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Most of these lecture notes are based on the textbook of Frieze and Karoński [FK16]. There is an
essential difference between the approach we take and theirs: they work in G(n,m), and we work in
G(n, p). However, even they work mostly in G(n, p) and then deduce results in G(n,m).

I thank the students in my class and my TA, Itay Hazan, for help with these notes.
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1 Introduction

What are graphs? We will mostly consider finite undirected graphs. During this lecture we will also
be interested in countable undirected graphs.

What are random graphs? The two most popular models (both known as Erdős–Rényi random
graphs) are:

• G(n,m): a random graph on n vertices with m random edges.

• G(n, p): a random graph on n vertices in which each edge appears with probability p, independently.

Roughly speaking, G(n,m) ≈ G(n, p) for p = m/

n
2


. Often results can be translated from one model to

the other, see [FK16, §1.1]. We will be exclusively interested in the G(n, p) model.

Why random graphs? There are many possible answers:

• Random graphs are an excellent example of the probabilistic method. The first two examples were
Shannon’s theorem and Erdős’ existence proof for graphs with arbitrarily large chromatic number
and girth (size of the shortest cycle). Often random graphs are the only way to construct graphs
with a certain property. A case in point is Ramsey numbers (see below).

• Random graphs are similar to other models of interest to physicists and probabilists: for example,
Ising model, percolation, random CSPs.

• Random graphs appear in theoretical computer science in many situations, and are used to define
certain problems such as random CSPs and planted clique.
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• A different model of random graphs (preferential attachment) is used to study social networks (e.g.
Facebook).

What about random graphs? We will be interested in the typical properties of random graphs. We
say that a property occurs with high probability (whp) if the probability that it happens tends to 1. For
example, G(n, 1/n2) is a forest with high probability.

Other popular models of random graphs

• Random regular graphs: for dn even, a random d-regular graph on n vertices (chosen uniformly
among all such graphs).

• Geometric graphs: put n points on [0, 1]2, and connect two if at distance at most r.

• Stochastic block model: divide {1, . . . , n} into k classes according to some distribution, and then
connect vertices in class i and j with probability pij .

• Graphons: a vast generalization of the stochastic block model (in some sense).

• Preferential attachment graphs: various models in which vertices appear one by one, and are
attached to vertices with probability increasing with the degree. Exhibits several phenomena
encountered in social networks (e.g. the Facebook graph) such as a heavy-tail degree distribution.

Quasirandom graphs are graphs that share some of the properties of random graphs. For example, if
a graph contains ≈ pn edges and ≈ p4n4/8 squares, then it behaves like G(n, p) (in certain senses). This
is very related to graphons.

1.1 Ramsey graphs

Ramsey showed that every infinite graph contains either an infinite clique or an infinite independent set.
The finitary version of this theorem states that for all a, b there exists n such that every graph on n
vertices contains either a clique on a vertices or an independent set on b vertices. The smallest such n is
denoted R(a, b). A simple induction shows that

R(a, b) ≤

a+ b− 2

a− 1


.

This implies, in particular, that
R(k, k) < 4k.

This upper bound is proved by taking an arbitrary graph on

a+b−2
a−1


vertices and extracting from it

either a clique of size a or an independent set of size b.
The best lower bound is

R(k, k) = Ω(2k/2).

To prove this, we have to show that there exists a graph on C · 2k/2 vertices which contains no k-clique
and no k-independent set; such a graph is known as a Ramsey graph. The only way we know how to
construct such a graph explicitly is by taking a random G(n, 1/2) graph with n = C · 2k/2; it will be a
Ramsey graph with high probability.

In terms on n, with high probability G(n, 1/2) contains no clique and no independent set of size
roughly 2 log2 n. The best deterministic construction (due to Gil Cohen and Xin Li, 2016) gives
(log n)O(log logn). It’s very hard to construct such graphs explicitly!

1.2 The countable random graph and zero-one laws

The following can be found, for example, in Horowitz [Hor08] and (probably) in Spencer [Spe01].
What does G(ℵ0, p) look like? We will show that for every constant p, almost surely we get the same

graph (which doesn’t depend on p). This surprising result follows from combining the following two
lemmas.
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Definition 1.1. A (countable) graph is saturated if for any two disjoint sets of vertices A,B there exists
a vertex v such that (v, a) is an edge for all a ∈ A, and (v, b) is not an edge for all b ∈ B.

Lemma 1.2. For all p ∈ (0, 1), almost surely G(ℵ0, p) is saturated.

Lemma 1.3. Every two saturated graphs are isomorphic.

The two lemmas imply the following theorem.

Theorem 1.4. Suppose G1 ∼ G(ℵ0, p1) and G2 ∼ G(ℵ0, p2), where 0 < p1, p2 < 1. Almost surely,
G1 ≈ G2.

Lemma 1.3 shows that there is a unique saturated countable graph (up to isomorphism), and the
theorem justifies its name, the countable random graph. Saturated countable graphs can be constructed
explicitly (see for example Horowitz [Hor08]), but this is best left as an exercise for the reader.

The proof of the first lemma is very easy.

Proof of Lemma 1.2. For every A,B and every v /∈ A ∪B, the probability that v satisfies the condition
is p|A|(1 − p)|B| > 0. Since there are infinitely many potential vertices, almost surely one of them will
satisfy the condition. (There are various ways to make this argument rigorous.) Since there are countably
many choices for A,B, the condition holds for all of them almost surely (since if countable many events
happen almost surely, then all of them happen almost surely).

The proof of the second lemma uses the so-called back and forth argument.

Proof of Lemma 1.3. The idea is to construct an isomorphism from V (G1) to V (G2), vertex by vertex.
Suppose that we already constructed a bijection π from V1 ⊂ V (G1) to V2 ⊂ V (G2) which is an
isomorphism between G1|V1 and G2|V2 , and consider a new vertex v ∈ V (G1) \ V1. Let A = {a ∈ V1 :
(v, a) ∈ G1} and B = {b ∈ V1 : (v, a) /∈ G1}. Since G2 is saturated, there is a vertex w ∈ V (G2) \ V2

which is connected to all vertices in π(A) and to none in π(B). We extend π by mapping v to w.
We perform infinitely many steps of this form. How can we ensure that in the end we get a bijection

between all of V (G1) and all of V (G2)? Order V (G1), V (G2) arbitrarily. We alternate between G1-steps
and G2-steps. In a G1 step, we map the smallest vertex of G1 not already mapped. In a G2 step, we map
the smallest vertex of G2 not already mapped. This easily implies that the tth vertex of G1 is mapped in
the first 2t steps, and the same holds for the tth vertex of G2. So eventually all vertices are mapped.

The same argument shows that every two countable dense linear orderings with no extreme elements
are isomorphic (one example is the rationals), see Rosenstein [Ros82].

Zero-one law Theorem 1.4 essentially implies the following zero-one law for random graphs. Suppose
that P is a first-order property (in the language including only the edge relation symbol and equality).
Then for all constant p ∈ (0, 1), either Pr[P (G(n, p))] → 0 or Pr[P (G(n, p))] → 1 as n → ∞. A first-order
property is one of the form

∃x∃y∃z (x ∼ y) ∧ (x ∼ z) ∧ (y ∼ z),

which states that the graph contains a triangle (we are also allowed to use ∀); in this case, a G(n, p)
random graph contains a triangle with high probability.

A difficult theorem of Shelah and Spencer states the same with p = n−α for any irrational α. For
rational α this is not true, and we will see examples when we discuss appearance of subgraphs.

2 Sparse random graphs

Our first major topic will be the evolution of random graphs. Much of this comes from the seminal paper
of Erdős and Rényi [ER60], which inaugurated the subject.

Erdős and Rényi considered the dynamical process in which we start with the empty graph on n
vertices, and at each step add a random edge not already in the graph. After


n
2


steps, we reach the

complete graph. We can look at random times at which some events happen. For example, at what step
does the graph become connected?

More formally, let (G0, . . . , G(n2)
) be a random variable such that G0 = ∅ and Gm+1 is obtained from

Gm by adding a random edge.
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Definition 2.1. Let mCon be the minimal m such that Gm is connected.
Let mIso be the minimal m such that Gm doesn’t contain isolated vertices.

Clearly mIso ≤ mCon. Erdős and Rényi showed that whp, mCon = mIso. It is not immediately clear
how to formulate this property in the language of G(n, p).

What we will do next is (i) sort out the correct coupling of G(n, p) graphs, (ii) make a list of some
highlights in the evolution of random graphs, and (iii) start proving some of these properties.

The discussion of couplings doesn’t appear in our textbook, and is somewhat non-orthodox.

2.1 Graph couplings

What are the salient properties of the process G0, . . . , G(n2)
discussed above?

1. Gm ∼ G(n,m).

2. If m1 ≤ m2 then Gm1
⊆ Gm2

.

This is a coupling of the models G(n, 0), . . . , G(n,

n
2


). A coupling of two random variables X,Y is

a joint distribution on pairs whose marginals are X,Y , and this can be extended to many random
variables. The coupling shows that if P is any monotone property (if P (G) and H ⊇ G then P (H)))
then Pr[P (G(n,m2))] ≥ Pr[P (G(n,m1))] whenever m2 ≥ m1: this is since Pr[P (Gm2

)] ≥ Pr[P (Gm1
)],

due to Gm2 ⊇ Gm1 .
We can think of these two properties as “equations” between the random variables G0, . . . , G(n2)

.

These equations have a unique “solution”: any two random tuples satisfying these constraints are “iso-
morphic”.

The corresponding properties for G(n, p) are as follows. We are looking for a process Gp (for p ∈ [0, 1])
such that

1. Gp ∼ G(n, p).

2. If p1 ≤ p2 then Gp1
⊆ Gp2

.

The unique (up to measure zero) solution looks as follows. Associate with every edge e a random variable
xe ∼ U([0, 1]), and define Gp = {e : xe ≤ p}.

Given this coupling, we can define pCon, pIso in analogy to mCon,mIso. It turns out that pCon = pIso
whp as well (this result is stated in the textbook only as mCon = mIso, but the proof is very similar).

A much more sophisticated example of this kind of construction is Brownian motion, in which
case constructing the set of random variables is somewhat non-trivial (see for example Mörters and
Peres [MP10, Chapter 1]).

2.2 Evolution of random graphs

Here are some highlights of the evolution of random graphs:

1. If p = o(1/n) then whp G(n, p) is a forest. (Theorem 2.2)

2. If p = 1/n−ω(1/n4/3) then whp all connected components of G(n, p) are trees or unicylic (consist
of a tree plus an edge). (Theorem 2.3)

3. If p = c/n for constant c < 1 then whp the largest connected component of G(n, p) is a tree of size
Θc(log n). (Theorem 3.2)

4. If p = 1/n then whp the largest connected component of G(n, p) has size roughly n2/3. (Theo-
rem 5.3)

5. If p = c/n for constant c > 1 then whp G(n, p) contains a giant component of size Θc(n), and all
other components are trees of size Oc(log n). (Theorem 4.5)

6. If p = (log n + c)/n then the probability that G(n, p) is connected tends to e−e−c

. Furthermore,
whp pCon = pIso. (Theorem 6.3)
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7. If p = (log n+ c)/n then the probability that G(n, p) has a matching of size ⌊n/2⌋ tends to e−e−c

.

8. If p = (log n+ log log n+ c)/n then the probability that G(n, p) is hamiltonian tends to e−e−c

.

We will prove most of these properties.

2.3 Forest regime

Theorem 2.2 ([FK16, Theorem 2.1]). If p = o(1/n) then whp G(n, p) is a forest.

Before proving the theorem, let us explain what it means. Suppose that we are given a function
p : N → [0, 1] that satisfies p(n) = o(1/n), that is, np(n) → 0. For any such function p, the probability
that G(n, p(n)) is a forest is 1− o(1). In other words,

np(n) −→ 0 =⇒ Pr[G(n, p(n)) is a forest] → 1.

Proof. We will show that whp G(n, p) contains no cycle. This, in turn, we will show using the first
moment method : let X be the number of cycles in G(n, p). We will show that E[X] = o(1), and so
Markov’s inequality implies that Pr[X > 0] = Pr[X ≥ 1] ≤ E[X] = o(1).

We calculate the expected number of cycles by estimating the expected value of Xk, the number of
cycles of length k. We use the following formula: the expected value of Xk is the number of potential
cycles times the probability that each potential cycle is in G(n, p). The formula follows from linearity of
expectation by using indicator variables: if XC is the event that G ∼ G(n, p) contains the cycle C, then

E[Xk] =


C a cycle
|C|=k

E[XC ] =


C a cycle
|C|=k

Pr[XC = 1] = |{C a cycle : |C| = k}| · Pr[XCk
= 1],

where Ck is a particular cycle of size k.
We can specify a cycle of length k by specifying k vertices. Each cycle is counted 2k times this way,

so the number of cycles of size k is nk/2k, where nk = n(n− 1) · · · (n− k + 1) = n!/(n− k)! is a falling
power (there are also rising powers). The probability that G(n, p) contains any fixed cycle of size k is pk

(since there are k edges in such a cycle), and so

E[Xk] =
nk

2k
pk.

Therefore

E[X] =

n

k=3

nk

2k
pk ≤

∞

k=3

(pn)k =
(pn)3

1− pn
= O((pn)3) = o(1).

Here we used that if pn → 0 then from some point on pn ≤ 1/2, and so 1/(1− pn) ≤ 2. This completes
the proof.

2.4 Unicyclic regime

Theorem 2.3 ([FK16, Lemma 2.10]). If p = 1/n − ω(1/n4/3) then whp all connected components of
G(n, p) are trees or unicyclic (contain at most one cycle).

We will see from the proof where 1/n4/3 comes from. This threshold is (probably) tight: if p =
1/n − c/n4/3 for constant c then (it seems) there is constant probability that the graph contain a
component with at least two cycles.

The forbidden structure in the preceding case was a cycle. Here it will be a certain type of extended
path.

Lemma 2.4. If G has a connected component which is neither a tree nor unicyclic, then G contains a
path P (of length at least 3 vertices) and two (distinct) edges connecting the two endpoints of P to other
vertices in P .

We leave the proof to the reader.
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Proof of Theorem 2.3. Let p = 1/n − α/n4/3, where α → ∞. The number of potential arrangements
as the extended path described in the lemma, when the path has length k, is at most nkk2: there are
nk/2 ≤ nk choices for the path, and (k−2)2−1 < k2 choices for the two extra edges. Each such structure
occurs in G(n, p) with probability pk+1, and so the expected number of structures appearing in G(n, p)
is at most

n

k=3

nkk2pk+1 ≤
n

k=3

k2

n
(np)k =

n

k=3

k2

n


1− α

n1/3

k

≤
n

k=3

k2

n
e−αk/n1/3

.

We used p ≤ 1/n in the first inequality and 1− x ≤ e−x (for x ≥ 0) in the second inequality.
There are many ways to estimate this sum. One of them approximates the sum by an integral. We

will use the substitution xk = (α/n1/3)k.

n

k=3

k2

n
e−αk/n1/3

=

n

k=3

(n2/3/α2)x2
k

n
e−xk =

1

α3

n

k=3

α

n1/3
x2
ke

−xk .

Since |xk+1 − xk| = α/n1/3, we recognize this as a Riemann sum, and so

n

k=3

k2

n
e−αk/n1/3

−→ 1

α3

 ∞

0

x2e−x dx.

(Skipping some technical details.) The integral clearly converges (to 2, though the exact value isn’t
important for us), and so the expected number of bad structures is O(1/α3) → 0.

3 Subcritical regime

So far we have seen that when p = o(1/n), whp G(n, p) is a forest, and when p = 1/n− ω(1/n4/3), whp
all connected components contain at most one cycle. Our goal now is to describe the state of a G(n, c/n)
random graph, for c < 1. We already know that all connected components contain at most one cycle.
But do unicyclic components actually occur?

Lemma 3.1 ([FK16, Lemma 2.11]). If p = c/n for c < 1 and f(n) = ω(1) then whp G(n, p) contains
no unicyclic components of size f(n) or larger. Moreover, whp the total number of vertices in unicyclic
components is at most f(n).

Proof. Let Uk denote the number of unicyclic components of size k. Given a set of k vertices, Cayley’s
formula states that there are kk−2 possible trees on this vertex set, and so the number of potential
unicyclic components of size k is at most


n
k


kk−2k2 =


n
k


kk, since there are at most k2 ways to choose

the extra edge. Such a structure appears in the graph as a connected component if the k implied edges
are in the graph, the other


k
2


−k potential edges in the component are not in the graph, and the k(n−k)

edges connecting the k vertices to the rest of the graph are also not in the graph. Thus

E[Uk] ≤

n

k


kkpk(1− p)k(n−k)+(k2)−k = nk k

k

k!
pk(1− p)k[n−k/2−3/2].

We now estimate these terms one by one. The first step is estimating 1− p ≤ e−p = e−c/n. The second
step is using Stirling’s approximation

k! ∼
√
2πk(k/e)k =⇒ k! = Θ

√
k(k/e)k


.

These estimates show that

E[Uk] ≤
1

Ω(
√
k)

nk

nk


ece−[n−k/2−3/2]c/n

k

.

When k = o(n), the last factor becomes roughly ce1−c, which is good for us: this function attains
its maximum 1 at c = 1 (since its derivative is c(1 − c)e1−c), and the assumption c < 1 implies that
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ce1−c < 1,1 and so E[Uk] decays exponentially fast. However, for large k we only get ce1−c/2, which
could exceed 1.

The solution to this conundrum is taking advantage of the difference between nk and nk:

nk

nk
=

n

n
· n− 1

n
· · · n− k + 1

n
=


1− 0

n


1− 1

n


· · ·


1− k − 1

n


≤

exp−

0

n
+

1

n
+ · · ·+ k − 1

n


= e−(

k
2)/n.

This factor becomes significant when k = Ω(
√
n), and helps us obtain a better estimate:

E[Uk] ≤
1

Ω(
√
k)


ece−[n−2]c/n

k

≤ O(1) · (ce1−c)ke2ck/n ≤ Oc(1)(ce
1−c)k.

Summing over all k ≥ f(n), we get

E[U≥f(n)] ≤ Oc(1)

n

k=f(n)

(ce1−c)k = Oc(1)(ce
1−c)f(n).

If f(n) → ∞ then E[U≥f(n)] → 0.
We leave the proof of the moreover part to the reader.

Together with Theorem 2.3, this suggests that the largest connected component in G(n, c/n) is a tree
when c < 1. This allows us to determine almost exactly the size of the largest connected component in
G(n, c/n).

Theorem 3.2 ([FK16, Lemma 2.12]). If p = c/n for c < 1 and f(n) = ω(1) then whp the size S of the
largest component in G(n, p) satisfies

S −
log n− 5

2 log log n

c− 1− log c

 < f(n).

Note that c− 1− log c = − log[ce1−c]. The origin of the mysterious threshold will become apparent
during the proof.

Proof. Let α = c−1− log c and k0 = (log n− 5
2 log log n)/α, and consider k = k0+δ. We will estimate the

number Tk of tree components of G(n, p) of size k. The number of potential components is

n
k


kk−2 by

Cayley’s formula, and the probability that G(n, p) contains one of them is pk−1(1− p)k(n−k)+(k2)−(k−1).
Hence

E[Tk] = nk · 1

k2
· k

k

k!
· pk−1 · (1− p)k(n−k)+(k2)−(k−1).

Comparing this expression to the expression we used to upper bound E[Uk] in Theorem 2.3, we see that
the present expression is smaller by a factor of p

1−pk
2. The proof of Theorem 2.3 uses the upper bound

Oc(1/
√
k)(ce1−c)k (bringing back the factor 1/

√
k that we dropped in that theorem), and so

E[Tk] ≤
1− p

pk2
Oc


1√
k


(ce1−c)k = Oc

 n

k5/2


(ce1−c)k.

Let us now assume that δ ≥ 0. Then n/k5/2 ≤ Oc(n/ log
5/2 n), and so the definition of k0 shows that

E[Tk] ≤ Oc((ce
1−c)δ). Therefore

E




n

k=k0+f(n)

Tk



 ≤ Oc




∞

δ=f(n)

(ce1−c)δ



 = Oc


(ce1−c)f(n)


= o(1).

1Another argument uses the Taylor expansion of ex: ec−1 = 1 + (c− 1) +
(c−1)2

2
eθ > c, for some c− 1 ≤ θ ≤ 0.
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This show that the largest tree component in G(n, p) has size smaller than k0+f(n) with high probability.
The same is true for unicyclic components by Theorem 2.3, and Lemma 3.1 shows that with high
probability there are no other components. We conclude that S < k0 + f(n) with high probability.

