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Question 1 (Alternative proof of zero-one law). The k-round Ehrenfeucht–Fräıssé game
is played on a pair of graphs (G1, G2) by two players, Spoiler and Duplicator. We require
both graphs to contain at least k vertices.

In the first round, Spoiler chooses a vertex on one of the graphs, and then Duplicator
chooses a vertex on the other graph. We let a1 be the vertex chosen in G1, and b1 be the
vertex chosen in G2.

In the second round, Spoiler again chooses a vertex on one of the graphs, and Du-
plicator chooses a vertex on the other graph. Both players are forced to choose vertices
not already chosen (different from a1, b1). We let a2, b2 be the vertices chosen in G1, G2

(respectively).
All subsequent rounds proceed in the same way. After k rounds, we end up with

k vertices a1, . . . , ak in G1 and k vertices b1, . . . , bk in G2. Duplicator’s goal is that the
following property is satisfied: for all i, j, there is an edge (ai, aj) in G1 iff there is an edge
(bi, bj) in G2. We say that Duplicator wins if Duplicator has a strategy which guarantees
that her goal is fulfilled.

For every first-order formula φ in the language of graphs, there is a constant k such
that if Duplicator wins (G1, G2) then G1 ` φ (that is, φ is satisfied for G1) iff G2 ` φ.

(a) Show that for each k there is a function e(n) = o(1) such that if G1 ∼ G(n1, 1/2)
and G2 ∼ G(n2, 1/2) then Duplicator wins (G1, G2) with probability at least 1 −
e(min(n1, n2)).

(b) Show that for each φ there is a function e′(n) = o(1) such that for each n, either
Pr[G(n, 1/2) ` φ] ≤ e′(n) or Pr[G(n, 1/2) ` φ] ≥ 1− e′(n).

(c) Show that for each φ, either Pr[G(n, 1/2) ` φ]→ 0 or Pr[G(n, 1/2) ` φ]→ 1.

Question 2 (Failure of zero-one law for colored graphs). A colored graph is a graph in
which each vertex v has a color c(v) ∈ N. Given a distribution π on N, let Gπ(n, 1/2) be
the colored graph obtained by coloring each vertex in G(n, 1/2) according to π indepen-
dently.

We say that two colored graphs G1, G2 are isomorphic if there is an isomorphism f
of graphs between G1 and G2 that respects the coloring, that is, c(v) = c(f(v)).

(a) Show that if G1, G2 ∼ Gπ(ℵ0, 1/2) then almost surely, G1 and G2 are isomorphic
(as colored graphs).
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(b) Let π have a Poisson distribution with expectation 1: Pr[π = k] = e−1/k!. Show
that

Pr[Gπ(k!, 1/2) contains a color appearing exactly once]→ e−1−e
−1

.

(c) The first-order language of colored graphs is defined similarly to the first-order
language of graphs, together with the additional basic predicate c(x) = c(y). Show
that the zero-one law doesn’t hold for the first-order language of colored graphs
with respect to the sequence Gπ, where π is the distribution from the preceding
item.

Choose one out of Question 3 and Question 4 (bonus if you do both).

Question 3 (Quasirandom permutations1). The symmetric group Sn consists of all per-
mutations of [n] := {1, . . . , n}. We think of permutations as sequences of length n.

For a permutation π ∈ Sn and a “pattern” τ ∈ Sk, the density t(π, τ) is the prob-
ability that if we sample k distinct indices i1, . . . , ik ∈ [n] then the relative order of
π(i1), . . . , π(ik) is the same as τ . For example,

t(13245, 123) =
7

10
, t(13245, 213) =

2

10
, t(13245, 132) =

1

10
,

since 134, 135, 124, 125, 145, 345, 245 have relative order 123; 324, 325 have relative order
213; and 132 has relative order 132.

For each n, let πn ∈ Sn. The sequence ~π is k-quasirandom if for all τ ∈ Sk,

t(πn, τ)→ 1

k!
.

