Random Graphs — Assignment 2

Yuval Filmus

December 4, 2019

Question 1. Let X_k be the number of k-cliques in G(n, 1/2). Recall that

$$N_k := \mathbb{E}[X_k] = \binom{n}{k} 2^{-\binom{k}{2}}$$

and

$$\frac{\mathbb{E}[X_k^2]}{\mathbb{E}[X_k]^2} = \sum_{\ell=0}^k \frac{\binom{k}{\ell} \binom{n-k}{k-\ell}}{\binom{n}{k}} 2^{\binom{\ell}{2}} =: \sum_{\ell=0}^k J_{\ell}.$$

Let k_0 be the maximal k such that $N_k \ge 1$, and recall that $k_0 = 2\log_2 n - 2\log_2\log_2 n + O(1)$. The goal of this exercise is to show that with high probability, G(n, 1/2) contains a k-clique, for $k = k_0 - 1$.

- (a) Calculate $J_{\ell+1}/J_{\ell}$.
- (b) Calculate $(J_{\ell+2}/J_{\ell+1})/(J_{\ell+1}/J_{\ell})$.
- (c) Show that there exists N_1 such that if $n \geq N_1$ and $0 \leq \ell \leq \frac{1}{2} \log_2 n$ then $J_{\ell+1} < J_{\ell}$.
- (d) Show that there exists N_2 such that if $n \geq N_2$ and $k > \ell \geq \frac{3}{2} \log_2 n$ then $J_{\ell+1} > J_{\ell}$.
- (e) Show that there exists N_3 such that if $n \geq N_3$ then the sequence $J_{\ell+1}/J_{\ell}$ is increasing for $\frac{1}{2}\log_2 n \leq \ell \leq \frac{3}{2}\log_2 n$.
- (f) Deduce that for $N \ge \max(N_1, N_2, N_3)$ the sequence J_0, \ldots, J_k is unimodal (decreasing and then increasing, with perhaps two identical values at the middle).
- (g) Deduce that for $N \ge \max(N_1, N_2, N_3)$ the maximum of J_1, \ldots, J_k is attained at one of the endpoints.
- (h) Conclude that $\mathbb{E}[X_k^2]/\mathbb{E}[X_k]^2 = 1 + o(1)$, and so with high probability G(n, 1/2) contains a k-clique.

Question 2. In this exercise, we will empirically explore algorithms for finding cliques in G(n, 1/2).

(a) Consider the heuristic which constructs a clique by iteratively picking an arbitrary vertex which is connected to all vertices chosen so far. How large a clique does this heuristic find, when n = 1000?

- (b) Modify this heuristic by always picking a vertex of maximal degree. Does this improve on the original heuristic when n = 1000?
- (c) Optional: Come up with a better heuristic.

In both cases, I suggest performing at least 10^4 experiments. In each experiment, generate a G(n, 1/2) random graph, run the heuristic, and record the result. After running all experiments, report the average, using two significant digits.

Due to speed considerations, I recommend using a compiled language like C/C++/Java rather than an interepreted language such as Python/Matlab.

Question 3. Let $p_{n,k}$ be the probability that the heuristic in Question 2(a) constructs a clique of size k when run on G(n, 1/2).

- (a) Write a recurrence relation for $p_{n,k}$.
- (b) Compute the expected size of the clique when n=1000 exactly (but display the result as a decimal). You can use a computer algebra system such as Mathematica, Maple or Sage, or a library such as libgmp, which supports multi-precision integer or floating point arithmetic.

Question 4 (Bonus). Let $H := \triangleright$. In the last assignment we calculated the probability that G(n, c/n) contains no copy of H. Now we calculate the entire distribution:

$$p_k := \lim_{n \to \infty} \Pr[G(n, c/n) \text{ contains exactly } k \text{ copies of } H].$$

Say that a triangle has $type \ t = (a, b, c)$ if $0 \le a \le b \le c$ and the degrees of vertices in the triangle are 2 + a, 2 + b, 2 + c (that is, the triangle has a edges dangling from one vertex, b edges from another, and c from the remaining vertex). Let |t| = a + b + c.

Fix an arbitrary ordering on types. For a vector $\tau = (t_1, \dots, t_m)$ of non-decreasing types, define

$$q_{\tau} = \lim_{n \to \infty} \Pr[G(n, c/n) \text{ contains exactly } m \text{ triangles, of types } t_1, \dots, t_m].$$

Let
$$|\tau| = \sum_{i=1}^{m} |t_i|$$
.

- (a) Show that with high probability, any two copies of H in G(n, c/n) are either disjoint or share a triangle.
- (b) Show that

$$p_k = \sum_{|\tau| = k} q_{\tau}.$$

(Hint: use part (a) and modify the argument of Question 3 in Assignment 1.)

- (c) Calculate q_{τ} .
- (d) Let τ be a vector not including any isolated triangles. Calculate z_{τ} , which is the sum of $q_{\tau'}$ over all vectors τ' obtained from τ by adding an arbitrary number of isolated triangles.
- (e) Calculate p_0, p_1, p_2 .