For the other direction, we first need to estimate E[Tk] from below. Let us assume, therefore, that
δ ≤ 0. Since k = Oc(log n), n

k is a good approximation for nk:

nk = nk


1− 1

n


· · ·


1− k − 1

n


≥ nk


1−


k
2



n


= (1− o(1))nk,

where we used (1 − α)(1 − β) = 1 − α − β + αβ ≥ 1 − α − β. Stirling’s formula gives the estimate

k! = (1 ± o(1))
√
2πk(k/e)k. We estimate the final factor using the lower bound 1 − x ≥ e−x−x2

, which
holds for small enough x (for example, x ≤ 1/2 suffices). This estimate implies that

(1− p)k(n−k)+(k2)−(k−1) ≥ (1− p)kn ≥ e−ck−c2k/n = (1− o(1))e−ck.

Putting all estimates together, we obtain

E[Tk] ≥ (1± o(1))nk · 1

k2
· ek√

2πk
· n
c
pk · e−ck =

(1± o(1))
1

c
√
2π

· n

k5/2
(ce1−c)k = (1± o(1))

α5/2

c
√
2π

· n

log5/2 n
(ce1−c)k.

We chose k0 so that (ce1−c)k cancels n/ log5/2 n exactly, and so

E[Tk] = Ωc


(ce1−c)δ


.

If δ = −f(n) then E[Tk] = ω(1). However, this is not enough to conclude that S ≥ logn− 5
2 log logn

α −
f(n) with high probability; in principle, it could be that there is a low probability event that creates
many tree components of that size, and this is the reason that E[Tk] = ω(1). We will actually see such
an example when we talk about subgraph counts. To complete the proof, we will use the second moment
method.

The idea is to use Chebyshev’s inequality:

Pr[Tk = 0] ≤ Pr[|Tk − E[Tk]| ≥ E[Tk]] ≤
V[Tk]

E[Tk]2
.

We will estimate V[Tk] using the formula V[Tk] = E[T 2
k ]−E[Tk]

2. For a particular tree t of size k, let Xt

be the indicator variable for the random graph G ∼ G(n, p) containing t. Then

E[T 2
k ] =



s,t k-trees

E[XsXt] =


s,t k-trees

Pr[s, t ∈ G].

What is Pr[s, t ∈ G]? There are three cases. If s = t then Pr[s, t ∈ G] = Pr[t ∈ G]. If s, t share vertices
then Pr[s, t ∈ G] = 0. If s, t are disjoint then they involve together 2(k − 1) edges, 2(


k
2


− (k − 1))

non-edges inside the components, and 2k(n−k)−k2 non-edges separating the components from the rest

of the graphs; k2 non-edges are counted twice. Therefore Pr[s, t ∈ G] = (1 − p)−k2

Pr[s ∈ G] Pr[t ∈ G].
In total,

E[T 2
k ] ≤



t

Pr[t ∈ G] +


s ∕=t

(1− p)−k2

Pr[s ∈ G] Pr[t ∈ G] = E[Tk] + (1− p)−k2

E[Tk]
2.

Therefore

V[Tk]

E[Tk]2
=

1

E[Tk]
+

(1− p)−k2

− 1

≤ o(1) + eO(k2/n) − 1 = o(1) +O(k2/n) = o(1).

We conclude that Pr[Tk = 0] = o(1), and so with high probability a tree component of size at least
logn− 5

2 log logn

α − f(n) exists.
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3.1 Bonus: Proof of Stirling’s formula

3.1.1 Warm-up: harmonic numbers

Let us start with a warm-up: estimating the sum of the harmonic series. The nth harmonic number is
defined by

Hn :=

n

i=1

1

i
.

Since 1/x is increasing, we see that

log(n+ 1) =

 n+1

1

dx

x
≤

n

i=1

1

i
≤ 1 +

 n

1

dx

x
= log n+ 1.

This shows that Hn = log n+Θ(1). In fact, we can get a better estimate by being more careful:

Hn =

n

i=1

1

i
=

n

i=1

 i+1/2

i−1/2

dx

x
+

 i+1/2

i−1/2


1

i
− 1

x


dx


.

Substituting x = i+ δ and using 1/i− 1/(i+ δ) = δ/i(i+ δ), we get

Hn =

 n+1/2

1/2

dx

x
+

n

i=1

 1/2

−1/2

δ

i(i+ δ)
dδ.

The first term is equal to

 n+1/2

1/2

dx

x
= log(n+ 1/2)− log(1/2) = log n+ log 2 + log


1 +

1

2n


= log n+ log 2 +O


1

n


.

Using the power series expansion

1

i+ δ
=

1/i

1 + δ/i
=

1

i

∞

m=0

(−1)m
δm

im
,

we can calculate each summand in the second term:

 1/2

−1/2

∞

m=0

(−1)m
δm+1

im+2
dδ =

∞

m=0

(−1)m
(1/2)m+2 − (−1/2)m+2

(m+ 2)im+2
= −

∞

ℓ=0

2 · 2−2ℓ−3

(2ℓ+ 3)i2ℓ+3
,

where m = 2ℓ+ 1. Altogether, we get

Hn = log n+ log 2 +O


1

n


−

∞

ℓ=0

4−ℓ−1

2ℓ+ 3

n

i=1

1

i2ℓ+3
.

Estimating the sum by an integral, we see that
∞

i=n+1(1/i
2ℓ+3) ≤ 1/n2ℓ+2, and so using

∞
ℓ=0(1/n

2ℓ) =
O(1), we obtain

Hn = log n+ log 2−
∞

ℓ=0

4−ℓ−1

2ℓ+ 3

∞

i=1

1

i2ℓ+3
+O


1

n


.

In other words, there is a constant γ (known as Euler’s constant) such that Hn = log n+γ+O(1/n). The
constant γ can be estimated from the expression given above to be roughly γ ≈ 0.5772. It is conjectured
that γ is irrational, and probably also transcendental.
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3.1.2 Stirling’s formula

We can use exactly the same method to estimate n!. It is easier to estimate log n! =
n

i=2 log i instead.
A rough estimate is given by

 n+1

2

log x dx ≤
n

i=2

log i ≤
 n

1

log x dx.

An antiderivative of log x is x log x− x, and this shows log n! ≈ n log n− n = n log(n/e). To get a more
precise estimate, we proceed as before, with slight differences to make the calculation easier:

n

i=2

log i =

n

i=2

 i

i−1

[log i+ (log x− log i)] dx =

 n

1

log x dx−
n

i=2

 1

0

log
i− δ

i
dδ.

The first summand is equal to
 n

1

log x dx = x log
x

e


n

1
= n log

n

e
+ 1.

For the second summand, we need to use the Taylor expansion of log(1 + x):

log
i− δ

i
= log


1− δ

i


= −

∞

m=1

δm

mim
.

Integrating, this shows that the second summand equals

n

i=2

∞

m=1

1

(m+ 1)mim
=

Hn − 1

2
+

∞

m=2

1

(m+ 1)m

n

i=2

1

im
.

As before, we can estimate the finite sums over i by infinite sums to get

log n! = n log
n

e
+ 1 +

log n+ γ − 1

2
+

∞

m=2

1

(m+ 1)m

∞

i=2

1

im
+O


1

n


.

This shows that there exists a constant C such that

log n! = n log
n

e
+

log n

2
+ C +O


1

n


.

Since eO(1/n) = 1 +O(1/n), this implies that

n! ∼ eC
√
n(n/e)n.

Surprisingly, it turns out that eC =
√
2π.

3.2 Bonus: Proof of Cayley’s formula

Here is a simple proof of Cayley’s formula, which states that the number of trees on n vertices is nn−2.
This proof paraphrases the article Cayleys Formula: A Page From The Book by Arnon Avron and
Nachum Dershowitz.

Let T be a tree on n vertices, and choose an order on its vertices, v1, . . . , vn. Initially, we think of T
as a tree rooted at v1. We then disconnect v2 from its parent, so that now we have two trees, one rooted
at v1, and the other rooted at v2. We then disconnect v3 from its parent, so that we have three trees
rooted at v1, v2, v3. Continuing this way, after n− 1 steps we reach n disconnected vertices.

What information do we need to reverse this process? Suppose that we want to reverse the kth step.
We are given k + 1 rooted trees, and we need to figure out how to turn them into k rooted trees. The
information we need is the parent uk+1 of vk+1, of which there are n options, and vk+1 itself, of which
there are k options: it has to be the root of some tree, but cannot be the root of the tree containing
uk+1.
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In total, we obtain that the number Tn of trees on n vertices satisfies

n!Tn =

n−1

k=1

kn = (n− 1)!nn−1.

Dividing by n!, this gives Tn = nn−2.

4 Supercritical regime

We now switch to the supercritical regime, p = c/n for c > 1. In this regime, whp G(n, p) contains a
unique giant component of linear size, all other connected components being logarithmic in size. The
proof will involve several steps:

• First we will show a dichotomy for the size of the connected components: all of them are of size
O(log n) or Ω(n). (Lemma 4.1)

• Then we will count how many vertices in total participate in small components. (Lemma 4.3)

• Finally, we will show that there is only one linear-sized component. (Lemma 4.4)

We start with the size dichotomy.

Lemma 4.1. If p = c/n for c > 1 then whp every connected component of G(n, p) has size either
Oc(log n) (“small”) or Ωc(n) (“large”).

Proof. Let Ck denote the number of spanning trees of connected components of size k of G(n, p). There
are


n
k


kk−2 potential spanning trees, and each of them belongs to the graph with probability pk−1(1−

p)k(n−k) (the numbers in the exponents don’t sum up to

n
2


since we allow other edges inside the

component). Thus

E[Ck] =


n

k


kk−2pk−1(1− p)k(n−k) ≤ nk k

k

k!
k−2p−1pke−pk(n−k) ≤

O
 n

ck5/2


(ce1−c

n−k
n )k ≤ Oc(n)(ce

1−c)keck
2/n.

If k ≤
√
n then ck2/n ≤ c, and so

E[Ck] ≤ Oc(n)(ce
1−c)k.

Since ce1−c < 1, there is a constant Ac such that (ce1−c)Ac logn ≤ 1/n3. Whenever Ac log n ≤ k ≤
√
n,

we thus have
E[Ck] = Oc(1/n

2).

Taking a union bound, we see that whp there are no connected components of these sizes.
To see what happens when k ≥

√
n, consider the substitution k = Bn:

E[Ck] ≤ Oc(n)[(ce
1−c)BecB

2

]n = Oc(n)(ce
1−(1−B)c)nB .

Since c > 1, we can find a constant Bc such that ce1−(1−Bc)c < 1. Whenever k ≤ Bcn, the expecta-
tion E[Ck] will be exponentially small, and so a union bound shows that whp there are no connected
components of these sizes either.

The next step is to consider small components. It turns out that all of them are trees, whp.

Lemma 4.2. If p = c/n for c > 1 then whp the total number of vertices in small non-tree components
of G(n, p) is o(n).

Here small is as given by Lemma 4.1.
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Proof. Let Ck denote the number of spanning trees of connected components of size k of G(n, p), together
with an extra edge. There are at most


n
k


kk−2 · k2 of these, and each of them appears in the graph with

probability pk(1− p)k(n−k). Recycling our computations from the proof of Lemma 4.1, we see that when
k ≤

√
n,

E[Ck] ≤ Oc(1)
n

k5/2
(ce1−c)kk2p = Oc(1)

(ce1−c)k√
k

.

Therefore the expected total number of vertices in small non-tree components is

Ac logn

k=3

E[kCk] = Oc(1)

Ac logn

k=3

√
k(ce1−c)k = Oc(1).

Markov’s inequality shows that whp, the total number of vertices is o(n). (In fact, whp the total number
of vertices is o(f(n)) for any f(n) = ω(1).)

It remains to count the number of trees.

Lemma 4.3. If p = c/n for c > 1 then whp the number of vertices in small tree components is

(1± o(1))
x

c
n,

where x < 1 is the unique solution to xe−x = ce−c.

Note that the function f(x) = xe1−x, whose derivative is (1 − x)e1−x, increases from f(0) = 0 to
f(1) = 1 and then decreases to limx→∞ f(x) = 0.

Proof. Let Tk be the number of tree components of size k. When k = Oc(log n),

E[Tk] =


n

k


kk−2pk−1(1− p)k(n−k)+(k2)−(k−1) = (1− o(1))

n

c

kk−2

k!
ck(1− p)kn(1− p)−O(k2).

Now (1 − p)−O(k2) = 1 + o(1) and (1 − p)kn = (1 − o(1))e−ck (using estimates we have seen above).
Therefore

E[Tk] = (1± o(1))
n

c

kk−2

k!
(ce−c)k.

The expected number of vertices in small components is thus

E[S] :=
Ac logn

k=1

kE[Tk] = (1± o(1))
n

c

Ac logn

k=1

kk−1

k!
(ce−c)k.

The general term of the series satisfies

kk−1

k!
(ce−c)k = O(k−3/2)(ce1−c)k.

In particular, for some constant Kc we have

∞

k=Ac logn+1

kk−1

k!
(ce−c)k = Oc((ce

1−c)k) = Oc(n
−Kc) = o(1).

Therefore we can estimate the finite sum with an infinite one:

E[S] := (1± o(1))
n

c

∞

k=1

kk−1

k!
(ce−c)k.

Suppose now that xe−x = ce−c for x < 1, and consider G(n, x/n). In that regime, all but o(n)
vertices belong to small tree components (with a different constant Ax), and so, repeating essentially the
same calculations (with a bit more work) we obtain

n = (1± o(1))
n

x

∞

k=1

kk−1

k!
(xe−x)k + o(n),
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which in the limit n → ∞ implies that the infinite series equals x. Since xe−x = ce−c, it follows that

E[S] = (1± o(1))
x

c
n.

However, we are not done yet: it could be that the number of vertices in small components tends to
deviate a lot from its expectation. To show that this isn’t the case, we will use concentration of measure,
in the form of Chebyshev’s inequality.

We will have two different arguments, depending on E[Tk]. Let K1 = {k ≤ Ac log n : E[Tk] ≤ log2 n}
and K2 = {k ≤ Ac log n : E[Tk] > log2 n}. For every k ∈ K1, Markov’s inequality shows that Tk ≤ log4 n
with probability 1 − 1/ log2 n, and so whp Tk ≤ log4 n for all k ∈ K1. Since E[Tk] ≤ log2 n, this shows
that whp |Tk − E[Tk]| ≤ O(log4 n) for all k ∈ K1.

For k ∈ K2, a calculation along the lines of Theorem 3.2 shows that

V[Tk] ≤ E[Tk] + [(1− p)−k2

− 1]E[Tk]
2 =


1

E[Tk]
+ [(1− p)−k2

− 1]


E[Tk]

2.

The second term is at most

(1− p)−k2

− 1 ≤ eO(pk2) − 1 = O(pk2) = O


log2 n

n


,

since for x ≤ 1 we have ex ≤ 1 + O(x). In total, we get V[Tk] = O(E[Tk]
2/ log2 n), and so Chebyshev’s

inequality shows that

Pr[|Tk − E[Tk]| ≥ E[Tk]/s| ≤
V[Tk]

E[Tk]2
s2 = O(s2/ log2 n).

Choosing s = log1/3 n, we get that |Tk − E[Tk]| < E[Tk]/ log
1/3 n with probability O(1/ log4/3 n). Hence

whp, |Tk − E[Tk]| < E[Tk]/ log
1/3 n for all k ∈ K2.

Combining the contributions of both K1 and K2, we get that whp

|S − E[S]| ≤
Ac logn

k=1

k|Tk − E[Tk]| ≤


k∈K1

Ac log n ·O(log4 n) +


k∈K2

kTk

log1/3 n
≤ O(log6 n) +

E[S]
log1/3 n

.

Since E[S] = Θ(n) we have log6 n = o(E[S]), and so in total, we get that whp |S − E[S]| = o(E[S]).

This leaves roughly (1−x/c)n vertices in large components. A short argument shows that all of these
vertices must belong to the same connected component.

Lemma 4.4. If p = c/n for c > 1 then whp G(n, p) contains a unique large component.

Proof. Let δ = o(1/n) be a parameter to be chosen, and let p′ = p−δ
1−δ . If G

′ ∼ G(n, p′) and G is obtained
from G′ by adding each edge not already in G′ with probability δ, then G ∼ G(n, p); this is because the
probability that an edge appears in the graph is p′ + (1 − p′)δ = (1 − δ)p′ + δ = p. Lemma 4.1, while
nominally proved only for p, holds for p′ as well, showing that whp each large component has size at
least B′

cn. There are at most 1/B′
c of these. Consider any two such components, C1, C2. The probability

that none of the edges between C1 and C2 is added when moving to G is

(1− δ)|C1|·|C2| ≤ (1− δ)B
′2
c n2

≤ e−δB′2
c n2

.

If δ = ω(1/n2) then this expression becomes e−ω(1) = o(1), and so whp any two components will be
connected in G.

Conversely, the expected number of edges added to G′ is at most

n
2


δ ≤ n2δ, and so if f(n) =

ω(1) then whp at most n2f(n)δ edges are added. This means that any large component in G must
have arisen by connecting at most n2f(n)δ components of G′, one of which must have consisted of
at least Bcn/(n

2f(n)δ) = Bc/(nf(n)δ) vertices. If δ = o(1/n log n) then we can choose f(n) so that
Bc/(nf(n)δ) > Ac log n, and so every large component in G contains a large component of G′.

Summarizing, if δ = ω(1/n2) and δ = o(1/n log n), then whp every large component of G contains a
large component of G′, and any two large components of G′ are connected in G. Choosing δ = 1/n1.5

(say), this means that G contains a unique large component whp.
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Our work in this section is summarized in the following theorem.

Theorem 4.5 ([FK16, Theorem 2.14]). If p = c/n for c > 1 then whp G(n, p) consists of a giant
component containing (1 + o(1))(1− x/c)n vertices, and tree components of size O(log n).

5 Critical regime

So far we have addressed G(n, c/n) for c < 1 (the subcritical regime) and for c > 1 (the supercritical
regime). Now we will analyze what happens at the threshold c = 1. This doesn’t quite cover all the
cases, since the behavior at c = 1+ δ(n) for |δ(n)| = o(1) doesn’t quite match the behavior at c = 1, but
it already reveals a curious phenomenon: whereas in the subcritical regime all connected components
had logarithmic size and in the supercritical regime there was a giant component of linear size, here there
will be several components of size roughly n2/3.

The argument is divided into two parts. First we show that whp there exists a connected component
of size roughly n2/3. Then we show that whp there are no larger components. Surprisingly, the second
part is much harder.

Lemma 5.1. For every constant  > 0, with probability 1 − , G(n, 1/n) has a tree component whose
size is Θ(n

2/3).

Proof. Let k = Cn2/3. The expected number of tree components of this size is

E[Tk] :=


n

k


kk−2


1

n

k−1 
1− 1

n

k(n−k)+(k2)−(k−1)

=
nk

nk

kk

k!

n

k2


1− 1

n

k(n−k)+(k2)−(k−1)

.

Since we are aiming at showing that this number is large, we will carefully estimate all factors in the
expression. For the first factor, notice that log(1 − x) = −x − x2/2 − Θ(x3) implies that 1 − x =

e−x−x2/2−Θ(x3), and so

nk

nk
=


1− 1

n


· · ·


1− k − 1

n



= exp


−1 + · · ·+ (k − 1)

n
− 12 + · · ·+ (k − 1)2

2n2
−Θ


13 + · · ·+ (k − 1)3

n3



= exp


−k(k − 1)

2n
− k(k − 1)(2k − 1)

6n2
−Θ


k4

n3



= exp


−C2n1/3

2
− C3

6
±Θ


1

n1/3


.

The factor kk/k! equals (1± o(1))ek/
√
2πk. The remaining factor equals

exp−


1

n
+

1

2n2


Cn5/3 − C2n4/3

2
±O(n2/3)


= exp−


Cn2/3 − C2n1/3

2
±O


1

n1/3


.

In total, since n/k5/2 = n−2/3/C5/2 we obtain

E[Tk] := (1± o(1))
n−2/3

C5/2
√
2π

exp−


C2n1/3

2
+

C3

6


−

Cn2/3


+


Cn2/3 − C2n1/3

2


=

(1± o(1))
n−2/3

C5/2
√
2πeC3/6

.