The sequence ~π is quasirandom if it is k-quasirandom for each k. As an example, if πn is
chosen uniformly random permutation for each n, then ~π is quasirandom almost surely.

(a) Show that if ~π is (k + 1)-quasirandom then it is k-quasirandom.

(b) Give an example of a 2-quasirandom sequence which is not 3-quasirandom.2

A permuton is a probability distribution µ over [0, 1]2 such that if (x, y) ∼ µ then the
marginal distributions of x and y are uniform over [0, 1]. Given a permuton µ, for each n
we can draw a random permutation π ∼ P (n, µ) as follows. Let (x1, y1), . . . , (xn, yn) be
n independent samples of µ. We arrange the xi in order, and let π consist of the relative
order of the yi. (Since the marginal distributions are uniform over [0, 1], almost surely all
xi and all yi are distinct.) For example, if µ is the uniform distribution over [0, 1]2 then
P (n, µ) is a uniformly random permutation in Sn.

For τ ∈ Sk, let t(µ, τ) be the probability that if we take k samples (xi, yi) from µ and
arrange the xi in order, then the relative order of the yi is τ .

1After Král’ and Pikhurko, Quasirandom permutations are characterized by 4-point densities, GAFA
vol. 23, pp. 570–579, 2013.

2There are also examples of 3-quasirandom sequences which are not 4-quasirandom, but they are
more complicated. One example is described in the paper of Král’ and Pikhurko mentioned above, and
another one in Cooper and Petrarca, Symmetric and asymptotically symmetric permutations.
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(c) Show that Eπ∼P (n,µ)[t(π, τ)] = t(µ, τ). (In fact, more is true: if πn ∼ P (n, µ) for
each n independently, then almost surely t(π, τ)→ t(µ, τ).)

A permuton µ is k-quasirandom if for each τ ∈ Sk, t(µ, τ) = 1/k!. A permuton µ is
quasirandom if it is k-quasirandom for all k. As in the case of individual distributions,
it is not hard to show that a (k + 1)-quasirandom permuton is also k-quasirandom.
Furthermore, if µ is a (k-)quasirandom permuton and for each n we sample πn ∼ P (n, µ),
then almost surely ~π is (k-)quasirandom (where we think of πn as a constant random
variable).

In the rest of this exercise, we show that if µ is a 4-quasirandom permuton, then it is
in fact quasirandom (the constant 4 is optimal). This implies that if ~π is a 4-quasirandom
sequence of random permutations, then it is in fact quasirandom.

(d) Let Fµ(X, Y ) = Pr(x,y)∼µ[x ≤ X, y ≤ Y ] be the CDF of µ. Show that

E
(X,Y )∼µ

[Fµ(X, Y )2] = Pr
(xi,yi)∼µ

[x1, x2 ≤ x3; y1, y2 ≤ y3].

(e) Deduce that E(X,Y )∼µ[Fµ(X, Y )2] = 1/9, using only the fact that µ is 3-quasirandom.

(f) Show that

E
(X,Y )∼µ

[Fµ(X, Y )XY ] = Pr
(xi,yi)∼µ

[x1, x2 ≤ x4; y1, y3 ≤ y4].

Hint: if (x, y) ∼ µ then since the marginals x and y are uniform over [0, 1], then
Pr[x ≤ X] = X and Pr[y ≤ Y ] = Y .

(g) Deduce that E(X,Y )∼µ[Fµ(X, Y )XY ] = 1/9, using the fact that µ is 4-quasirandom.

(h) Let λ be the permuton corresponding to two independent samples of the uniform
distribution over [0, 1]. Show that λ is quasirandom and Fλ(X, Y ) = XY .

(i) Show that

E
(Z,W )∼λ

[Fµ(Z,W )2] = Pr
(Xi,Yi)∼µ

[x1, x2 ≤ x3; y1, y2 ≤ y4].

