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Question 1. Fix a graph H, and suppose that p = ω(n−1/m(H)). In class, we showed
that with high probability, G(n, p) contains a copy of H. Show that in fact, with high
probability G(n, p) contains ω(1) copies of H.

Answer. Let X be the number of copies of H in G(n, p). In class we showed that E[X] =
ω(1) and V[X] = o(E[X]2). Hence Chebyshev’s inequality shows that

Pr[X ≤ E[X]/2] ≤ Pr[|X − E[X]| ≥ E[X]/2] ≤ V[X]

E[X]2/4
= o(1).

It follows that with high probability, X ≥ E[X]/2 = ω(1).

Question 2. Suppose that p = o(1/n). Estimate the probability that G(n, p) contains a
triangle by finding a function q(n, p) such that

Pr[G(n, p) contains a triangle] ∼ q(n, p).

(Note that as shown in class, q(n, p) = o(1).)

Answer. Let X be the number of triangles in G(n, p). The Bonferroni inequalities give
the bounds

E[X]− E
[(
X

2

)]
≤ Pr[X > 0] ≤ E[X].

In class we have shown that

E[X] ∼ (np)3/6,

E
[(
X

2

)]
= O(n6p6 + n5p6 + n4p5) = E[X] ·O(n3p3 + n2p3 + np2) = o(E[X]).

It follows that
Pr[X > 0] ∼ E[X] ∼ (np)3/6.

Question 3. In this question we will analyze the probability that G(n, c/n) contains the
graph H := .− (a triangle with an attached edge).

(a) Let Ek be the event that G(n, c/n) contains exactly k vertex-disjoint triangles, each
of them isolated (not connected by an edge to the outside world), and no other
triangles. Calculate limn→∞ Pr[Ek], and deduce a lower bound on the probability
that G(n, c/n) is H-free (contains no copy of H).
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Proof. For every specific choice of k vertex-disjoint triangles, the probability of the
event is

(c/n)3k(1− c/n)3k(n−3k)+(k
2)−3k(e−c

3/6 ± o(1)) ∼ e−c
3/6(c/n)3ke−3ck.

The number of possible choices is 1
k!

(
n
3

)
· · ·
(
n−3(k−1)

3

)
∼ 1

k!
(n3/6)k, and so

Pr[Ek] ∼ e−c
3/6 · e−3ck (c3/6)k

k!
.

Let us denote the right-hand side by qk. We can calculate

q :=
∞∑
k=0

qk = e−c
3/6

∞∑
k=0

((ce−c)3/6)k

k!
= e−c

3/6 · e(ce−c)3/6 = e−(1−e
−3c)(c3/6).

For every ε > 0, we can find ` such that
∑`

k=0 q` ≥ q − ε. Hence for every ε > 0,
the probability that G(n, c/p) is H-free is at least q − ε − o(1). It follows that the
probability that G(n, c/p) is H-free is at least q − o(1).

(b) Show that for every ε > 0 there is k such that for large enough n, the probability
that G(n, c/n) contains more than k triangles is less than ε.

Answer. We know that for every k, the probability that G(n, c/n) contains more
than k triangles tends to

1− e−c3/6
k∑

`=0

(c3/6)`

`!
.

We can find k so that this is at most ε/2. Hence for large enough n, the probability
that G(n, c/n) contains more than k triangles is less than ε.

(c) Prove a matching upper bound on the probability that G(n, c/n) is H-free.

Answer. If G ∼ G(n, c/n) is H-free then either one of the events E0, . . . , Ek happens,
or G contains more than k triangles. Note that G cannot contain two overlapping
triangles, since any such configuration contains a copy of H. The calculation above
shows that

lim
n→∞

k∑
`=0

Pr[E`] < q,

and in particular, for large enough n the sum is at most q. The previous item shows
that for every ε > 0, we can find k such that the probability that G contains more
than k triangles is at most ε. In total, we get that for every ε > 0, for large enough
n the probability that G(n, c/n) is H-free is at most q+ ε. Since this holds for every
ε > 0, it follows that the probability that G(n, c/n) is H-free is at most q+ o(1).
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