Let A ≥ 1 be some number. Let T be the collection of all tree components whose size is between
A−1n2/3 and An2/3, and for T ∈ T let XT denote the event that T is a component of G(n, p). We define
S =


T∈T XT , that is, S is the number of tree components of G(n, p) whose size is between A−1n2/3

and An2/3. The preceding calculation shows that

E[S] =
An2/3

k=A−1n2/3

E[Tk] = (1± o(1))

 A

1/A

1

C5/2
√
2πeC3/6

dC,
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where the factor n−2/3 disappeared due to the substitution. Using the Taylor expansion of ex it is not
difficult to estimate this sum as

(1± o(1))

 A

1/A

1

C5/2
√
2πeC3/6

dC ≈ (1± o(1))

 A

1/A

1

C5/2
√
2π · 1

dC ≈

(1± o(1))
−2

3
√
2π

C−3/2


A

A−1

≈
√
2

3
√
π
A3/2 +O(

√
A).

Thus we expect there to be some tree component whose size is between A−1n2/3 to An2/3.
We now want to apply the second moment method:

E[S2] =


T1,T2∈T
Pr[XT1 and XT2 ] = E[S] +



T1 ∕=T2
T1,T2 compatible

(1− p)−|T1|·|T2| Pr[XT1 ] Pr[XT2 ].

In earlier applications of the method, it had been the case that the (1−p)−|T1|·|T2| factor were close to 1,

but in our case it is roughly e|T1|·|T2|/n = eΘA(n1/3). On the other hand, the sum is only over compatible
T1, T2. The probability that random T1, T2 are compatible is at most the probability that random sets
of size |T1|, |T2| ≈ n2/3 are disjoint, which is


1− |T1|

n


· · ·


1− |T1|

n− |T2|+ 1


≈ exp−


|T1|
n

+ · · ·+ |T1|
n− |T2|+ 1

+
|T1|2
2n2

+ · · ·+ |T1|2
2(n− |T2|+ 1)2


≈

exp−

|T1||T2|

n
+

(|T1|+ |T2|)|T1||T2|
2n2


.

Similarly,

(1− p)−|T1||T2| ≈ exp
|T1||T2|

n
.

In both cases the approximation hides 1+ o(1) factors. Since e−(|T1|+|T2|)|T1||T2|/2n2 ≤ 1, we deduce that

E[S2] ≤ E[S] + (1 + o(1))E[S]2.

Chebyshev’s inequality thus shows that

Pr[S = 0] ≤ V[S]
E[S]2

≤ 1

E[S]
+ o(1).

If we choose  to be subconstant then we get a result holding with high probability, but we won’t be
able to pin down the order of magnitude of the tree component.

Lemma 5.2. For every constant  > 0, with probability 1 − , all components of G(n, 1/n) have size
O(n

2/3).

Proof. Let V be the set of vertices of G(n, 1/n). Fix some vertex x ∈ V . Let Xd be the number of
vertices at distance d from x. We think of the sequence X0, X1, X2, . . . as being determined by running
BFS from x. In particular, at step d, after having discovered all vertices at distance at most d, we are
unaware of the status of any edge other than those touching a vertex at distance less than d from x.

If Xd = ℓ then a vertex is connected to one of these ℓ vertices with probability at most ℓ/n, and so
the expected number of vertices at distance d + 1 is at most (n − ℓ)ℓ/n < ℓ (since there are at most
n− ℓ potential vertices). Thus E[Xd+1|Xd] < E[Xd], showing that the process Xd is a submartingale. In
particular, E[Xd] ≤ 1 for all d.

Let πd = Pr[Xd > 0]. We can estimate πd+1 as follows. First we find the X1 ∼ Bin(n − 1, 1/n)
vertices at distance one from x. Then we run a BFS process from each of them. Intuitively, for Xd+1 to
be positive, one of these processes must reach level d, and so πd+1 ≤ 1− (1− πd)

X1 .
Here is a more formal justification, using the technique of coupling. Let X1 = m and let y1, . . . , ym be

the neighbors of x. We will simulate m independent BFS processes, starting from y1, . . . , ym, generating
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a coupled BFS process from x where in its first step the vertices y1, . . . , ym are discovered. All processes
are run on the set of vertices V . We call them the x, y1, . . . , ym processes.

Each BFS process contains three types of vertices: active vertices (vertices discovered in the preceding
step), old vertices (vertices discovered in previous steps), and undiscovered vertices. When running the
BFS process from a vertex v, initially v is active, and all other vertices are undiscovered. At each step, we
expose all edges from active vertices to undiscovered vertices: each such edge belongs to the graph with
probability p = 1/n. All neighbors of active vertices are marked active, and then the previously active
vertices are marked old. We will couple the x, y1, . . . , ym processes so that the x process individually
behaves like a BFS from x conditioned on the neighbors of x being y1, . . . , ym, and the y1, . . . , ym behave
like independent BFS processes from y1, . . . , ym. The coupling will have the property that if the x process
survives for d+1 steps, then at least one of the y1, . . . , ym processes survives for d steps. The inequality
πd+1 ≤ 1− (1− πd)

m will immediately follow.
For the purpose of the coupling, the active vertices of the y1, . . . , ym will be colored using the colors

green and red. Red vertices are ones which are ignored in the x process. We initialize each yi process
with yi as an active green vertex, and all other vertices are undiscovered. The x process is initialized with
x as old and y1, . . . , ym as active. We then execute the following procedure d times. Run one step of the
BFS process for the y1, . . . , ym processes. An active vertex is colored green if one of its previously active
neighbors is green, and otherwise it is colored red. We then consider the set S of all green active vertices
in the y1, . . . , ym processes, partitioning it into two parts: S1 consists of those already discovered by the
x process, and S2 consists of the rest. We advance the x process by marking the vertices in S2 as active,
and the previously active vertices as old. Then we adjust the colors: all active copies of vertices in S1

in the y1, . . . , ym processes are colored red. If a vertex in S2 is green active in several of the y1, . . . , ym
processes, we choose one of them arbitrarily, and color all other copies red.

Our construction guarantees that at each step, there is a one to one correspondence between active
vertices in the x process and green active vertices in the y1, . . . , ym processes. This ensures that the
resulting x process behaves exactly like a BFS process (work it out!). The y1, . . . , ym processes are also
independent BFS processes, as promised. Finally, by construction, if the x process lasts for d+ 1 steps
then one of the y1, . . . , ym processes has lasted for d steps. This implies that πd+1 ≤ 1 − (1 − πd)

m.
Considering all possible values of m, we conclude that

πd+1 ≤ E
X∼Bin(n−1,1/n)

[1− (1− πd)
X ].

When n is large, the distribution Bin(n− 1, n) approaches a Poisson distribution with expectation 1,
which we denote by Po(1). Indeed, for each particular k,

Pr[Bin(n− 1, n) = k] =


n− 1

k


1

n

k 
1− 1

n

n−1−k

=
(1− 1/n)n

k!

(n− 1)k

nk
(1− 1/n)−1−k −→ e−1

k!
.

In this case we can say more2: Po(1) stochastically dominates Bin(n−1, 1/n). That is, there is a coupling
(X,Y ) such that X ∼ Bin(n − 1, 1/n), Y ∼ Po(1), and X ≤ Y always. Indeed, let λ = − log(1 − 1/n),
and note that λ̃ := 1 − (n − 1)λ > 0, since (1 − 1/n)n−1 > 1/e classically. We define the coupling as
follows:

• Let Y1, . . . , Yn−1 ∼ Po(λ) and Ỹ ∼ Po(λ̃).

• Let Xi indicate the event Yi ≥ 1.

• Define X = X1 + · · ·+Xn−1 and Y = Y1 + · · ·+ Yn−1 + Ỹ .

Since Po(α) + Po(β) ∼ Po(α+ β), it follows that Y ∼ Po(1). Furthermore, since

Pr[Yi ≥ 1] = 1− Pr[Yi = 0] = 1− e−λ = 1−

1− 1

n


=

1

n
,

we see that Xi ∼ Ber(1/n) and so X ∼ Bin(n− 1, 1/n). Finally, by construction Xi ≤ Yi and so X ≤ Y .

2This folklore argument is adapted from [KM10]. They also prove the stronger result that Bin(n, 1/(n+1)) stochastically
dominates Bin(n− 1, 1/n).
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This coupling easily implies that

πd+1 ≤ E
X
[1− (1− πd)

X ] ≤ E
Y
[1− (1− πd)

Y ] = 1− e−1
∞

n=0

(1− πd)
n

n!
= 1− e−πd .

The right-hand side of the inequality is increasing in πd, and so πd ≤ xd, where xd is given by the
recurrence

xd+1 = 1− e−xd , x0 = 1.

A Taylor expansion shows that xd+1 ≤ xd, and conversely xd ≥ 0 can be proved by induction. Thus xd

approaches some non-negative limit x, which satisfies x = 1 − e−x; the only solution is x = 0. In other
words, xd → 0.

For small xd, we can approximate the right hand side by the first few terms of the Taylor series:

xd+1 ≈ 1− (1− xd + x2
d/2− · · · ) = xd − x2

d/2 + · · · .

This suggests that the sequence xd is comparable to the sequence yd given by

yd+1 = yd − y2d/2

and a suitable initial condition. This sequence, in turn, is comparable to the solution of the differential
equation

Y ′ = −Y 2/2,

which is Y (d) = 2/(d+ C) for some constant C. This leads us to conjecture that xd = (1 + o(1))2/d.
Indeed, we now prove by induction that xd ≤ 2/d. This is clear for d ≤ 2. For d > 2 we have

xd+1 ≤ 1− e−xd ≤ 1− e−2/d ≤ 1−

1− 2

d
+

4

2d2
− 8

6d3


.

Thus
2

d+ 1
− xd+1 ≥ 2

d+ 1
− 2

d
+

2

d2
− 4

3d3
=

2(d− 2)

3(d+ 1)d3
≥ 0.

We can now estimate the probability that the connected component of x contains at least Cn2/3

vertices. Suppose that the BFS process terminates after d steps. With probability at most 2/
√
Cn1/3 it

happens that d ≥ 2
√
Cn1/3, and otherwise Markov’s inequality shows that

Pr[X0 + · · ·+Xd ≥ Cn2/3] ≤ E[X0 + · · ·+Xd]

Cn2/3
≤ 2√

Cn1/3
.

Thus the probability that the connected component of x contains at least Cn2/3 vertices is at most

4√
Cn1/3

.

The expected number of vertices participating in such components is 4n2/3/
√
C. Markov’s inequality

shows that the probability that at least Cn2/3 vertices participate in such components is at most 4/C3/2,
and this is an upper bound on the probability that such a component exists.

Combining both results together, we obtain the following theorem.

Theorem 5.3 ([FK16, Theorem 2.21]). For every constant  > 0, with probability 1 − , the largest
component of G(n, 1/n) has size Θ(n

2/3).
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6 Connectivity

We have seen that at p = 1/n, the random graph G(n, p) undergoes a phase transition: a giant component
emerges. Aside from the giant component, the graph also contains logarithmic-sized components. When
are these swallowed completely by the giant component? It turns out that the toughest cookies to crack
are isolated vertices, as the following lemma implies.

Lemma 6.1. If p = (log n + c)/n, for some constant c, then whp G(n, p) has no connected component
whose size is in the range [2, . . . , n/2].

Proof. Given k, we will estimate the expectation of the number of spanning trees of connected components
of size k ≤ n/2:

E[Tk] :=


n

k


kk−2pk−1(1− p)k(n−k)

≤ (1 + o(1))nk k
k

k!

n

log n
pk(1− p)k(n−k)

≤ O


n

log n


e(log n+ c)

(ecn)1−k/n

k

since 1− p ≤ (e−pn)1/n = (ecn)−1/n. Since k ≤ n/2, we can bound this by

E[Tk] ≤ O


n

log n


e(log n+ c)√

ecn

k

.

We can assume that n is large enough so that e(log n+ c) ≤
√
ecn. This shows that for k ≥ 5,

E[Tk] ≤ O


n

log n
· log

5 n

n5/2


= O


log4 n

n3/2


= o


1

n


,

and so whp there are no connected components of size 5 ≤ k ≤ n/2.
To handle small k, we will need to be a bit more careful: for each constant k,

E[Tk] ≤ O


n

log n


e(log n+ c)

ecn

k

(ecn)k
2/n ≤ O


logk−1 n

nk−1


.

This is o(1) for k ≥ 2, and so whp there are also no connected components of size 2 ≤ k ≤ 4.

The startling implication is that the only obstruction for connectedness is isolated vertices! (We’ll
work this out in detail later.) So we turn our focus to studying the number of isolated vertices. When
p = (log n + c)/n, the probability that a given vertex is isolated is (1 − p)n−1 ≈ e−c/n, and so the
expected number of isolated vertices is roughly e−c. Intuitively, there is only slight dependence between
different vertices, and so we expect the distribution of the number of isolated vertices to be roughly
Poisson, and this explains the mysterious probability e−e−c

.

Theorem 6.2 ([FK16, Theorem 3.1(ii)]). If p = logn+c
n then for every k, the probability that G(n, p)

has exactly k isolated vertices tends to

e−e−c e−ck

k!
,

which matches the distribution of a Po(e−c) random variable.

Proof. Let X denote the number of isolated vertices. We start with the case k = 0. The idea is to use
inclusion-exclusion. For a set S of vertices, let IS denote the event that all vertices in S are isolated.
This event has probability

Pr[IS ] = (1− p)(
|S|
2 )+|S|(n−|S|).
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The inclusion-exclusion principle (known in this context as the Bonferroni inequalities) shows that for
each fixed ℓ,

1−


|S|=1

Pr[IS ] + · · ·−


|S|=2ℓ+1

Pr[IS ] ≤ Pr[X = 0] ≤ 1−


|S|=1

Pr[IS ] + · · ·+


|S|=2ℓ

Pr[IS ].

There are

n
ℓ


sets of size ℓ, and so for any fixed ℓ,



|S|=ℓ

Pr[IS ] =


n

ℓ


(1− p)nℓ−O(ℓ2) → e−cℓ

ℓ!
,

since

n
ℓ


≈ nℓ/ℓ!, (1− p)nℓ ≈ e−(logn+c)ℓ = e−cℓ/nℓ, and (1− p)O(ℓ2) = 1− o(1). Therefore for any fixed

ℓ,


|S|=ℓ

Pr[IS ] →
e−cℓ

ℓ!
.

Thus for every ℓ and  > 0, for large enough n

1− e−c

1!
+ · · ·− e−(2ℓ+1)c

(2ℓ+ 1)!
−  ≤ Pr[X = 0] ≤ 1− e−c

1!
+ · · ·+ e−2ℓc

(2ℓ)!
+ .

The series 1− e−c/1! + e−2c/2!− · · · converges to e−e−c

. Thus for any  > 0 there exists ℓ such that

1− e−c

1!
+ · · ·− e−(2ℓ+1)c

(2ℓ+ 1)!
≥ e−e−c

− , 1− e−c

1!
+ · · ·+ e−2ℓc

(2ℓ)!
≤ e−e−c

+ .

Altogether, we deduce that for any  > 0, for large enough n,

e−e−c

− 2 ≤ Pr[X = 0] ≤ e−e−c

+ 2.

This implies that

Pr[X = 0] −→ e−e−c

.

The case of general k is similar, and left to the reader.

We can conclude our main result, stating the threshold of connectedness.

Theorem 6.3 ([FK16, Theorem 4.1,Theorem 4.2]). If p = logn+c
n then the probability that G(n, p) is

connected tends to e−e−c

.
Furthermore, whp pCon = pIso.

Proof. The graph G(n, p) is connected if there is no connected component whose size is at most n/2,
since there can only be one connected component of larger size. This, in turn, happens with probability
o(1) + (1± o(1))e−e−c

, and so G(n, p) is connected with probability tending to e−e−c

.
It remains to prove that pCon = pIso. The idea is to show that whp, at time p− = logn−log logn

n

the graph isn’t connected, while at time p+ = logn+log logn
n the graph is connected. The small gap

makes it unlikely that isolated vertices will be connected. We will consider graphs G− ∼ G(n, p−)
and G+ ∼ G(n, p+) generated using the coupling process; thus G+ \ G− consists of those edges whose
timestamp is between p− and p+.

The graph coupling easily implies that when p = (log n− ω(1))/n, whp G(n, p) isn’t connected, and
when p = (log n + ω(1))/n, whp G(n, p) is connected. In particular, whp G− is not connected whereas
G+ is connected. Moreover, Lemma 6.1 holds for p− as well; the only difference in the calculations is a
few more logarithmic terms. Thus whp, p− ≤ pIso ≤ pCon ≤ p+.

The expected number of isolated vertices at time p− is

n(1− p−)
n−1 = n exp[(n− 1) log(1− p−)] = n exp[(n− 1)(−p− −Θ(p2−))] =

n exp


− log n+ log log n±Θ


log2 n

n


= (1 + o(1)) log n.
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Markov’s inequality shows that whp, the number of isolated vertices at time p− is at most log2 n.
Conditioned on G−, the probability that an edge gets added between time p− and time p+ is

2 log logn/n
1−p−

= O( log logn
n ). There are at most log4 n edges which connect two isolated vertices, and

the probability that any of them gets added between time p− and time p+ is O( log
4 n log logn

n ) = o(1).
Thus, whp all edges in G+ \G− touch the giant component. In particular, whp the edge that makes the
graph connected connects an isolated vertex to the giant component, showing that whp pCon = pIso.

Connection to the coupon collector problem In the coupon collector problem, we are given an
infinite sequence of coupons, each of which is a uniformly random number drawn from [n]. The question
is how long we have to wait until we have collected all different coupons. If we denote by Yi the first time
we have i different coupons and Xi = Yi − Yi−1, then Xi has geometric distribution G(1 − (i − 1)/n),
and so

E[Yn] =

n

i=1

E[Xi] = n


1

n
+

1

n− 1
+ · · ·+ 1


= nHn = n log n+ γn+O(1),

where Hn is the nth harmonic number. We thus expect to collect about n log n coupons until we see all
different kinds. This suggests calculating the probability that after collection m = n log n+ cn coupons,
we have collected all of them. For S ⊆ [n], let ES be the event that we haven’t seen the coupons in S
after collecting m coupons. The probability that we have seen all coupons is

1−


i

E{i} +


i ∕=j

E{i,j} − · · · = 1− n


1− 1

n

m

+


n

2


1− 2

n

m

− · · · .

Mimicking the proof of Theorem 6.2, this probability tends to

1− ne−m/n +
n2

2
e−2m/n − · · · = 1− e−c +

e−2c

2!
− · · · = e−e−c

.

What is the connection to connectivity? Consider the G(n,m) model. When the number of edges

is relatively small, say o


n
2


, there isn’t a big difference between sampling edges with and without

replacement. When we sample edges with replacement, this is like the coupon collectors problem, only
we get two coupons for each edge (which also have to be different). This naturally leads to the conjecture

that the critical m is about n log n/2 (although this is not o


n
2


, which corresponds to p = log n/n.

Moreover, the critical window n log n+ cn in the coupon collectors problem translates to m = (n log n+
cn)/2 and to p = (log n+ c)/n. Our calculations above show that the various dependencies don’t effect
the process by much.

More on Poisson distributions There are two different models that give rise to Poisson distributions.
The first one is Bin(n,λ/n). As n tends to infinity, the binomial distribution converges in probability to
Po(λ). Indeed,

Pr[Bin(n, λ
n ) = k] =


n

k


λk

nk


1− λ

n

n−k

−→ e−λλ
k

k!
.

since

n
k


∼ nk/k!, (1− λ/n)n → e−λ, and (1− λ/n)−k = 1 + o(1).

The second model is the one with exponential clocks. Consider an infinite sequence Ti of variables
with standard exponential distribution E(1) (so Pr[Ti > t] = e−t), and the corresponding partial sums
sequence T1, T1 + T2, . . .. We can think of the partial sums sequence as describing the following process:
at time zero, we start an exponential clock, and when it “arrives”, we mark this, and start another
one, and so on. The partial sums sequence marks the arrival times. The number of arrivals until time
λ has distribution Po(λ). We can see this by dividing the interval [0,λ] into n parts, and using the
alternative definition of the exponential distribution as a memoryless distribution which on an interval
of infinitesimal length  has a probability of  to “buzz” (given that it hasn’t buzzed so far). In some
sense, this exponential process is the limit of Bin(n,λ/n) at n = ∞.
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7 Subgraphs

7.1 Subgraph thresholds

Fix a graph H. How large should p be to ensure that whp G(n, p) contains a (non-induced) copy of
H? It is easy to get a lower bound on p, by calculating the expected number of copies of H. The exact
answer will depend on the number of automorphisms of H. We will use the following notation:

• V (H) is the set of vertices of H, and v(H) is their number.