Hint: use two samples of µ to generate one sample of λ.

(j) Deduce that E(Z,W )∼λ[Fµ(Z,W )2] = 1/9, using the fact that µ is 4-quasirandom.

(k) Show that

E
(Z,W )∼λ

[Fµ(Z,W )ZW ] = Pr
(x,y)∼µ
(zi,wi)∼λ

[x, z1 ≤ z2; y, w1 ≤ w2] =
1

4
E

(X,Y )∼µ
[(1−X2)(1−Y 2)].

(l) Show that

A := E
(X,Y )∼µ

[Fµ(X, Y )XY ]2 =
1

81
.
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(m) Show that

B := E
(X,Y )∼µ

[Fµ(X, Y )2] E
(X,Y )∼µ

[X2Y 2] =
4

9
E

(Z,W )∼λ
[Fµ(Z,W )ZW ]− 1

27
.

Hint: if (X, Y ) ∼ µ then E[X2] = E[Y 2] = 1/3 since X, Y are individually uniform
over [0, 1].

(n) Show that

C :=
4

9

√
E

(Z,W )∼λ
[Fµ(Z,W )2]

√
E

(Z,W )∼λ
[Z2W 2]− 1

27
=

1

81
.

(o) Explain why always A ≤ B ≤ C.

(p) Since A = C = 1/81, both inequalities are tight. Show that this implies that
Fµ(XY ) = XY and so µ = λ is quasirandom.

Question 4 (Dijkstra’s algorithm on the uniform weight distribution). In this question
we will generalize the analysis of Dijkstra’s algorithm from exponential weights to uniform
weights. We will use U([0, 1]) to denote the uniform distribution over [0, 1], and Exp(1)
to denote the unit mean exponential distribution, given by Pr[Exp(1) ≥ t] = e−t.

(a) Let X ∼ U([0, 1]) and Y = log 1
1−X . Show that Y ∼ Exp(1).

(b) Consider the coupling (X, Y ) from the preceding item. Show that

Y (1− Y/2) ≤ X ≤ Y.

(c) Suppose that w1, w2 are two sets of edge weights that satisfy w1(e) ≤ Cw2(e) for
all edges e. Let d1(x, y), d2(x, y) be the shortest distance from x to y according to
the two sets of edge weights. Show that d1(x, y) ≤ Cd2(x, y).

(d) For a distribution D supported on R+, let TD be the expected distance from vertex 1
to the farthest vertex, when weights are chosen according to D independently. Show
that

TU([0,1]) ≤ TExp(1).

Proving a bound in the other direction is more tricky. For each edge e, we construct
three different weights w1(e), w2(e), w3(e) as follows. We choose w1(e) ∼ U([0, 1]) and let
w2(e) = log 1

1−w1(e)
, so that w2(e) ∼ Exp(1). For an ε ∈ (0, 1/2) to be determined, we

choose w3(e) = max(w1(e), (1− ε)w2(e)).

(e) We showed in class that TExp(1) ∼ 2 logn
n

. Let δ = ω
(
logn
n

)
. Show that with high

probability, the shortest path tree for vertex 1 under edge weights w1 only contains
edges of weight at most δ.

(f) Show that if ε = ω
(
logn
n

)
then with high probability, the shortest path trees for

vertex 1 under w1 and under w3 are identical.
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(g) Let τ1, τ2, τ3 be the distances from vertex 1 to the farthest vertex under w1, w2, w3,
respectively. We showed in class that V[τ2] = O(1/n2). Using Cauchy–Schwarz,
show that if δ = ω

(
logn
n

)
then

E[τ21τ2>δ] = o(E[τ2]).

(Here 1τ2>δ is the indicator variable for the event τ2 > δ.)

(h) Show that if ε = ω
(
logn
n

)
then TU([0,1]) ≥ (1 − ε − o(1))TExp(1), and conclude that

TU([0,1]) ∼ 2 logn
n

.
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