom ( 1 ) ;

int t o t a l = 0 , t o t a l 2 = 0 ;
for ( int i = 0 ; i < t r i a l s ; i++) {

randomize (n ) ;
int c l i q u e = c l i q u e r (n ) ;
t o t a l += c l i q u e ;
t o t a l 2 += c l i q u e ∗ c l i q u e ;
histogram [ c l i q u e ]++;

}
double average = (double ) t o t a l / t r i a l s ;
double average2 = (double ) t o t a l 2 / t r i a l s ;
p r i n t f ( ”mean %.1 f std %.2 f \n” , average , average2 − average ∗ average ) ;

int min = 0 ;
while ( histogram [ min ] == 0)

min++;
int max = n ;
while ( histogram [max ] == 0)

max−−;

for ( int i = min ; i <= max ; i++)
p r i n t f ( ” s i z e %2d frequency %.3 f \n” , i , (double ) histogram [ i ] / t r i a l s ) ;

}
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