• E(H) is the set of edges of H, and e(H) is their number.

• A(H) is ths automorphism group of H, and a(H) is its size.

Lemma 7.1 ([FK16, Theorem 5.2]). Given a graph H, the expected number of copies of H in G(n, p) is

1− o(1)

a(H)
nv(H)pe(H).

Consequently, if p = o(n−v(H)/e(H)) then whp G(n, p) contains no copy of H, and if p = ω(n−v(H)/e(H))
then the expected number of copies of H in G(n, p) is ω(1).

Proof. The idea is to consider the expected number of mappings {1, . . . , n} → V (H) which define a copy
of H. This counts each copy of H in G exactly a(H) times, and so we will divide by a(H) to get expected
number of copies. Each “ordered” copy of H appears with probability pe(H), and so the expected number
of copies is

1

a(H)
nv(H)pe(H) =

1− o(1)

a(H)
nv(H)pe(H).

If p = ω(n−v(H)/e(H)) then the expected number of copies of H is ω(1). Does that guarantee that G
contains a copy of H whp? Consider the following example: K4 with an extra edge attached. Lemma 7.1
predicts a threshold of n−5/7. However, the same lemma shows that K4 itself only appears at Ω(n−2/3),
and n−5/7 = o(n−2/3)! What is happening here? The reason that there are ω(1) copies of H at ω(n−5/7)
is that each copy of K4 (if any) creates roughly ω(n2/7) copies of H. So even though it is unlikely that
H will appear at all, if it does appear (due to chance occurrence of K4) then many copies of H are likely
to appear.

It is easy at this point to formulate another guess at the correct threshold.

Definition 7.2. The density of a graph H is d(H) = e(H)/v(H), which is half the average degree of
H. The maximum subgraph density (MSD) of a graph H, denoted m(H), is the maximum density of a
subgraph of H.

A graph H is balanced if m(H) = d(H). It is strictly balanced if d(K) < d(H) for all proper subgraphs
K of H.

Lemma 7.1 shows that if p = o(n−1/d(H)) then whp G(n, p) contains no copy of H. The following
theorem finds the correct threshold.

Theorem 7.3 ([FK16, Theorem 5.3]). Let H be a graph. If p = o(n−1/m(H)) then whp G(n, p) contains
no copy of H, and if p = ω(n−1/m(H)) then whp G(n, p) does contain a copy of H.

Proof. The first claim follows directly from Lemma 7.1. We will prove the second claim using the second
moment method, showing that V[NH ] = o(E[NH ]2) when p = ω(n−1/m(H)), where NH is the number of
copies of H. Since E[NH ] = ω(1) by Lemma 7.1, this will complete the proof.

Let Hi be an enumeration of all possible copies of H, each appearing exactly once. We have

V[NH ] = E[N2
H ]− E[NH ]2

=


i,j

Pr[Hi ∪Hj ∈ G(n, p)]−


i,j

Pr[Hi ∈ G(n, p)] Pr[Hj ∈ G(n, p)]

=


i,j

(Pr[Hi ∪Hj ∈ G(n, p)]− p2e(H))

=


K ∕=∅



i,j :
Hi∩Hj≈K

p2e(H)(p−e(K) − 1).
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In the last step, we go over all possible isomorphism types of intersections of two copies ofH; ifHi∩Hj = ∅
then the corresponding sum vanishes, so we can ignore such terms. Given K, a pair of copies of H with
intersection K is a structure consisting of 2v(H) − v(K) vertices, and so there are O(n2v(H)−v(K)) of
these. This shows that

V[NH ] =


K ∕=∅

O(n2v(H)−v(K)p2e(H)−e(K))(1− pe(K))

≤ O



n2v(H)p2e(H)


K ∕=∅

n−v(K)p−e(K)



 .

Since d(K) ≤ m(H), for each K ∕= ∅ we have

n−v(K)p−e(K) = (n−1p−d(K))v(K) = (n−1o(nd(K)/m(H)))v(K) = o(1).

Since E[NH ] = Θ(nv(H)pe(H)), we conclude that V[NH ] = o(E[NH ]2), completing the proof.

7.2 Subgraph counts

Suppose that p = c/n1/m(H). Lemma 7.1 shows that the expected number of copies of H in G(n, p)
tends to

ce(H)

a(H)
.

As in the case of isolated vertices, ifH is balanced, there is only slight dependence between the appearance
of different copies of H, and so it is natural to expect that the distribution is roughly Poisson. This
turns out not to be the case in general, but a Poisson law does hold when H is strictly balanced.

Theorem 7.4 ([FK16, Theorem 5.4]). Let H be a strictly balanced graph. If p = cn−1/d(H) then for
every k, the probability that G(n, p) has exactly k copies of H tends to

e−λλ
k

k!
, where λ =

ce(H)

a(H)
,

which matches the distribution of a Po(λ) random variable.

Proof. As in the proof of Theorem 6.2, we will only prove the case k = 0, the general case being very
similar. Let Hi be a list of all possible copies of H, as in the proof of Theorem 7.3. We will show that
for every ℓ ≥ 1,



i1<···<iℓ

Pr[Hi1 , . . . , Hiℓ ∈ G(n, p)] → λℓ

ℓ!
.

Then we can conclude the proof as in Theorem 6.2.
We can decompose the sum into two parts: pairwise vertex-disjoint Hi1 , . . . , Hiℓ , and all other cases.

The number of disjoint ℓ-tuples is (1 − o(1))(nv(H)/a(H))ℓ/ℓ! (the ℓ! factor comes from the condition
i1 < · · · < iℓ), and each of them appears in the graph with probability pe(H)·ℓ. The total contribution of
the disjoint ℓ-tuples is thus

1− o(1)

ℓ!


nv(H)

a(H)

ℓ 
ce(H)

ne(H)/d(H)

ℓ

=
1− o(1)

ℓ!


ce(H)

a(H)

ℓ

→ λℓ

ℓ!
.

Our goal is, therefore, to show that all other cases contribute o(1) to the sum.
Consider a structure composed of ℓ copies of H, not all of them disjoint. We will show that the

density of each such structure is strictly larger than d(H). As a result, the total contribution of all such
structures S is

O(nv(S)pe(S)) = O((n1−d(S)/d(H))v(S)) = o(1).

It remains to estimate the density of graphs formed by putting together ℓ copies of H. Let H1, . . . , Hℓ

be ℓ graphs which are isomorphic to H, where Hi ∕= Hj for all i ∕= j, and let Ti = H1 ∪ · · ·∪Hi. We will
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prove by induction that d(Ti) ≥ d(Hi), and furthermore d(Ti) > d(Hi) if H1, . . . , Hi are not pairwise
vertex-disjoint. This will complete the proof.

The claim is clear for i = 1. Suppose now that it holds for Ti. To prove it for Ti+1, consider the
graph K = (V (Ti) ∩ V (Hi+1), E(Ti) ∩ E(Hi+1)). Since H1, . . . , Hℓ are all different, K is isomorphic to
a strict subset of H, and so either K = ∅ or d(K) < d(H). We have

d(Ti+1) =
e(Ti) + e(H)− e(K)

v(Ti) + v(H)− v(K)
≥ d(Ti)v(Ti) + d(H)v(H)− d(K)v(K)

v(Ti) + v(H)− v(K)
.

Since d(Ti) ≥ d(H) and either v(K) = 0 or d(K) > d(H), this is always at least d(H). Moreover,
if either d(Ti) > d(H) (which happens when H1, . . . , Hi are not vertex-disjoint) or v(K) ∕= 0 (which
happens when Hi+1 vertex-intersects H1, . . . , Hi), this is strictly larger than d(H). This completes the
inductive proof.

8 Thresholds

8.1 Sharp and coarse thresholds

We have seen several thresholds so far. Two of the most prominent of them are the connectivity threshold
and the subgraph appearance thresholds. Let us compare the connectivity threshold and the threshold
for the appearance of a triangle:

1. If p = logn
n + c

n then the probability that G(n, p) is connected tends to e−e−c

.

2. If p = c
n then the probability that G(n, p) contains a triangle tends to 1− e−c3/6.

The critical scale for connectivity has order of magnitude 1/n, which is asymptotically smaller than
the threshold itself log n/n. In contrast, the critical scale for triangles has order of magnitude 1/n,
matching the threshold. We say that the former threshold is sharp, and the latter coarse. More formally:

Definition 8.1. A graph property is a property of graphs which is invariant under permutation of the
vertices. A property is non-trivial if for all n there is some graph satisfying the property and some graph
not satisfying the property.

Let P be a non-trivial monotone graph property, and let p∗(n) be the probability at which Pr[G(n, p∗) ∈
P ] = 1/2. The property P has a sharp threshold if:

1. For all  > 0, Pr[G(n, (1− )p∗) ∈ P ] → 0.

2. For all  > 0, Pr[G(n, (1 + )p∗) ∈ P ] → 1.

Otherwise P has a coarse threshold.

Which properties have sharp thresholds? Friedgut’s celebrated sharp threshold theorem [Fri99]
roughly says that a monotone graph property has a sharp threshold unless it is “correlated” with the
appearance of small graphs. In other words, the property of containing a subgraph is more or less the
only kind of property having a coarse threshold.

On the other, every monotone graph property does have a threshold, in several senses. The first is
very simple.

Theorem 8.2. Let P be a non-trivial monotone graph property, and let p∗(n) be the probability such
that Pr[G(n, p∗) ∈ P ] = 1/2. Then:

1. If p(n) = o(p∗(n)) and p∗(n) = o(1) then Pr[G(n, p) ∈ P ] → 0.

2. If p(n) = ω(p∗(n)) then Pr[G(n, p) ∈ P ] → 1.

Proof. We start with the second result. Let C(n) = ⌊p(n)/p∗(n)⌋ → ∞. If G1, . . . , GC ∼ G(n, p∗) then
the probability that at least one of G1, . . . , Gc has property P is 1−2−C , and so the union G1∪ · · ·∪GC

satisfies property P with probability at least 1 − 2−C . On the other hand, the union G1 ∪ · · · ∪ GC
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contains each edge with probability 1 − (1 − p∗)C ≤ Cp∗ ≤ p. The graph coupling thus implies that
G(n, p) satisfies property P with probability 1− 2−C = 1− o(1).

The first result is very similar. Let C(n) be the largest integer satisfying 1− (1− p∗)C ≤ p. Since

1− (1− p∗)C ≥ Cp∗ −

C

2


p∗2 = Cp∗(1− 1

2 (C − 1)p∗),

the assumption p∗ = o(1) implies that C → ∞. We obtain the required result by taking the intersection
of C graphs G1, . . . , GC . Details left to the reader.

8.2 Friedgut–Kalai threshold theorem

Another important result is due to Friedgut and Kalai [FK96].

Theorem 8.3. Let P be a non-trivial monotone graph property, and let p∗(n) be the probability such
that Pr[G(n, p∗) ∈ P ] = 1/2. If p∗ ≤ 1/2 then:

1. For small enough C > 0, Pr[G(n, p∗ − Cp∗ log(1/p∗)/ log n) ∈ P ] ≤ O(1/C).

2. For small enough C > 0, Pr[G(n, p∗ + Cp∗ log(1/p∗)/ log n) ∈ P ] ≥ 1−O(1/C).

The theorem states that the critical window always has width O(p∗ log(1/p∗)/ log n), and so there is
a sharp threshold if p∗ = 1/no(1). Unfortunately we won’t be able to provide a complete proof of the
theorem; this would require us to delve into analysis of Boolean functions. However, we will indicate the
proof of the theorem up to a basic result in that field, the KKL theorem [KKL88].

Proof. We start with a formula for the derivate of r(p) = Pr[G(n, p) ∈ P ], the Russo–Margulis formula.
For a graph G and an edge e /∈ G, we say that e is influential for G if G − e /∈ P but G + e ∈ P .

Define ι(G) to be the number of edges influential in G. (This is known as sensitivity of P at G; the
influence of P at G is p(1− p)ι(G).)

Consider a new model for random graphs, in which each edge e is put in with probability pe; we
denote this model by G(n, p). The expression Pr[G(n, p) ∈ P ], as a function of the pe, is multilinear,
hence its derivative at pe equals

Pr
G∼G(n,p)

[G+ e ∈ P ]− Pr
G∼G(n,p)

[G− e ∈ P ],

since the derivative of ax+ b is a = (a · 1 + b)− (a · 0 + b). If we define indicator variables I+, I− for the
events that G + e ∈ P and G − e ∈ P , then the expression above is just E[I+ − I−]. This is non-zero
precisely when G+ e ∈ P but G− e /∈ P . That is,

∂

∂pe
Pr[G(n, p) ∈ P ] = Pr[e is influential for G(n, p)].

Since G(n, p) is the same as G(n, p) for the constant vector pe = p, the chain rule shows that

d

dp
Pr[G(n, p) ∈ P ] =



e

∂

∂pe
Pr[G(n, p)] = E[ι(G(n, p))].

The KKL theorem states that there is an edge e such that the probability that e is influential for
G ∼ G(n, p) is

Ω


r(p)(1− r(p))

p log(1/p)

log n

n2


.

Since P is a graph property, the probabilities are the same for all edges, and so

r′(p) = E[ι(G(n, p))] = Ω


r(p)(1− r(p)) log n

p log(1/p)


.

When C is small enough, p log(1/p) = Θ(p∗ log(1/p∗)) whenever |p− p∗| ≤ Cp∗ log(1/p∗)/ log n.
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Suppose now that r(p∗ + Cp∗ log(1/p∗)/ log n) = 1− δ. Then

r(p∗ + Cp∗ log(1/p∗)/ log n) = r(p∗) +

 Cp∗ log(1/p∗)/ logn

0

r′(p∗ + x) dx ≥

1

2
+

Cp∗ log(1/p∗)

log n
·

1
2δ log n

Θ(p∗ log(1/p∗))
=

1

2
+ Ω(C).

This directly implies that Cδ = O(1), and so δ = O(1/C).
Similarly, if r(p∗ − Cp∗ log(1/p∗)/ log n) = δ then δ = O(1/C).

It is a nice exercise to improve the dependence on C by shortening the interval from Cp∗ log(1/p∗)
logn to

log(1/C)p∗ log(1/p∗)
logn . It also suffices to consider C < 1/4 (say) rather than just small enough C > 0.

Theorem 8.3 holds in greater generality. The property P need not be a graph property. Instead, we
just require the property to have enough symmetries. Technically, we require it to be invariant under
some transitive permutation group (a permutation group is transitive if for all i, j, it contains some
permutation mapping i to j). As an example, consider the tribes function:

f(x1, . . . , xn) =

n/m

i=1

m

j=1

x(i−1)m+j ,

where m = log2(n/ log2 n). For this function,

r(p) = 1− (1− pm)n/m ≈ 1− e−(n/m)pm

.

When p = 1/2, pm = log2 n/n ≈ m/n, and so p∗ is very close to 1/2. When p = 1
2 (1 + c/ log2 n), we

have pm ≈ 2−m(1 + cm/ log2 n) ≈ 2−m(1 + c), and so r(p) ≈ 1− e−(1+c). This shows that the threshold
interval for the tribes function is 1/ log n, and so Theorem 8.3 is tight in its more general formulation.

Bourgain and Kalai [BK97] strengthened Theorem 8.3, showing that the threshold interval for mono-
tone graph properties is always at most 1/ log2 n. This is tight for the property of containing a clique Kk

for an appropriate value of k. Recently their result has been used to analyze the capacity of Reed–Muller
codes on erasure channels [KKM+16].

9 Cliques and coloring

9.1 Cliques

Earlier we commented that a random G(n, 1/2) graph has good Ramsey-theoretic properties: its maximal
clique and independent set are both at most roughly 2 log2 n. It turns out that with more effort, one can
show that both of these are concentrated quite strongly, around one or two values.

We can obtain the figure 2 log2 n heuristically from the expected number of cliques of given size.

Lemma 9.1. The expected number Nk of k-cliques in G(n, p) is

Nk =


n

k


p(

k
2).

The numbers Nk satisfy
Nk+1

Nk
=

n− k

k + 1
pk.

Let k0 be the maximal k such that Nk0
≥ 1. Then

k0 = 2 log1/p n− 2 log1/p log1/p n±O(1).

For k = k0 ±O(1),
Nk+1

Nk
= Θ


log n

n


.
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Proof. The first claim is a simple calculation. The second claim follows from

Nk+1

Nk
=

n!

(k + 1)!(n− k − 1)!
· k!(n− k)!

n!
· p

(k+1)k/2

p(k−1)k/2
=

n− k

k + 1
pk.

For the third claim, note first that by Stirling’s approximation,

Nk ≲ nk

√
2πk(k/e)k

(p(k−1)/2)k =
1√
2πk


ep(k−1)/2n

k

k

.

To obtain this approximation, we used the upper bound nk ≤ nk. When k ≥ 3 log1/p n, say, this
expectation is very small. Therefore k0 = O(log n), and so the estimate above is a good lower bound as
well, since in that case nk ∼ nk.

Let now k = 2 log1/p n− 2 log1/p log1/p n+ 2γ + 1. Then

Nk =
1

Θ(

log1/p n)


pγe log1/p n

k

k

=
Θ(pγ)Θ(log1/p n)

Θ(

log1/p n)

.

For large constant γ, the numerator is at most plog1/p n = 1/n and so Nk = o(1). Similarly, for large
constant −γ, the numerator is at least p− log1/p n = n, and so Nk = ω(1). Therefore k0 is obtained when
|γ| = O(1).

If k = k0 ±O(1) then

Nk+1

Nk
=

n− k

k + 1
pk = (1− o(1)) · n

2 log1/p n
·Θ


log21/p n

n2


= Θ


log1/p n

n


.

The last part of the lemma already shows that with high probability, G(n, p) contains no clique of
size k0 + 2. On the other hand, it contains ω(n/ log n) cliques of size k0 − 1, in expectation. Using the
second moment method we will show that with high probability, G(n, p) contains a clique of size k0 − 1.

Theorem 9.2 ([FK16, Theorem 7.3]). Let p ∈ (0, 1) be a constant, and define k0 as in Lemma 9.1.
With high probability, the clique number of G(n, p) is concentrated on two values.

Proof. We first show that with high probability, the clique number is one of k0 − 1, k0, k0 + 1. Then we
slighly refine the argument to obtain the theorem.

The last part of Lemma 9.1 shows that Nk0+2 = O(log n/n), and so with high probability there are
no cliques of size k0 + 2. On the other hand, Nk0−1 = Ω(n/ log n). We proceed to estimate the second
moment of the number of cliques of size k = k0 ±O(1), which we denote by Xk. We will consider pairs
of potential cliques of size k with intersection r. The probability that two such cliques appear together

is p2(
k
2)−(

r
2), and so

E[X2
k ] =

k

r=0


n

k − r, r, k − r


p2(

k
2)−(

r
2) = E[Xk]

2
k

r=0


n

k−r,r,k−r




n
k

2 p−(
r
2).

The ratio of binomial coefficients can be estimated as


n
k−r,r,k−r




n
k

2 =
n2k−r

(nk)2
k!2

(k − r)!2r!
≈ k!2

(k − r)!2r!
n−r.

Therefore

E[X2
k ] ≈ E[Xk]

2
k

r=0

k!2

(k − r)!2r!

1

nrp(
r
2)

≈ E[Xk]
2

k

r=0

k!2

(k − r)!2r!2
1


n
r


p(

r
2)

= E[Xk]
2

k

r=0


k
r

2

Nr
.

Consider now the summands Jr =

k
r

2
/Nr. We have J0 = 1, J1 = O(log2 n/n), J2 = O(log4 n/n2),

and then the summands continue decreasing rapidly, until they increase back again. Eventually the
sequence reaches Jk = 1/Nk. When k = k0 − 1 we have Jk = O(log n/n).

27



This picture can be seen by considering first the ratio

Jr+1

Jr
=


k

r+1

2

k
r

2
Nr

Nr+1
=

(k − r)2

(r + 1)2
r + 1

n− r
p−r =

(k − r)2

(r + 1)(n− r)
p−r.

and then the ratio

J2
r+1

JrJr+2
=

(k − r)2

(r + 1)(n− r)
p−r (r + 2)(n− r − 1)

(k − r − 1)2
pr+1 =

r + 2

r + 1


k − r

k − r − 1

2
n− r − 1

n− r
p,

which is less than 1 unless r is very close to 0 or k. Thus the ratio Jr+1/Jr is decreasing, which means
that the sequence Jr is unimodal (decreases then increases) for r not very close to 0 or k. For r very
close to 0 or k, this can be seen directly.

