Random Graphs — Assignment 1

Yuval Filmus

November 20, 2019

Question 1. Fix a graph H, and suppose that $p = \omega(n^{-1/m(H)})$. In class, we showed that with high probability, G(n, p) contains a copy of H. Show that in fact, with high probability G(n, p) contains $\omega(1)$ copies of H.

Question 2. Suppose that p = o(1/n). Estimate the probability that G(n, p) contains a triangle by finding a function q(n, p) such that

 $\Pr[G(n, p) \text{ contains a triangle}] \sim q(n, p).$

(Note that as shown in class, q(n, p) = o(1).)

Question 3. In this question we will analyze the probability that G(n, c/n) contains the graph $H := \triangleright$ (a triangle with an attached edge).

- (a) Let E_k be the event that G(n, c/n) contains exactly k vertex-disjoint triangles, each of them isolated (not connected by an edge to the outside world), and no other triangles. Calculate $\lim_{n\to\infty} \Pr[E_k]$, and deduce a lower bound on the probability that G(n, c/n) is H-free (contains no copy of H).
- (b) Show that for every $\epsilon > 0$ there is k such that for large enough n, the probability that G(n, c/n) contains more than k triangles is less than ϵ .
- (c) Prove a matching upper bound on the probability that G(n, c/n) is H-free.