It follows that

E[X2
k ] =


1 +O


log2 n

n


E[Xk]

2.

The second moment method then shows that

Pr[Xk0−1 = 0] ≤ E[X2
k ]

E[Xk]2
− 1 = O


log2 n

n


.

Up to now we have shown that the clique number is concentrated on the three values k0−1, k0, k0+1.
To improve on this, we have to consider the value of k0. If k0 ≤


n/ log n then with high probability

there are no cliques of size k0 + 1 since Nk0+1 = O(

log n/n). Otherwise, when k = k0 we have

Jk = O(

log n/n) and so E[X2

k ]/E[Xk]
2 − 1 = O(


log n/n), and so there is a clique of size k0 with

high probability.

9.2 Chromatic number

In the previous section we were interested in the size of the largest clique. If we switch p by 1 − p
throughout, we obtain formulas for the independent set instead. Since a graph with chromatic number c
must have an independent set of size n/c, namely, the largest color class, our work shows that with high
probability, the chromatic number of G(n, p) is Ω(n/ log n). In the reverse direction, it is natural to try
out the following strategy: repeatedly take out the largest independent set until O(n/ log n) vertices are
left, and color the rest with fresh colors. We expect the largest independent sets throughout this process
to have size Ω(log n). However, the bounds that we got in Theorem 9.2 are not good enough to obtain
this result: we need a bound for all potential graphs up to size n/ log n, whereas the error bound there
is only Õ(1/n). To rectify this, we will use a better concentration result, Janson’s bound:

Lemma 9.3 (Janson’s inequality [FK16, Theorem 21.12]). Let U be a universe and let R be a random
subset of U obtained by choosing each element x with some probability px ∈ (0, 1) independently. Let
{Di} be a collection of subsets of U . Let the random variable S count the number of subsets Di which R
contains, and let µ = E[S]. Define

∆ =


i,j : Di∩Dj ∕=∅

Pr[Di, Dj ⊆ R].

Then for each 0 ≤ t ≤ µ,

Pr[S ≤ µ− t] ≤ e−t2/2∆.

In particular,

Pr[S ≤ 0] ≤ e−µ2/2∆.

The lemma is proved using the exponential moment method, just like Chernoff’s bound, though it
employs the FKG inequality, and for this reason we skip it.

Let us compare this lemma to Chebyshev’s inequality. Notice that

E[S2] = ∆+


i,j : Di∩Dj=∅

Pr[Di ⊆ R] Pr[Dj ⊆ R] ≤ ∆+ E[S]2.
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In many cases this inequality is close to optimal. Chebyshev’s inequality then gives

Pr[S ≤ µ− t] ≤ Pr[|S− µ| ≥ t] ≤ ∆

t2
.

Janson’s inequality thus gives an exponential improvement.
We can now bound the chromatic number.

Theorem 9.4 ([FK16, Theorem 7.7]). Let p ∈ (0, 1) be a constant. With high probability, the chromatic
number of G(n, p) satisfies

χ(G(n, p)) ∼ n

2 log1/(1−p) n
.

Proof. Theorem 9.2 shows that with high probability, the maximal independent set in G(n, p) has size
α(G(n, p)) ≤ (1− o(1))2 log1/(1−p) n. In that case

χ(G(n, p)) ≥ n

α(G(n, p))
= (1 + o(1))

n

2 log1/(1−p) n
.

We are now going to replace Chebyshev’s inequality with Janson’s inequality in the proof of Theo-
rem 9.2. The setup is as follows:

• U consists of all non-edges in the empty graph on n vertices, and R is chosen by putting each
non-edge with probability 1− p.

• The Di are all sets of size k.

• S is the number of independent sets of size k.

In the course of the proof of Theorem 9.2, we saw that for k = O(log n) it holds that

∆ ≈ µ2
k

r=2


k
r

2

Nr
.

We showed there that the largest two summands correspond to r = 2 and r = k, and that all other
values are smaller by a factor of at least n/ log2 n from one of them. We also calculated that the r = 2
summand is O(log4 /n2) and that the r = k0 − 2 summand is O(log5 /n2). Thus, when k = k0 − 2,

∆ = O


log5 n

n2


µ2.

Janson’s inequality thus shows that

Pr[Xk0−2 = 0] ≤ e−O(n2/ log5 n).

In particular, with high probability, all graphs induced by at least n/ log2 n vertices (of which there are
fewer than 2n) have independent sets of size (1− o(1))2 log1−p n.

We now repeatedly remove independent sets of size (1 − o(1))2 log1/(1−p) n from the graph until

n/ log2 n or fewer vertices are left, and then color the rest with individual colors. In total, we have used
(1 + o(1))n/2 log1/(1−p) n colors.

With more effort, we could obtain bounds on the deviation of χ(G(n, p)) from its expectation. How-
ever, it is simpler to use a concentration bound directly. To this end, we will use Azuma’s inequality, in
the form of McDiarmid’s inequality:

Lemma 9.5 (McDiarmid’s inequality, [FK16, Theorem 21.16]). Let f be an n-variate function on U1 ×
· · ·×Un, and suppose that there exist c1, . . . , cn such that |f(x)− f(y)| ≤ ci whenever x, y differ only in
the ith coordinate.

If X1, . . . , Xn are independent random variables on U1, . . . , Un and Y = f(X1, . . . , Xn) then for all
t > 0,

Pr[|Y − E[Y ]| ≥ t] ≤ 2 exp− t2

2
n

i=1 c
2
i

.
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This inequality follows by applying Azuma’s inequality, which is a Chernoff inequality for martingales,
to the Doob martingale. Applications of this lemma to random graphs usually use either the vertex
exposure martingale or the edge exposure martingale. In the latter, the xi are the edges of the graph. In
the former, we “expose” the graph vertex by vertex, and xi is the list of edges from vertex i to vertices
1, . . . , i− 1. In this case we use the vertex exposure martingale to obtain the following result.

Theorem 9.6 ([FK16, Theorem 7.8]). Suppose that g(n) = ω(
√
n). Then with high probability,

|χ(G(n, p))− E[χ(G(n, p))]| < g(n).

Proof. Let f(x1, x2, . . . , xn) be the function that accepts the list of all edges from vertex i to vertices
1, . . . , i − 1 (so xi ∈ {0, 1}i−1) and returns the chromatic number. Changing the edges adjacent to a
single vertex can affect the chromatic number by at most 1 (since the chromatic number is at least the
chromatic number of the rest of the graph, and at most that number plus one), and so McDiarmid’s
inequality shows that

Pr[|χ(G(n, p))− E[χ(G(n, p))]| ≥ g(n)] ≤ 2eg(n)
2/2(n−1) = o(1).

Notice that this argument doesn’t require knowledge of the expectation. This is a common feature
of concentration of measure arguments. Moreover, the obtained concentration is better than what the
argument of Theorem 9.4 gives. The theorem shows that with high probability,

n

2 log1/(1−p) n− 2 log1/(1−p) log1/(1−p) n
≤ χ(G(n, p)) ≤

n

2 log1/(1−p)(n/ log
2 n)− 2 log1/(1−p) log1/(1−p)(n/ log

2 n)
+O


n

log2 n


≈

n

2 log1/(1−p) n− 4 log1/(1−p) log1/(1−p) n
+O


n

log2 n


≈

n

2 log1/(1−p) n− 2 log1/(1−p) log1/(1−p) n
+O


n log log n

log2 n


.

While the bounds can be slightly improved (since the size of the graph changes smoothly from n to
n/ log2 n), this will only affect the hidden constant in the error term.

9.3 Finding cliques in random graphs

Theorem 9.2 shows that with high probability, G(n, p) contains a clique of size roughly 2 logp n. Can we
find this clique efficiently? No such algorithm is known. However, the trivial greedy algorithm finds a
clique of size roughly logp n with high probability (the probability being with respect to the graph rather
than the algorithm).

Theorem 9.7 ([FK16, Theorem 7.9]). Consider the following greedy algorithm: Start with the empty
set, and repeatedly choose a vertex connected to all previously chosen vertices.

For fixed p ∈ (0, 1), with high probability (over the choice of the graph), the greedy algorithm produces
a clique of size (1− o(1)) log1/p n.

Proof. The algorithm terminates with a set T which is a maximal clique: no vertex can be added to it.
The expected number of maximal cliques of size k is

Ek =


n

k


p(

k
2)(1− pk)n−k ≤ nk(e/k)kpk(k−1)/2e−(n−k)pk

≤

p−1/2ne1+pk

k

e−npk

.

When k = log1/p n− C log1/p log1/p n, we get

Ek ≤ (p−1/2e2n)log1/p ne− logC
1/p n.

When C > 2, this is very small, and in fact


k≤log1/p n−C log1/p log1/p n Ek = o(1). This shows that with

high probability all maximal cliques have size at least log1/p n− C log1/p log1/p n (for any C > 2).
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Intuitively, each vertex is connected to a p-fraction of the remaining vertices, and so it takes log1/p n
steps to “kill” all vertices. The proof is some formal version of this argument, which also shows that the
algorithm does terminate within log1/p n steps.

Repeated use of Theorem 9.7 in the case of independent sets yields an efficient coloring algorithm
which uses (1 + o(1)) n

log1/1−p n colors, with high probability.

10 Planted clique

The maximum clique problem is one of the original NP-complete problems. It is known to be NP-hard
to approximate to within n1− for every  > 0, and the best known algorithms only give an Õ(n/ log3 n)
approximation. As we have seen, in G(n, p) random graphs we can efficiently find cliques of size roughly
log1/p n, although the maximum clique has size roughly 2 log1/p n. Does the problem become easier if
we “plant” a large clique?

The planted clique random graph G(n, p, k) is formed by taking a G(n, p) random graph and adding
a clique on k random vertices. The central question in this area is:

For which values of k is there an efficient algorithm that finds a clique of size (1 − o(1))k in
G(n, p, k) with high probability?

Importantly, the probability here is with respect to both G(n, p, k) and the algorithm (if it is ran-
domized). In particular, we do not ask for the algorithm to succeed on every realization of G(n, p, k).

We will only be interested in the case p = 1/2, the other cases being similar. We will see several
different algorithms: a degree-based algorithm which works for k ≈

√
n log n, and several algorithms

which work for k ≈
√
n.

10.1 Degree-based algorithm

The first algorithm, due to Kučera [Kuč95], is based on the observation that the degree of the planted
vertices is higher in expectation than the degree of the other vertices.

Lemma 10.1. Let G ∼ G(n, 1/2, k). With high probability, the degree of every non-planted vertex is at
most n/2 +

√
2n log n, and the degree of every planted vertex is at least (n+ k)/2−

√
2n log k.

Proof. The degree of every non-planted vertex has distribution Bin(n − 1, 1/2). Hoeffding’s inequality
states that for such a vertex x,

Pr[| deg(x)− (n− 1)/2| ≥ t
√
n− 1] ≤ 2e−t2 .

If t =
√
2 log n then this probability is at most 2/n2, and so with high probability, the degree of every

non-planted vertex is at most n/2 +
√
2n log n.

The degree of every planted vertex has distribution k − 1 + Bin(n − k, 1/2). Hoeffding’s inequality
implies, in the same way, that with high probability, the degree of each such vertex is at least (k − 1) +
(n− k)/2−

√
1.9n log k ≥ (n+ k)/2−

√
2n log k.

Corollary 10.2. If k ≥
√
8n log n then with high probability, the k vertices of G(n, 1/2, k) with largest

degree are the planted vertices.

Proof. The lemma shows that the degrees are separated given that k/2 −
√
2n log k <

√
2n log n. For

this it suffices that k ≤ 2
√
2n log n.

This implies a very quick algorithm that finds the hidden clique when k ≥
√
8n log n.

We can obtain a polynomial time algorithm for k ≥ c
√
n log n for every c > 0 using a trick

from [AKS98]. The idea is to “guess” m = O(1) vertices from the clique. All vertices in the planted
clique are neighbors of these m vertices, but there are only roughly n/2m of these, while the induced
clique has size k −m = k −O(1).
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Theorem 10.3 (Kučera [Kuč95]). For every c > 0 there is a polynomial time algorithm that with high
probability finds a clique of size k in G(n, 1/2, k) whenever k = c

√
n log n.

Proof. Let m be a parameter depending only on c, whose value will be decided later on. For every
set of m vertices in G(n, 1/2), the number of other vertices connected to all m vertices has binomial
distribution Bin(n − m, 1/2m). Hoeffding’s bound shows that with extremely high probability, there
are at most 1.9n/2m such common neighbors, and a union bound shows that this holds for every set
of m vertices with high probability. In the planted model there are k extra vertices, and so with high
probability every set of m vertices has at most 1.9n/2m + k ≤ 2n/2m common neighbors. From now on
we assume that this event happens.

Suppose that we somehow “guessed” m vertices of the planted clique. They have n′ ≤ 2n/2m

common neighbors by assumption. The graph induced by these common neighbors has distribution
G(n′, 1/2, k−m). Since k = c

√
n log n, in terms of n′ we have k ≥ c


2m−1n′ log n′, and for large enough

n we have k −m ≥ c

2m−2n′ log n′. We can choose m so that for large enough n, k −m ≥

√
8n′ log n′,

and so the algorithm of Corollary 10.2 will find the rest of the planted clique with high probability.
We can implement this idea as follows: We go over all m-cliques in the graph, compute the graph

induced by the common neighbors of these vertices, and run the algorithm of Corollary 10.2 (with
parameter k−m). If at any point the algorithm of Corollary 10.2 succeeds, we output the corresponding
clique of size m + (k − m) = k. When the m-clique is part of the planted clique, the algorithm of
Corollary 10.2 will succeed (with high probability).

It is not too hard to show that with high probability there is a unique k-clique in G(n, 1/2, k)
(whenever k = ω(log n)), and so Kučera’s algorithm in fact returns the planted clique.

Lemma 10.4. Suppose that k = ω(log n). With high probability, there is a unique k-clique in G(n, 1/2, k).

Proof. Let Tℓ be the number of k-cliques whose intersection with the planted clique is ℓ. We have

Mℓ := E[Tℓ] =


n− k

k − ℓ


1

2(
k
2)−(

ℓ
2)
.

We have Mk = 1 and
Mℓ−1

Mℓ
=

n− 2k + ℓ

k − ℓ+ 1
2−(ℓ−1) ≤ 2n2−ℓ.

This shows that as long as ℓ ≥ log2 n (say), Mℓ is very small. When ℓ = O(log n), we can estimate
directly (using


k
2


−

ℓ
2


≥ 1

2


k
2


)

Mℓ ≤
nk

2k2/4
=

 n

2k/4

k

,

which is also very small. In total, we conclude that


ℓ<k Mℓ = o(1), and so with high probability the
unique k-clique is the planted one.

10.2 More on the maximal degree of a graph*

Kučera’s algorithm only works for k = Ω(
√
n log n), and this is because we need the maximal degree in

G(n, 1/2) to exceed its expectation by at most roughly k/2. Using Hoeffding’s inequality, we showed
that the maximal degree is at most roughly n/2 +

√
n log n, with high probability. Is this tight? Using

a second-moment calculation we can show that the maximal degree is indeed n/2 +Θ(
√
n log n).

Theorem 10.5 ([FK16, Theorem 3.5]). For every  > 0, with high probability the maximal degree ∆ in
G(n, p) satisfies

|∆(G(n, p))− [(n− 1)p+

2(n− 1)p(1− p) log n|] ≤ 


2(n− 1)p(1− p) log n.

Morally speaking, the reason that this theorem holds is that the individual degrees have distribution
Bin(n − 1, p) which is very close to the normal distribution N(µ,σ2) with µ = (n − 1)p and σ =
(n−1)p(1−p). Thus roughly speaking, each degree has distribution µ+σ ·N(0, 1) = µ+σF−1(U(0, 1)),
where F is the CDF of N(0, 1), and U(0, 1) is distribution uniformly on [0, 1].
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If the degrees were completely independent, then the maximal degree would have distribution µ +
σF−1(Xn), where Xn is the maximum of n copies of U(0, 1). The expected value of this maximum is
n/(n+ 1) ≈ 1− 1/n, although this maximum is not too concentrated. Now for large x, it is known that

1− F (x) ≈ e−x2/2

√
2πx

.

This implies that 1−F−1(
√
2 log n) ≈ 1/n (up to logarithmic factors), and so we expect F−1(Xn) to be

close to
√
2 log n. This implies precisely the formula in the theorem, though the formal proof is quite a

bit different.

Proof sketch. Let X ∼ Bin(n − 1, p) be the distribution of the degree of a particular vertex. The local
limit theorem, a version of the central limit theorem for discrete random variables, states that Pr[X = d]
is roughly equal to the density of the Gaussian approxmiation to Bin(n − 1, p) at the point d. In our
case, we can prove such a result using Stirling’s approximation: if x ≤ n1/3 log2 n then

Pr[X = (n− 1)p+ x

(n− 1)p(1− p)] = (1± o(1))

1
2πnp(1− p)

e−x2/2.

This is worked out diligently in [FK16, Lemma 3.6].
We will be interested in three specific values of d:

• d+ = (n− 1)p+ (1 + )
√
2 log n ·


(n− 1)p(1− p) is the upper bound in the theorem.

• d− = (n− 1)p+ (1− )
√
2 log n ·


(n− 1)p(1− p) is the lower bound in the theorem.

• dL = (n − 1)p + log2 n ·

(n− 1)p(1− p) is a degree which is small enough for the local limit

estimate to apply, and large enough so that in calculation we can replace it by ∞.

The binomial distribution is unimodal with mode near (n−1)p, and in particular Pr[X = d] decreases
beyond dL, as can also be seen by direct calculation. Since Pr[X = dL] is readily seen to be very small,
a simple union bound shows that ∆(G(n, p)) ≤ dL with high probability.

Let Ad be the expected number of vertices whose degrees are between d and dL, where d ≥ d−. Then

E[Ad] = (1 + o(1))


n

2πp(1− p)

dL

δ=d

exp−1

2


δ − (n− 1)p
(n− 1)p(1− p)

2

.

The value of dL is so large that extending the range of the summation to infinity doesn’t affect the sum
asymptotically. Estimating the sum by an integral and computing the integral, we finally obtain

E[Ad] = (1 + o(1))
n√
2π

e−x2/2

x
,

where d = (n−1)p+x

(n− 1)p(1− p). When d = d+, this gives E[Ad+ ] = O(n1−(1+)2) = O(n−2−2),

and so with high probability∆(G(n, p)) ≤ d+. Conversely, when d = d−, we get E[Ad− ] = Ω(n1−(1−)2) =

Ω(n2−2) = Ω(n).
In order to complete the proof, we use the second moment method. We have

E[A2
d] =

dL

d1,d2=d



x1,x2

Pr[deg(x1) = d1 and deg(x2) = d2]

= E[Ad] + n(n− 1)

dL

d1,d2=d

Pr[deg(x1) = d1 and deg(x2) = d2].

Considering the two cases corresponding to whether the edge (x1, x2) is in the graph or not, we get

E[A2
d] = E[Ad] + n(n− 1)

dL

d1,d2=d

((1− p) Pr[Bin(n− 2, p) = d1] Pr[Bin(n− 2, p) = d2]

+pPr[Bin(n− 2, p) = d1 − 1] Pr[Bin(n− 2, p) = d2 − 1]).
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A short calculation shows that the summand can be estimated as

(1 + o(1)) Pr[Bin(n− 1, p) = d1] Pr[Bin(n− 1, p) = d2],

and so
E[A2

d] = E[Ad] + (1 + o(1))E[Ad]
2.

Chebyshev’s inequality thus shows that

Pr[Ad = 0] ≤ E[A2
d]

E[Ad]2
− 1 =

1

E[Ad]
+ o(1).

When d = d−, we obtain Pr[Ad = 0] = o(1).

10.3 Spectral norm of random graph

Consider a G(n, 1/2) random graph. Each individual degree has distribution roughly N(n/2, n/4) =
n/2 +

√
n/2N(0, 1), but the maximal degree deviates

√
2 log n standard deviations from the mean, and

so is roughly n/2+

n log n/2. Surprisingly, when we consider the spectral norm of the adjacency matrix

of the random graph, the noise goes down from order
√
n log n to order

√
n, as shown by Füredi and

Komlós [FK81].
Let A be the adjacency matrix of a G(n, 1/2) random graph. We can write A = (B − I + J)/2,

where B is a symmetric matrix with zeroes on the diagonal in which every pair of off-diagonal entries is
a uniform ±1 random variable, and J is the all-ones matrix. We can analyze the eigenvalues of B using
the following formula:

n

i=1

λi(B)2k = Tr(B2k) =


i0,...,i2k−1

Bi0i1 · · ·Bi2k−1i0 .

Let us now estimate the expectation of the right-hand side, assuming that k = o(n). We can divide the
sum into several different sums, according to the number of distinct indices appearing on the right-hand
side:

Sm :=


i0,...,i2k−1

|{i0,...,i2k−1}|=m

E[Bi0i1 · · ·Bi2k−1i0 ].

Since all moments of Bii, Bij are zero or one, the expectation of each term is either zero or one. Since
E[Bii] = 0 and E[Bij ] = 0 whenever i ∕= j, each appearance of Bij must be matched with another
appearance of Bij or Bji. We can associate each term with a closed walk of length 2k which goes
through m vertices. The underlying undirected graph must contain a spanning tree consisting of m− 1
edges, each of which is traced at least twice, for a total of at least 2(m− 1) edges. Thus m ≤ k + 1.

Let us consider first the case m = k + 1. Suppose we have chosen the vertices in the order in which
they appear, in nm ways. The walk itself encodes a rooted tree: a tree rooted at v0 in which the children
of each node are ordered. Indeed, the walk corresponds to a breadth-first search of the tree using the
given order. It is well-known that the number of ordered trees on k + 1 vertices is given by the Catalan
number Ck =


2k
k


/(k + 1) ∼ 4k/(

√
πk2/3) which satisfies Ck ≤ 4k, and so Sk+1 = Ckn

k+1 ≤ (4n)k+1.

Füredi and Komlós use an elaborate encoding to show that as long as k = o(n1/6), Tr(B2k) =
(1 + o(1))Sk+1. In total, denoting λmax(B) := maxi |λi(B)|, we have

E[λmax(B)2k] ≤ E


n

i=1

λi(B)2k


≤ (1 + o(1))(4n)k+1.

For small  > 0 we have

Pr[λmax(B) ≥ (1 + )2
√
n] = Pr[λmax(B)2k ≥ (1 + )2k(4n)k] ≤ (1 + )−2k(4n) ≤ e−Ω(k)(4n).

As a consequence, if  = ω(log n/k) then with high probability, λmax(B) ≤ (1+ )2
√
n. In particular, we

get such a guarantee with high probability whenever  = ω(log n/n1/6).
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The same technique of moment calculation shows that the distribution of a random eigenvalue of B
divided by

√
n converges (in an appropriate sense) to the semicircle distribution on [−2, 2], which is the

distribution whose density is given by the semicircle
√
4− x2/2π.

For the next step, we need to use the inequality λ2(M + L) ≤ λ1(M) + λ2(L), where λk(M) is the
kth largest eigenvalue of M . This inequality follows from the variational formula for λk(M), which is
valid for Hermitian matrices:3

λk(M) = min
U : dimU=k

max
x⊥U
x=1

xTMx = max
U : dimU=n−k+1

min
x⊥U
x=1

xTMx.

Indeed, if M,L are Hermitian then this formula shows that

λk(M + L) = min
U : dimU=k

max
x=1

xT (M + L)x ≤ max
x=1

xTMx+ min
U : dimU=k

max
x=1

xTLx = λ1(M) + λk(L).

An analogous argument shows that λk(M + L) ≥ λk(M) + λn(L).
With high probability, all eigenvalues of B − I differ from 1 by at most (1 + )2

√
n. Since λ2(J) =

λn(J) = 0, the inequality above shows that λ2(A) ≤ − 1
2 + (1+ )

√
n and λn(A) ≥ − 1

2 − (1− )
√
n with

high probability. (In fact, a glance at the proof shows that the same argument would work even if we
analyzed B − I directly, thus allowing us to improve the bound on the second eigenvalue to (1 + )

√
n.)

What about the first eigenvalue? On the one hand, λ1(
(B−I)+J

2 ) ≤ 1
2λ1(B − I) + 1

2λ1(J) ≤ n−1
2 +

O(
√
n), with high probability. On the other hand, if j is the all-ones vector then jTAj = 2


i<j Aij ,

which has distribution roughly N(n(n−1)/2, n(n−1)/2). Therefore λ1(A) ≥ jTAj/jT j ≳ n−1
2 − Õ(

√
n)

with high probability. Füredi and Komlós showed that the distribution of λ1(A) is 1/
√
n-close (in CDF

distance) to N(n/2, 1/2).

10.4 Spectral algorithm*

10.4.1 Idea

We can summarize the idea behind Kučera’s algorithm using the following points:

• Degrees in a G(n, 1/2) random graph are in the range n/2±

n log n/2.

• Adding a k-clique boosts the degree of all vertices in the clique by roughly k/2, so now they are
n/2 + k/2±


n log n/2.

• If k/2 ≥ 2

n log n/2 then the k vertices of maximal degree are the planted clique.

The size of the clique that the algorithm is able to handle thus stems from fluctuations in the degree
that can be as large as

√
n log n.

Alon, Krivelevich and Sudan [AKS98] developed a different algorithm which is based (in some sense)
on Wigner’s semicircle law. Take any symmetric matrix whose entries are chosen iid from a “reasonable”
distribution with zero mean and unit variance. The law states that if the matrix is n × n, then the
number of eigenvalues in the range [α

√
n,β

√
n] is

 β

α

√
4− x2

2π
dx · n+ o(n).

The density function
√
4− x2/2π is a semicircle supported on the interval [−2, 2]. In particular, the

number of eigenvalues outside the range [−2
√
n, 2

√
n] is o(n). Füredi and Komlós [FK81] showed that

3A complex matrix A is Hermitian if A = A∗, where (A∗)ij = Aji; in other words A∗ is obtained from the transpose AT

by complex-conjugating all entries. A real matrix is Hermitian iff it is symmetric. The adjacency matrix of an undirected
graph is symmetric.
Let us now show how to prove that λk = mindimU=k max0 ∕=x∈U xTMx/x2. Since the matrix is Hermitian, there is
an orthonormal basis of eigenvectors v1, . . . , vn corresponding to the eigenvalues λ1, . . . ,λn. In one direction, we take
U = span(v1, . . . , vk). Every vector x ∈ U decomposes as x =

k
i=1 civi, where

k
i=1 c

2
i = x2 by orthonormality.

Therefore xTMx =
k

i=1 λic
2
i ≤ λkx2. In the other direction, let U be a k-dimensional subspace, and let V =

span(vk, . . . , vn). Since dimU + dimV > n, the two subspaces must intersect non-trivially, and so there exists some
non-zero vector 0 ∕= x ∈ U ∩ V . Since x ∈ V , we can write x =

n
i=k civi, and so xTMx =

n
i=k λic

2
i ≥ λkx2.
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with high probability, all eigenvalues lie in a range only slightly larger than [−2
√
n, 2

√
n], and furthermore

this holds even if the diagonal entries are constant.
A random graph almost conforms to this setting. Apart from the diagonal elements, the adjacency

matrix of a graph can be formed by drawing a symmetric matrix B whose entries are uniform signs
(±1), and taking A := (B + J)/2, J being the all-ones matrix. The matrix J has the eigenvector 1 with
eigenvalue n. All vectors orthogonal to 1 belong to the eigenspace of 0.

The spectral norm of B is roughly 2
√
n with high probability (since the random perturbations have

magnitude o(
√
n)). Adding B to J has the effect of slightly perturbing the main eigenvector 1 (and

its eigenvalue); the spectral norm of the rest is roughly 2
√
n. Thus A has a main eigenvector, almost

constant, corresponding to an eigenvalue close to n/2, and all other eigenvalues are at most roughly
√
n.

Let now K be a random k-clique (from now on we identify graphs with their adjacency matrix).
Planting the clique K in the random graph A corresponds to taking the pointwise maximum A′ = A∨K.
If we remove the clique edges which are already in A we get a new graph C such that A′ = A+C. The
graph C behaves like G(k, 1/2) on the clique vertices, and its main eigenvector is roughly constant on
the clique (and zero everywhere else) and corresponds to an eigenvalue close to k/2. Denote the main
eigenvector of A,C by vA, vC , normalized so that its entries are close to 1. Roughly speaking,

(A+ C)vA ≈ (n/2)vA, (A+ C)vC ≈ (k/2)vA + (k/2)vC .

Thus vA is an approximate eigenvector of A + C, but vC isn’t. Solving the system of equations (or
running one step of Gram–Schmidt), we get that

(A+ C)((n− k)vC − kvA) ≈ (k/2)((n− k)vC − kvA),

and so we expect A + C to have an eigenvector close to (n − k)1K − k1K whose eigenvalue is close to
k/2. All other eigenvalues are still roughly 2

√
n. Summarizing, with high probability:

• G(n, 1/2) has one strong eigenvalue, roughly n/2, and all other eigenvalues are O(
√
n).

• Adding a k-clique adds another strong eigevalue, roughly k/2, which roughly encodes the vertices
in the clique.

When k ≥ C
√
n for some large enough constant C, the eigenvector corresponding to the second

largest eigenvalue will be the one encoding the clique. It is tempting to partition the coordinates of this
eigenvector according to their sign or magnitude (since n− k ≫ k), and then read off the planted clique.
However, we are only promised that the eigenvector is close to (n − k)1K − k1K . This is enough to
conclude that a large fraction of the k vertices of largest magnitude in the eigenvector (forming the set
S) indeed belong to the planted clique. We can now identify the planted clique by taking all vertices
which are connected to a significant fraction of vertices in S.

10.4.2 Proof sketch

We now repeat the exposition a bit more formally.

Lemma 10.6. Let k = C
√
n for a large enough constant C. With high probability, the spectrum λ1 ≥

· · · ≥ λn of G(n, 1/2, k) satisfies λ1 ≈ n/2, λ2 = k/2 ± O(
√
n), and λ3 ≲ √

n (the approximations hide
1± o(1) factors).

Furthermore, the eigenvector corresponding to λ2 is close to z = (n − k)1K − k1K , where K is the
hidden clique, in the sense that z − δ is an eigenvector for some vector δ satisfying δ2 ≤ z2/60.

Proof sketch. Let M be the adjacency matrix of the graph. It is well-known that λ1 = maxx
xTMx
x2 .

Choosing x = 1, this shows that λ1 ≥ 2|E|/n is at least the average degree in G(n, 1/2, k), which with
high probability is roughly n/2.

We can write M = M1+M2, where M1 is the adjacency matrix of G(n, 1/2), and M2 has the marginal
distribution of G(k, 1/2) on a random subset of k vertices. Füredi and Komlós [FK81] showed that with
high probability,

max
i≥2

|λi(M1)| ≤
√
n+O(n1/3 log n).
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A similar result holds for the eigenvalue of M2 (with n replaced by k). This implies that all vectors

orthogonal to v1(M1), v1(M2) (the eigenvectors corresponding to λ1(M1),λ1(M2)) satisfy
xTM1x
x2 ≲ √

n

and xTM2x
x2 ≲

√
k, and so xTMx

x2 ≲ √
n. There is thus a subspace of codimension 2, restricted to which

the spectral norm or M is at most roughly
√
n. This implies that λ3 ≲ √

n.
It remains to estimate λ2 and its corresponding eigenvector. We start by analyzing t = (A−(k/2)I)z.

The distribution of the individual entries of t is:

• If i is in the planted clique: (k − 1)(n− k)− kBin(n− k, 1/2)− k/2(n− k) = (k/2− 1)(n− k)−
kBin(n− k, 1/2).

• If i is not in the planted clique: (n− k) Bin(k, 1/2)− kBin(n− k − 1, 1/2) + k2/2.

Use Xi ∼ Bin(n − k, 1/2), Yi ∼ Bin(k, 1/2) and Zi ∼ Bin(n − k − 1, 1/2) to stand for the implied
random variables. Thus for vertices in the clique, ti = (k/2 − 1)(n − k) − kXi, and for vertices not in
the clique, ti = (n − k)Yi − kZi + k2/2. Since k2/2 = −(n − k)(k/2) + k(n/2), we can rewrite that as
ti = (n− k)(Yi − k/2)− k(Zi − n/2). Therefore

t2 =


i∈K

((k/2−1)(n−k)−kXi)
2+



i/∈K

(n−k)2(Yi−k/2)2+


i/∈K

k2(Zi−n/2)2−


i/∈K

2k(n−k)(Yi−k/2)(Zi−n/2).

Roughly speaking, (k/2−1)(n−k)−kXi ∼ N(−(n−k), k2/4), and so with high probability all terms in
the first sum are at most O(k2 log k), and in total amount to O(k3 log k). Similarly, roughly Zi − n/2 ∼
N(−(k − 1)/2, (n − k − 1)/4), and so all terms in the third sum are at most O(k2n log n) with high
probability, and in total amount to O(k2n2 log n). In the same vein, roughly Yi − k/2 ∼ N(0, k/4), and
so all terms in the fourth sum are at most O(kn ·

√
kn log n) with high probability, and in total amount

to O(k1.5n2.5 log n).
We could bound each term in the second sum by O(n2k log n) with high probability, for a total of

O(n3k log n), but we would like to improve on this bound. Notice that the variables Yi count different
edges, and so are independent. The summands (n−k)2(Yi−k/2)2 are independent and have expectation
(n − k)2k/4, and in total (n − k)3k/4. The variance of each of the summands is of order O(n4k2), for
a total variance of O(n5k2). Chebyshev’s inequality thus shows that the deviation of the second sum
from its expectation is at most, say O(n2.5k log n) with high probability, and so the sum itself is at most
O(n3k) with high probability.

Concluding, we have shown that z2 = O(n3k) with high probability. Write now z = w + δ, where
w is in the eigenspace of λ2 and δ is orthogonal to that eigenspace. We have

t2 ≳
√

n− k

2

2

δ2 = (C/2− 1)2nδ2,

since λ1(A − (k/2)I) ≈ n/2 − k/2 and λ3(A − (k/2)I) ≲ √
n − k/2. We expect the component in the

direction of the large eigenvalue to be small, and so it is reasonable to approximate (n/2 − k/2)2 by
(
√
n− k/2)2 in this context.
Comparing our two estimates on t2, we see that C2nδ2 = O(n3k), and so δ2 = O(n2k)/C2.

Now z2 = k(n − k)2 + (n − k)k2 = k(n − k)n ≈ n2k, and so for an appropriate choice of C, δ2 ≤
z2/60. Moreover,

O(n3k) ≥ (A− (k/2)I)z2 ≥ (A− (k/2)I)w2 ≥ (λ2 − k/2)2w2 ≥ (λ2 − k/2)2Ω(n2k),

using w2 = z2 − δ2 ≥ (59/60)k(n − k)n. It follows that (λ2 − k/2)2 = O(n), and so λ2 ≥
k/2−O(

√
n).

The next step is showing that the noise δ still allows us to decode the planted clique from the second
eigenvalue v2, in two steps.

Lemma 10.7. Let k = C
√
n for a large enough constant C. Let v2 be an eigenvector corresponding

to the second eigenvalue of the adjacency matrix of G(n, 1/2, k), and let S be its top k elements (in
magnitude). With high probability, at least a 5/6 fraction of S belongs to the planted clique.
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Proof. Recall that v2 = z − δ, where δ2 ≤ n2k/60, with high probability. In particular, at most k/6
of the coordinates of δ are at least n/3 in magnitude (since k/6(n/3)2 > n2k/60). Thus, apart from at
most k/6 coordinates, all the clique coordinates have value at least (2/3)n − k, and all the non-clique
coordinates have value at most n/3− k, which is smaller.

Lemma 10.8. Let k = C
√
n for a large enough constant C. Let v2 be an eigenvector corresponding

to the second eigenvalue of the adjacency matrix of G(n, 1/2, k), and let S be its top k elements (in
magnitude). Let T consist of all vertices neighboring at least a 3/4 fraction of S. With high probability,
T is the planted clique.

Proof. We have seen that with high probability, S contains at least (5/6)k vertices from the clique.
Hence a clique vertex has at least (5/6)k neighbors in S. A non-clique vertex is adjacent to roughly half
of the vertices in the clique, and so to only at most roughly k/2+ k/6 = (2/3)k vertices in S (we use the
trivial bound for the at most k/6 vertices not in the clique).

The last lemma can be implemented efficiently. This completes our description of the spectral al-
gorithm for planted clique. Using the technique of Theorem 10.3 (which actually originates in Alon et
al.), we can replace C with an arbitrary constant c > 0 at the cost of increasing the running time by a
polynomial factor.

10.5 SDP-based algorithm

Another algorithm, due to Feige and Krauthgamer [FK00], uses the Lovász theta function, which we
can define as follows: θ(G) is the minimum λ1(M) for a real symmetric matrix M indexed by vertices
of the graph such that Mij = 1 whenever i, j are adjacent or identical. If v is the characteristic function
of a k-clique in the graph then vTMv = k2 = kv2, and so λ1(M) ≥ k. This shows that θ(G) ≥ ω(G).
Surprisingly, with high probability there is a matching upper bound for G(n, 1/2, k) for k = Ω(

√
n). In

other words, for graphs with a large planted clique, we can compute the clique number using the Lovász
theta function! Since the Lovász theta function can be computed using semidefinite programming, this
provides a simple algorithm for recovering the clique, by repeatedly removing vertices (recall that by
Lemma 10.4, there is a unique k-clique in G(n, 1/2, k) whenever k = ω(log n)).

Theorem 10.9. Let k = C
√
n, for a large enough C > 0. With very high probability 1 − o(1/n),

θ(G(n, 1/2, k)) = k.

Proof. We have seen above that θ(G(n, 1/2, k)) ≥ k, and it remains to prove the upper bound. To this
end, denote by K the planted clique, and consider the following matrix M . If i = j or (i, j) is an edge,
then we put Mi,j = 1. If (i, j) is not an edge and i, j both don’t belong to the clique, we put Mi,j = −1.
If (i, j) is not an edge, i is in the clique, and j isn’t, then we put Mi,j = −1 + xj , where xj is chosen so
that


i∈K Mi,j = 0. When j is in the clique and i isn’t, we take Mi,j = Mj,i.

Stated differently, we start with which contains +1 for each edge, −1 for each non-edge, and +1 on
the diagonal. We can think of this matrix schematically as follows:


Jk×k Bk×n−k

BT
n−k×k Cn−k×n−k



Here the first k rows and columns correspond to the variables of the planted clique. We add a constant
xj to all −1 entries of row j of BT to make the row sum to zero, and we update B accordingly.

By construction, M is a symmetric matrix which satisfies the constraints of the theta function.
Moreover, by construction M1K = k1K . To complete the proof, we will show that all other eigenvalues
of M are at most k.

We can write M = U +V +W , where U is a random symmetric sign matrix with 1’s on the diagonal,
V is a {0, 2}-valued matrix that corrects the clique edges to 1, and W correspond to the corrections
xj . Füredi and Komlós [FK81] showed that with high probability, the spectral norm of U is O(

√
n).

The matrix V is obtained by choosing a random k × k sign matrix V ′, and padding V ′ + J (where J is
the all-ones matrix). Since J has rank one, the result of Füredi and Komlós also shows that all but the
largest eigenvalue of V is O(

√
k). This follows from the inequality λ2(V

′+J) ≤ λ1(V
′)+λ2(J) = λ1(V

′).
We bound the spectral norm ofW using its Frobenius norm TrW 2 and the inequality λ2

1(W ) ≤ TrW 2.
The Frobenius norm is just the sum of squares of entries. If there are Sj non-edges connecting j /∈ K to
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the clique vertices then TrW 2 = 2


j /∈K Sjx
2
j . We chose xj so that (k − Sj) + Sj(xj − 1) = 0, and so

xj = (2Sj − k)/Sj . Thus

TrW 2 = 2


j /∈K

Sj


2Sj − k

Sj

2

= 2


j /∈K

(2Sj − k)2

Sj
.

Now Sj ∼ Bin(k, 1/2), and so a Chernoff bound shows that with high probability Sj ≥ k/3 for all j.
Roughly speaking, 2Sj − k ∼ N(0, k). In particular, E[(2Sj − k)2] ≈ k and E[(2Sj − k)4] ≈ 3k (since
E[N(0, 1)4] = 3). Another Chernoff bound shows that with high probability,


j(2Sj − k)2 doesn’t

deviate much from its expectation (n− k)k, say it is at most 2nk. In total, with high probability

λ1(W )2 ≤ TrW 2 ≤ 2 · 2nk
k/3

= O(n).

It follows that with high probability,

λ2(M) ≤ λ1(U) + λ2(V ) + λ1(W ) = O(
√
n) +O(

√
k) +O(

√
n) = O(

√
n).

When C is large enough, this is less than k, and so k is indeed the largest eigenvalue of M .

This implies the following algorithm:

Corollary 10.10. Let k = C
√
n, for a large enough C > 0. With high probability, a vertex i belongs to

the planted clique if and only if θ(G \ i) = k − 1.

Proof. If v is in the planted clique then G\ i ∼ G(n−1, 1/2, k−1), and otherwise G\ i ∼ G(n−1, 1/2, k).
In both cases, the theorem shows that θ(G \ i) recovers the size of the remaining planted clique.

Using the idea of Theorem 10.3, we can use this algorithm for a clique of size c
√
n for any c > 0.

Feige and Krauthgamer also show how to decode the clique from the matrix M witnessing θ(G) = k.

10.6 Combinatorial algorithms*

Feige and Ron [FR10] analyzed the following simple two-phase algorithm:

1. Repeatedly remove a vertex of minimum degree, until the remaining graph is a clique.

2. Go over the vertices in reverse order of removal, adding back a vertex whenever the resulting graph
is a clique.

They show that this algorithm finds the planted clique in G(n, 1/2, k) with constant probability when
k = C

√
n for large enough C > 0.

Dekel, Gurel-Gurevich and Peres [DGGP14] gave a different combinatorial algorithm which succeeds
with high probability in the same setting. Their algorithm consists of three phases:

1. Enrichment: Sample S, an α-fraction of vertices, and remove S together with all vertices which
are connected to less than |S|/2 + β


|S|/2 of them. Repeat t = O(log n) times.

2. Seed: Choose the αtk vertices of largest degree, forming a set T . With high probability, all vertices
in T belong to the planted clique.

3. Completion: Consider the graph induced by T and its common neighbors, and choose the k vertices
of largest degree.

Consider the first iteration of enrichment. A non-clique vertex has Bin(|S|, 1/2) ≈ N(|S|, |S|/4)
neighbors in S, and so the probability that it survives is roughly x = Pr[N(0, 1) ≥ β]. A clique
vertex is connected to all the roughly αk vertices in S, and so it has roughly αk +Bin(α(n− k), 1/2) ∼
N(αn/2+αk/2,αn/4) neighbors in S, and so the probability that is survives is roughly y = Pr[N(0, 1) ≥
(β

√
n− αk)/

√
αn] = Pr[N(0, 1) ≥ (β − Cα)/

√
α]. If we choose parameters so that y > x, then we have

enriched the fraction of clique vertices.
After a logarithmic fraction of iterations, we will have enriched the clique so much that we can find

it using Kučera’s algorithm. The analysis is completed along the lines of Theorem 10.3, though there
are a few subtleties resulting from the fact that T is not a random sample of the planted clique.
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10.7 Lower bounds

We have explained several algorithms that reveal hidden cliques of size Ω(
√
n). Other algorithms exist:

Ames and Vavasis [AV11] give yet another spectral algorithm, based on nuclear norm minimization,
and Deshpande and Montanari [DM15] given an algorithm based on belief propagation. All of these
algorithm require the hidden clique to be of size Ω(

√
n). Can we do better?

Feldman et al. [FGR+13] (see also subsequent work mentioned there) show that efficient algorithms
that get samples of vertices along with their neighbors cannot identify the planted clique if it has size
n1/2− for  > 0. Barak et al. [BHK+16] consider strengthenings of the Lovász theta function, correspond-
ing to the sum-of-squares hierarchy (which is known to be “universal” for the class of SDP relaxations,
in some sense), and show that they also cannot go beyond n1/2−o(1) efficiently. It is conjectured that
Ω(

√
n) is indeed the correct threshold; see Deshpande and Montanari for an even more refined conjecture

for which the conjectured threshold is

n/e.

11 Random regular graphs

So far we have seen two models for random graphs: G(n,m) and G(n, p). Today we will consider a third
basic model, random regular graphs. This model is especially useful in theoretical computer science,
since in many cases we are interested in sparse graphs. While G(n, d/n) is also a model of sparse
random graphs, the strict bound on the degrees afforded by random regular graphs is important in some
applications. One of the most important properties of random regular graphs are that they are expanders
(in various senses) with high probability.

Our exposition is based on the textbook [FK16, Chapter 10] and on lecture notes of Ellis [Ell], as
well as on [JLR00, Chapter 9].

Let n, d be such that nd is even (otherwise no d-regular graph on n vertices exists). A random d-
regular graph is a d-regular graph on n vertices which is uniformly distributed over all such graphs. While
this is a very simple and natural definition, it is not at all clear how to study it. It is not even clear how to
generate a random d-regular graph. The trick is to use Bollobás’ configuration model. We think of every
edge as a combination of two half-edge, attached to the two vertices it connects. In a d-regular graph,
every vertex is adjacent to exactly d half-edges. It is thus natural to consider the following process:

1. Construct a random perfect matching on [n] × [d]. Here {x} × [d] are the d half-edges connected
to x.

2. Add an edge (x, y) for each edge (x, i), (y, j) in the matching.

This process is easy to implement, but doesn’t quite satisfy our requirements, since it doesn’t always
produce a simple graph. There are two types of problems: there could be self-loops, and there could
be parallel edges. However, this only happens with constant probability, and moreover, conditioned on
the result being simple, it is a completely uniform random regular graph. This is the contents of the
following result, for which we introduce the following notations:

1. G∗(n, d) is a random multigraph generated according to the process outlined above.

2. G(n, d) is a random d-regular graph.

Theorem 11.1 ([FK16, Corollary 10.2,Corollary 10.7]). Fix d ≥ 3. Let G ∼ G∗(n, d), and let E be the
event that G is simple. Then G|E ∼ G(n, d), and

Pr[E] → e−(d2−1)/4.

We require d ≥ 3, since the cases d = 1 and d = 2 behave differently in a qualitative sense.
The fact that Pr[E] is bounded below has the following important consequence: if a property occurs

with high probability in G∗(n, d), then it also occurs with high probability in G(n, d). This will allows
us to analyse random d-regular graphs, and even to count them.

The difficult part of Theorem 11.1 is estimating the probability that G∗(n, d) is simple. That
G∗(n, d)|E ∼ G(n, d) is an elementary statement, whose proof allows us to estimate the number of

random d-regular graphs, assuming the estimate Pr[E] → e−(d2−1)/4.
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Lemma 11.2 ([FK16, Theorem 10.4]). Fix d ≥ 3. The number of d-regular graphs on n vertices is
asymptotic to

√
2e−(d2−1)/4


dd/2

ed/2d!

n

nnd/2.

Proof. Take any d-regular graph, and a particular representation of it as a perfect matching on [n]× [d].
All other representations are obtained by permuting the labels of the half-edges, and thus this graph has
(d!)n different representations. Since this number is the same for all graphs, it follows that G∗(n, d)|E ∼
G(n, d).

On the other hand, the overall number of perfect matchings on [n]× [d] is

(nd− 1)(nd− 3) · · · (1) = (nd)!

(nd)(nd− 2)(nd− 4) · · · 2 =
(nd)!

2nd/2(nd/2)!
.

Since Pr[E] → e−(d2−1)/4, roughly a e−(d2−1)/4 fraction of them correspond to simple graphs, and each
such graph is represented (d!)n many times. This implies that the number of d-regular graphs on n
vertices is asymptotic to

e−(d2−1)/4 (nd)!

2nd/2(nd/2)!(d!)n
∼ e−(d2−1)/4

√
2πnd(nd/e)nd√

πnd(nd/2e)nd/22nd/2(d!)n

∼
√
2e−(d2−1)/4 (nd)nd/2

end/2(d!)n
.

LetXr denote the number of cycles of length r in G∗(n, d). The idea behind the proof of Theorem 11.1

is showing that Xr has roughly Poisson distribution, with expectation roughly (d−1)r

2r . Given that, the

graph is simple when X1 = X2 = 0, and so with probability roughly e−(d−1)/2 · e−(d−1)2/4 = e−(d2−1)/4.
We start by estimating E[Xr].

Lemma 11.3. Fix d ≥ 3 and r. As n → ∞, the expected number of r-cycles in G∗(n, d) tends to

(d− 1)r

2r
.

Proof. We will count the expected number of r-tuples of vertices v1, . . . , vr such that there are edges
(v1, v2), . . . , (vr−1, vr), (vr, v1), showing that it is approximately (d−1)r. This counts each cycle 2r times,
hence the result.

A cycle (v1, v2), . . . , (vr, v1) involves two half-edges for each vertex, and so the number of possible
matchings of half-edges corresponding to this cycle is (d(d− 1))r. A random perfect matching contains
r specific edges with probability 1/(nd− 1)(nd− 3) · · · (nd− (2r− 1)) ∼ 1/(nd)r, and so the probability
that this specific cycle appears is asymptotic to (d(d−1))r/(nd)r = (d−1)r/nr. Since there are nr ∼ nr

choices for the vertices, the expected number of cycles is asymptotic to (d− 1)r.

In order to show that the distribution of Xr is roughly Poisson, we estimate higher moments of
Xr. We will content ourselves in carrying out the calculation for X

2
r , the general calculation being very

similar.

Lemma 11.4. Fix d ≥ 3 and r. As n → ∞, the expected number of ordered pairs of distinct r-cycles in
G∗(n, d) tends to 

(d− 1)r

2r

2

.

Proof. As before, we will count the expected number of ordered pairs of distinct r-tuples corresponding
to cycles, showing it to be asymptotic to (d − 1)2r. This counts each pair of distinct r-cycles exactly
(2r)2 times, hence the formula.

Let C1, C2 be two distinct r-tuples. If C1, C2 are vertex-disjoint then the probability that both appear
as cycles in G∗(n, d) is

(d(d− 1))2r

(nd− 1)(nd− 3) · · · (nd− (4r − 1))
∼ (d− 1)2r

n2r
.
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There are n2r ∼ n2r such pairs, and they contribute (d−1)2r to the sum E[Xr(Xr−1)] =


C1 ∕=C2
Pr[C1, C2 ⊆

G∗(n, d)]. It remains to show that the contribution of non-vertex-disjoint tuples is small. Indeed, there
are O(n2r−1) choice of realizations of such tuples, and each one occurs with probability 1/n2r, for a total
contribution of O(1/n).

In exactly the same way, one can show the following more general result.

Lemma 11.5. Fix d ≥ 3, r and t1, . . . , tr. Then

E[Xt1
1 · · ·Xtr

r ] →
r

i=1


(d− 1)i

2i

ti

.

A multidimensional version of the argument in Theorem 6.2 then implies the following corollary.

Corollary 11.6. Fix d ≥ 3 and r. The joint distribution of (X1, . . . , Xr) tends to independent Poisson
distributions (Po(λ1), . . . ,Po(λr)), where λi = (d− 1)i/2i.

As noted above, Theorem 11.1 immediately follows.

11.1 Connectedness

We demonstrate the configuration model by showing that with high probability, G(n, d) is connected. In
view of Theorem 11.1, it suffices to show that G∗(n, d) is connected with high probability. We will show
this using the first moment method.

Theorem 11.7. Fix d ≥ 3. With high probability, G(n, d) is connected.

Proof. A non-empty set A is a separator if |A| ≤ n/2 and there are no edges between A and its com-
plement. We will show that the expected number of separators in G∗(n, d) is o(1), and so with high
probability G∗(n, d) is connected. Theorem 11.1 implies that with high probability, G(n, d) is connected,
since

Pr[G(n, d) not connected] = Pr
G∼G∗(n,d)

[G not connected|G simple]

=
Pr[G∗(n, d) simple and not connected]

Pr[G∗(n, d) simple]

≤ Pr[G∗(n, d) not connected]

Pr[G∗(n, d) simple]
→ 0.

Let |A| = a. If A is a separator then in the configuration model, the da vertices corresponding to
vertices in A all get matched within themselves. This happens with probability

da− 1

dn− 1
· da− 3

dn− 3
· · · da− (da− 1)

dn− (da− 1)
≤

a

n

da/2

.

There are

n
a


≤


en
a

a
choices for A of this size, and so the expected number of separators of size a is at

most en
a

a

·
a

n

da/2

=


ead/2−1

nd/2−1

a

.

This is small when (a/n)d/2−1 < 1/e. To be concrete, pick an arbitrary constant c ∈ (0, 1/2) such that
cd/2−1 < 1/e (this is possible since d/2− 1 > 0). The expected number of separators of size at most cn
is at most

n1/4

a=1


en(d/2−1)/4

nd/2−1

a

+

cn

a=n1/4+1

(ecd/2−1)a

≤ n1/4 e

n(3/4)(d/2−1)
+O((ecd/2−1)n

1/4

) ≤ O(n−1/8 + (ecd/2−1)n
1/4

) = o(1),
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for n large enough so that en(d/2−1)/4

nd/2−1 < 1.
When a is large, we use a more accurate asymptotic estimate. For even x, define

x!! = (x− 1)(x− 3)(x− 5) · · · 1 =
x(x− 1)(x− 2)(x− 3) · · ·

x(x− 2) · · · =
x!

2x/2(x/2)!
.

The probability that A is a separator is thus

(da)!!(d(n− a))!!

(dn)!!
=


dn/2
da/2




dn
da

 .

(Another way to see this is to note that if A is a separator then the perfect matching decomposes into a
perfect matching on A and a perfect matching on its complement.)

When a = xn, Stirling’s approximation shows that


n

a


∼ 1

2πx(1− x)
2nh(x),

where h(a) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. Therefore the expected
number of separators of size a = xn is at most


n

a


dn/2
da/2




dn
da

 ∼ 1

2πx(1− x)
2nh(x)[1+d/2−d] ≤ 1

2πx(1− x)
2−nh(x)/2.

In view of the preceding calculation, we can assume that x ≥ c, and so the expected number of separators
of size a = xn is at most Ω(2−Ω(n)) = o(1/n), showing that the expected number of separators overall is
o(1).

This result can be strengthened in several ways, where we always assume that d ≥ 3. First, we
can show that not only is G(n, d) connected with high probability, but also that it is an expander; see
Ellis [Ell, Theorem 5]. Second, we can show that G(n, d) is not only connected, but also d-connected
(remains connected after removing at most d− 1 vertices) with high probability; see Ellis [Ell, Theorem
6] or the textbook [FK16, Theorem 10.8]. Via Tutte’s criterion, a generalization of Hall’s criterion for
non-bipartite graphs, a d-connected d-regular graph having an even number of vertices contains a perfect
matching. We conclude that with high probability, G(n, d) contains a perfect matching. In fact, more is
true: with high probability, G(n, d) is Hamiltonian. The proof, which uses an extended version of the
second moment method, is unfortunately quite complicated.

11.2 Contiguity

The random d-regular graph model is hard to analyze directly, and so we have come up with the model
G∗(n, d) which is easy to analyze and has a very strong relation to G(n, d): an event holds with high
probability on G(n, d) if it holds with high probability on G∗(n, d). When two models are such that
this relation holds both ways, we say that they are contiguous. Difficult results in the theory of random
regular graphs show the following contiguity results, where G′(n, d) is G∗(n, d) conditioned on having no
loops. (See [JLR00, Section 9.5] for proofs.)

1. When d ≥ 4 is even, G′(n, d) is contiguous to a union of d/2 random Hamiltonian cycles.

2. When d ≥ 3 is odd, G′(n, d) is contiguous to a union of (d− 1)/2 random Hamiltonian cycles and
a random perfect matching.

3. When d ≥ 4 is even, G(n, d) is contiguous to a union of d/2 random Hamiltonian cycles, conditioned
on it being simple.

4. When d ≥ 3 is odd, G(n, d) is contiguous to a union of (d− 1)/2 random Hamiltonian cycles and
a random perfect matching, conditioned on it being simple.
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A result along the lines of Theorem 11.1 shows that G′(n, d) is simple with probability tending to

e−(d−1)2/4, and so an event holds with high probability on G(n, d) if it holds with high probability on
G′(n, d). This allows us to prove results like the following.

Theorem 11.8. A random 4-regular graphs can be partitioned, with high probability, to cycles of length
at most 4

√
n log n.

Proof. We will show that the union of two random Hamiltonian cycles can be so partitioned, with
high probability. We can fix one of the Hamiltonian cycles to be 1, 2, . . . , n, and let the other one
be π(1),π(2), . . . ,π(n). Partition {1, . . . , n} into n/m intervals I1, . . . , In/m of length m, where m =√
n log n. The probability that π(i) /∈ Ij for all i ∈ Ij is

(n−m)(n−m− 1) · · · (n− 2m+ 1)

n(n− 1) · · · (n−m+ 1)
≤


1− m

n

m

≤ e−m2/n =
1

n
.

In this case, we say that Ij is bad. The probability that some Ij is bad is at most n/m
n = 1

m = o(1), and
so with high probability all Ij are good. Thus for each inteval Ij there exists a point xj ∈ Ij such that
π(xj) ∈ Ij . The required partition into cycles is π(xj),π(xj +1), . . . ,π(xj+1),π(xj+1)−1, . . . ,π(xj), the
first part in the Hamiltonian cycle given by π, and the second part in n, . . . , 2, 1.

We don’t know whether
√
n log n is the optimal order of magnitude.

12 Expanders

Random graphs have many desirable properties. Sometimes we would like to construct a graph with
similar properties, but deterministically. Quasirandom graphs have the correct subgraph densities as
well as other properties, but they are lacking in other regards; most importantly, they are dense graphs,
whereas in many applications we are interested in bounded-degree graphs. Expanders are another type of
quasirandom graphs which have many uses in theoretical computer science. In many cases it is important
that they can be constructed deterministically, but in some cases there existence suffices.

Expanders come in many types and can be described in several different ways. There is a major
distinction between bipartite expanders and non-bipartite expanders. In both cases we are most often
interested in d-regular graphs for constant d.

Non-bipartite expanders General expanders are sometimes described as graphs which behave (in
certain ways) like the complete graph, while being sparse (having O(n) edges). Expanders are, informally,
graphs in which any set has many neighbors. This informal definition concerns vertex expansion, but it
turns out that a more useful definition is about edge expansion. The (edge) expansion of a graph G on
n vertices is given by

h(G) = min
|S|≤n/2

|E(S, S)|
|S| ,

where E(S, T ) is the set of edges between S and T . In words, h(G) is the best parameter such that every
set S of size at most n/2 is connected to its complement by at least h(G)|S| edges.

Sometimes we are interested instead in sizes of neighborhoods. Let N∗(S) denote the set of nodes in
S connected to vertices in S. We can define the vertex expansion of G as follows:

hV (G) = min
|S|≤n/2

|N∗(S)|
|S| ,

Clearly the two parameters differ by a constant (for constant d): h(G)/d ≤ hV (G) ≤ h(G).
A sequence G1, G2, . . . of d-regular graphs whose number of vertices tends to infinity is an expander

if h(Gn) ≥ h for some positive constant h > 0. Usually we abuse the definition and call a particular
graph an expander.4

4In non-standard arithmetic, the existence of a sequence of expanders is equivalent to the existence of a single expander
with a non-standard number of vertices.
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Bipartite expanders In many applications slightly different properties are needed, and often the
natural graph to be considered is bipartite (for example, a random CNF can be described as a bipartite
graph connecting variables or literals to clauses). A bipartite graph with bipartition L,R (where |R| ≤
|L|) which is d-regular on the left is called a (γ,α)-expander if for all S ⊆ L of size |S| ≤ γ|L|, we
have |N(S)| ≥ α|S|. A sequence of d-regular bipartite graphs form an expander sequence if there are
(γ,α)-expanders for some positive constants γ,α > 0.

Sometimes we want a stronger property, about unique neighbors rather than just neighbors. The
unique neighborhood of S consists of all vertices in S which have a unique neighbor in S. A bipartite
graph is a (γ,α)-unique expander if every subset S ⊆ L of size at most γ|L| has at least α|S| unique
neighbors.

12.1 Spectral expanders

Non-bipartite expanders can also be defined by examining their spectrum. The adjacency matrix A of
every d-regular graph on n vertices has d as an eigenvalue, corresponding to the constant eigenspace. This
is also the maximum magnitude of an eigenvalue of A, as follows from the Perron–Frobenius theorem.
It can also be seen directly: if v is an eigenvector corresponding to the eigenvalue λ and vi is an entry of
maximum magnitude then

|λvi| = |(Av)i| =





j∈N(i)

vj


≤ d|vi|.

It is an easy exercise in spectral graph theory that the dimension of the eigenspace of d equals the number
of connected components of the graph. Since A is symmetric, the only other possible eigenvalue with
magnitude d is −d. Another easy exercise shows that this is an eigenvalue if and only if the graph is
bipartite.

A graph can only be an expander if it is connected (since a connected component doesn’t expand
at all, and some connected component has size at most n/2). The spectral gap of a graph is defined as
d−λ2, where λ2 is the second largest eigenvalue of A (we implicitly assume that the eigenspace of d has
dimension 1). We can bound the edge expansion of a graph in terms of its spectral gap. Suppose that
S is a set of at most n/2 vertices, and let 1S be its characteristic vector. Note that 1S = 1− 1S , where
1 is the constant 1 vector. We have

|E(S, S)| = 1TSA1S = 1TSA(1− 1S) = d1TS1− 1TSA1S = d|S|− 1TSA1S .

We can write 1S = |S|
n 1+ v, where v is orthogonal to 1. Since this is an orthogonal decomposition, we

have |S| = 1S2 =  |S|
n 12 + v2 = |S|2

n + v2, so that v2 = |S|− |S|2
n . On the other hand, since v

is orthogonal to 1, we have vTAv ≤ λ2v2. In total,

1TSA1S =
|S|2
n2

1TA1+ vTAv ≤ d|S|2
n

+ λ2


|S|− |S|2

n


= (d− λ2)

|S|2
n

+ λ2|S|.

We conclude that

|E(S, S)|
|S| ≥ d− (d− λ2)

|S|
n

− λ2 = (d− λ2)


1− |S|

n


≥ d− λ2

2
.

In other words, h(G) ≥ d−λ2

2 for any d-regular graph. In other words, a sequence of d-regular graphs
whose spectral gap is bounded from below is an expander sequence. A more difficult argument shows
that the converse holds as well:

d− λ2

2
≤ h(G) ≤


2d(d− λ2).

This is known as Cheeger’s inequality.
Alon and Boppana showed that λ2 ≥ 2

√
d− 1−on(1) for every d-regular graph, where the error term

vanishes as n → ∞. The quantity 2
√
d− 1 is the second eigenvalue of the infinite d-regular tree, which

is thus, in a sense, the best possible d-regular expander. Expander sequences which consist of d-regular
graphs satisfying λ2 ≥ 2

√
d− 1 are known as Ramanujan graphs.
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12.2 Constructions

It turns out that a random d-regular graph is an expander with high probability, and this can be shown
using the first moment method (see Ellis [Ell]). Friedman [Fri08] and Puder [Pud15] showed that it has
an almost optimal spectral gap. We show below a simpler result for bipartite expanders.

There are several explicit constructions of expanders:

1. Margulis/Gabber–Galil/Lubotzky–Phillips–Sarnak: A family of 8-regular expanders onm2 vertices
for every m. The vertex set is Z2

m. A vertex (x, y) is connected to (x± y, y), (x± y + 1, y), (x, y ±
x), (x, y ± x+ 1).

2. A family of 3-regular expanders on p vertices for every prime p. The vertex set is Zp. A vertex x
is connected to x± 1 and to x−1 (where 0−1 = 0).

Other constructions use lifts [Coh16] or the zig-zag product, used by Reingold [Rei08] to give a log-space
algorithm for undirected connectivity.

There are also explicit constructions of bipartite expanders of various types. We will be content
here to show that when d ≥ 2, a random bipartite left-d-regular graph is a (γ,α)-expander with high
probability, for appropriate values of γ,α. In fact, for each γ < 1 some value α > 0 will work. A random
bipartite left-d-regular graph on 2n vertices is one chosen at random among all bipartite graphs with two
bipartitions of size n in which all vertices on the left have degree d. Such a graph can be generated by
choosing for each vertex on the left d (not necessarily distinct) random neighbors on the right.

The expected number of 2-cycles is n

d
2


· 1
n =


d
2


, and the number of 2-cycles has roughly Poisson

distribution; thus the probability that the resulting graph is simple tends to e−(
d
2). This shows that if

we choose a random simple bipartite left-d-regular graph, it will also be a (γ,α)-expander with high
probability: indeed, the probability that a random simple bipartite left-d-regular graph is not a (γ,α)-

expander is large by a factor of at most roughly e(
d
2) than the probability that a random bipartite

left-d-regular graph is not a (γ,α)-expander.
Let S ⊆ L be a set of size s ≤ γn. If T ⊆ R is a particular set of size αs, then the probability that

N(S) ⊆ T is at most (αs/n)ds. Thus the probability that some set of size s has at most αs neighbors is
at most


n

s


n

αs

αs
n

ds

≤
en

s

s  en
αs

αs αs
n

ds

=


en

s
· (en)

α

(αs)α
· (αs)

d

nd

s

=


e1+ααd−α · s

d−1−α

nd−1−α

s

.

Let ρ = e1+ααd−αγd−1−α, so that ρs is an upper bound on the probability that some set of size s has
at most αs neighbors. Since ρ vanishes as α → 0, ρ < 1 for small enough α > 0. The probability that
some set of size s ≤ γn has at most αs neighbors is thus at most

γn

s=1


e1+ααd−α · s

d−1−α

nd−1−α

s

≤ ne1+ααd−α · 1

n(1−)(d−1−α)
+

n

s=n+1

ρs

≤ O(n−(1−)(d−1−α)) +O(xn

).

For small enough  > 0 we have  < (1− )(d− 1− α) (since d ≥ 2), and we deduce that the probability
that the graph is not a (γ,α)-expander is o(1), assuming that α is small enough so that ρ < 1.

12.3 Properties

Expander graphs (non-bipartite ones!) satisfy many useful properties. Here we prove just two: they have
diameter O(log n) (where n is the number of vertices), and they are uniform in terms of the number of
edges connecting two sets of vertices, a property known as the expander mixing lemma.

We start with the diameter.

Lemma 12.1. Suppose that G is a d-regular graph on n vertices that has expansion h(G) ≥ h. Then G
has diameter at most O((d/h) log n).
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Proof. Suppose that x, y are any two vertices. Denote by N i(x) the set of vertices at distance at most i
from x. If |N i(x)| ≤ n/2 then

|N i+1(x)| ≥ |N i(x)|+ |E(N i(x), N i(x))|
d

≥

1 +

h

d


|N i(x)|.

We conclude that if |N i(x)| ≤ n/2 then |N i(x)| ≥ (1 + h/d)i, which leads to a contradiction if
i = c(d/h) log n for an appropriate constant c > 0. We conclude that |N i(x)| > n/2 for some
i = O((d/h) log n). The same holds for y, and since |N i(x)|, |N i(y)| > n/2, the two sets must intersect,
showing that the distance between x and y is at most 2i = O((d/h) log n).

Another important result is the expander mixing lemma, which requires a slightly stronger notion of
spectral expansion: instead of just requiring λ2, the second largest eignevalue, to be bounded away from
d, we require λ = max(λ2, |λmin|) to be bounded away from d, where λmin is the minimal eigenvalue.
In particular, the graph should not be bipartite. Families of non-bipartite expanders usually satisfy this
additional property, and the Alon–Boppana bound 2

√
d− 1− o(1) is actually a bound on λ.

Lemma 12.2. Suppose that G is a d-regular graph on n vertices. For all sets of vertices S, T ,
|E(S, T )|− d|S||T |

n

 ≤ λ

|S||T |.

Proof. The proof is very similar to the case T = S considered above. Let 1S , 1T be the characteristic

vectors of S, T , and decompose them orthogonally as 1S = |S|
n 1+s, 1T = |T |

n 1+t, where s2 = |S|− |S|2
n

and t2 = |T |− |T |2
n (as above). If A is the adjacency matrix of G then

|E(S, T )| = 1TSA1T =
|S||T |
n2

1TA1+ sTAt =
d|S||T |

n
+ sTAt.

The Cauchy–Schwartz inequality implies (after decomposing s, t into the eigenspaces of A) that

|sTAt| ≤ λst ≤ λ

|S||T |.

Every d-regular graph has λ ≤ d, so perhaps the error bound doesn’t look impressive. To put it into
perspective, suppose that |S| = αn and |T | = βn. In that case, the bound states that

|E(S, T )|− dαβn
 ≤ λ


αβn.

This is useful mostly when λ
√
αβ < dαβ, that is when λ/d ≤

√
αβ.

The expander mixing lemma can be used to bound the size of an independent set in G: if S is an
independent set of size αn then E(S, S) = 0 and so dα2n ≤ λαn, and so α ≤ λ/d. This implies that
χ(G) ≥ d/λ.

12.4 Applications

Expanders have many applications. We briefly mention a few of them:

AKS sorting network Expanders are used to construct a sorting network of asymptotically optimal
depth O(log n).

Approximate majority Ajtai used expanders to construct an AC0 circuit which can tell apart inputs
of weight (1/2− )n from inputs of weight (1/2 + )n, where  = 1

logd n
for arbitrary d. (Note that

such circuits famously cannot compute majority.)

Embedding into Euclidean space Bourgain showed that any n-point metric can be embedded into
Euclidean space with distortion O(log n). Linial, London and Rabinovich [LLR95] showed that this
is tight for expanders.

Proof complexity Expanders can be used (via Tseitin formulas) to prove strong lower bounds on
Resolution. Other expansion properties pop up in lower bounds for random k-CNFs.

Derandomization Reingold [Rei08] used expanders to derandomize a random walk algorithm, thus
proving that undirected reachability can be decided in logspace. (Directed reachability is complete
for NL.)
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13 Quasirandomness

Our exposition is based mostly on Lovász’s monograph [Lov12]. The original work on quasirandom
graphs is [CGW89], and quasirandom graphs are also discussed in [AS16, Section 9.3].

13.1 Graphons

Graphons are a generalization of the G(n, p) model which is complete in some sense that we sketch
below. A graphon is a measurable function W : [0, 1]2 → [0, 1] which is symmetric: W (x, y) = W (y, x).
A random G(n,W ) is sampled as follows:

1. Sample n numbers x1, . . . , xn ∈ [0, 1] uniformly and independently.

2. For i ∕= j, put an edge between i and j with probability W (xi, xj), independently for all edges.

When W ≡ p is constant, a G(n,W ) random graph is the same as a G(n, p) random graph.
Earlier we have counted the expected number of subgraphs of a particular type in G(n, p), and we can

do the same in G(n,W ). Instead of counting subgraphs, we will count the number of homomorphisms
from a specific small graph H = (V (H), E(H)). Given two graphs G,H, a homomorphism from H to
G is a function h : V (H) → V (G) such that (h(i), h(j)) ∈ E(G) whenever (i, j) ∈ E(H). We denote
by t(H,G) the probability that a random function from V (H) to V (G) is a homomorphism; this is the
normalized number of copies of H inside G. A simple calculation shows that

E[t(H,G(n,W ))] → t(H,W ) :=



x1,...,x|V (H)|



(i,j)∈E(H)

W (xi, xj) dx,

where x1, . . . , xn are integrated against the Lebesgue measure on [0, 1]. Moreover, if Gn ∼ G(n,W ) for
all n, then it is not too hard to show that almost surely, for every H it holds that t(H,Gn) → t(H,W ).

A graph sequence Gn is a sequence of graphs in which |V (Gn)| → ∞. A graph sequence Gn converges
to the graphon W if the statement above holds for all graphs H. A deep result shows that any graph
sequence has a convergent subsequence. In this sense the graphon model is complete.

Every finite graph G = (V,E) has a graphon counterpartW formed by dividing [0, 1] into |V | intervals
of equal length, and letting each square be the constant 1 if the corresponding edge is in the graph, and
the constant 0 otherwise. This graphon satisfies t(H,G) = t(H,W ) for every H. In this sense, graphons
are generalizations of finite graphs.

Another example is the stochastic block model. There are k types of vertices, a random vertex belongs
to type i with probability pi, and vertices of type i, j are connected with probability wij . This is captured
by a piecewise constant graphon which the reader can surely construct by herself. One basic question
about the stochastic block model, which has recently been answered, is whether the types of the vertices
can be recovered given the graph, with high probability. This is known as the problem of community
detection. See Abbé’s recent survey [Abb16].

13.2 Quasirandom graphs

We say that a graph sequence Gn is p-quasirandom if t(H,Gn) → p|E(H)|, that is, if it behaves like G(n, p)
in terms of graph densities. Chung, Graham and Wilson [CGW89] proved (for p = 1/2) the surprising
result that a graph sequence Gn is p-quasirandom if and only if t(−, Gn) → p and t(□, Gn) → p4, that
is, if the condition above holds for the two particular graphs H = −,□. In such a case we say that the
corresponding graphon (in this case, the constant p graphon) is finitely forcible. All piecewise constant
graphons are finitely forcible.

Theorem 13.1. A graph sequence Gn is p-quasirandom if and only if t(−, Gn) → p and t(□, Gn) → p4.

Proof. The only if part is obvious, so it suffices to prove that Gn is p-quasirandom if t(−, Gn) → p
and t(□, Gn) → p4. Suppose to the contrary that for some graph H, t(H,Gn) ∕→ p|E(H)|. We can find
a subsequence G′

n and c ∕= p|E(H)| such that t(H,G′
n) → c (since the interval [0, 1] is compact). The

compactness result quoted above implies that there is a subsequence G′′
n of G′

n converging to a graphon
W . The graphon W satisfies t(−,W ) = p and t(□,W ) = p4, but t(H,W ) ∕= p|E(H)|.
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As the following calculation, which uses the inequality E[X2] ≥ E[X]2 twice, shows, it is always the
case that t(□,W ) ≥ t(−,W )4:

t(□,W ) = E
a,b,c,d

[W (a, b)W (b, c)W (c, d)W (d, a)]

= E
a,b


E
c
[W (a, b)W (b, c)]2



≥ E
a,b,c

[W (a, b)W (b, c)]2

= E
b


E
a
[W (a, b)]2

2

≥ E
a,b

[W (a, b)]4

= t(−,W )4.

In our case we have equality, and so

c
W (a, b)W (b, c) must be constant almost surely; in fact, equal to

p2 almost surely. If we treat W as an operator on L2([0, 1]), this shows that W 2 = p2, where p2 is the
operator that maps f ∈ L2([0, 1]) to the constant function p2 E[f ] (note that operators, and graphons,
are defined up to measure zero). This implies that W = ±p (since W 2 has a unique eigenspace, consisting
of all constant functions, which doesn’t belong to its kernel). Since W ≥ 0 (as a graphon), it follows that
W = p. This contradicts the assumption that t(H,W ) ∕= p|E(H)|.

Quasirandom graphs enjoy many other properties:

• All eigenvalues other than the maximal one are o(n).

• Every set S contains (p/2)|S|2 ± o(n2) edges.

• Every two disjoint sets S, T are connected by p|S||T | ± o(n2) edges.

• The average deviation of |{z : (x, z), (y, z) ∈ E}| from p2n is o(n).

13.3 Quasirandom and non-quasirandom sequences

The material in this part is taken from Chung, Graham, and Wilson [CGW89].

Paley graphs As an application of the theory, we will show that the Paley graphs form a quasirandom
sequence for p = 1/2. For a prime q = 4m + 1, the Paley graph Pq is a graph on Zq in which i, j are
connected whenever i− j is a quadratic residue modulo q (that is, i− j ≡ k2 (mod q) for some k ∈ Zq).
The condition q = 4m + 1 guarantees that −1 is a quadratic residue, and so this defines an undirected
graph. It is known that exactly q−1

2 non-zero elements of Zq are quadratic residues (essentially since

x2 = (−x)2), and so the graph is q−1
2 -regular. This easily implies that t(−, Pq) → 1/2.

To estimate the number of squares, consider a pair of vertices x ∕= y. A third vertex z is adjacent to
both or neither x, y iff z−x

z−y is a quadratic residue (since quadratic residuity is multiplicative). If a ∕= 1

is a quadratic residue then z−x
z−y = a implies that a− 1 = y−x

z−y , and so z = y + y−x
a−1 . It follows that there

are exactly q+1
2 − 2 = q−3

2 vertices z which are adjacent to both or neither x, y. Denote by N(x) the set
of neighbors of x. Then

2|N(x) ∩N(y)| = |N(x)|+ |N(y)|+ (|N(x) ∩N(y)|+ |N(x) ∩N(y)|)− q = (q − 1) +
q − 3

2
− q =

q − 5

2
,

and so |N(x)∩N(y)| = q−5
4 . This easily implies that t(□, Pq) → (1/4)2 = 1/16. We conclude that Pq is

a pseudorandom sequence.

Intersection parity graphs Here is another example for p = 1/2. For every n, consider the graph

whose vertex set is

[2n]
n


, connecting two vertices A,B if their intersection contains an even number of

points. Roughly speaking the intersection of two random vertices is distributed like Bin(2n, 1/4), and so
it is even roughly half the time. We leave it to the reader to show that, for reasons similar to those in
the previous examples, the relative number of squares is roughly 1/16.
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Triangle density is not enough We have seen that if t(−, Gn) → p and t(□, Gn) → p4 then the
graph sequence is p-quasirandom. It is natural to ask whether □ can be replaced by △. The following
counterexample shows it not to be the case. For p ≤ 1/2, consider the following graphon Wp:

2p 0 p p
0 2p p p
p p 0 2p
p p 2p 0

This corresponds to a graphon by replacing each cell by a constant 1/4 × 1/4 square. One checks that
t(−,Wp) = p, t(∧,Wp) = p2, and t(△,Wp) = p3, but t(□,Wp) =

9
8p

4. When p ≥ 1/2, we similarly take

2p− 1 1 p p
1 2p− 1 p p
p p 1 2p− 1
p p 2p− 1 1

One checks that t(−,Wp) = p, (∧,Wp) = p2, and t(△,Wp) = p3, but t(□,Wp) = p4 + 1
8 (1− p)4.

13.4 Flag algebras and extremal graph theory

Graphons are also useful in extremal graph theory. Consider any inequality involving graph densities. If
this inequality holds for all graphons, then it holds for all graphs, since each graph is equivalent to some
graphon (from this point of view). On the other hand, if an inequality holds for all graphs then it also
holds for all graphons: if it didn’t hold for some graphon W , then with high probability it wouldn’t hold
for G(n,W ) for large enough n. What we gain by moving from graphs to graphons is that the space of
possible graph densities for graphons can be described using an infinite semidefinite program. If we aim
at proving an inequality of the form I ≥ 0 (where I is a linear combination of graph densities), then we
can try to compute the minimum of I given a finite subset of the infinite SDP. In many cases, some finite
subset is enough to prove that I ≥ 0. In general, it is known that if indeed I ≥ 0 then for every  > 0,
some finite subset proves I > −; and that some I exist for which no finite subset of the constraints
implies that I ≥ 0.

When the semidefinite program proves that I ≥ 0, we can translate the proof into a sequence of
applications of the Cauchy–Schwartz inequality. We have already seen such an example above, where we
proved that t(□,W ) ≥ t(−,W )4. Although this is not a linear inequality, we can turn it into a linear
one by noticing that t(−,W )4 = t(||||,W ). The linear inequality t(□,W )− t(||||,W ) ≥ 0 can be proved
automatically by choosing an appropriate subset of the infinite SDP.

The most spectacular demonstration of these techniques is Razborov’s theorem [Raz08] on the edges
vs. triangles problem. Razborov determined, for each edge density p, what is the minimal possible
triangle density. He also finds the extremal graphons, thus showing how to compute graphs with almost
optimal edge and triangle densities.

13.5 Graphings

The theory of graphons is appropriate for dense graphs. If, however, we consider a sequence of G(n, d)
graphs, then it converges to the zero graphon. The correct notion of convergence for bounded-degree
graphs, known as Benjamini–Schramm convergence, is convergence of the distribution of the ℓth neigh-
borhood of a random vertex, for all ℓ. As we have shown above, with high probability a random d-regular
graph contains few short cycles (although it is Hamiltonian!), and so locally the graph looks like a tree. In
other words, in this case the ℓth neighborhood is just a d-regular tree of depth ℓ. Other graph sequences
could converge to different distributions. The appropriate limiting object here is called a graphing.

The definition of graphing is slightly technical, and so we skip it. Let us just mention a few other
examples of random (or non-random) bounded-degree graphs:

• Let π be a probability distribution on {0, . . . , d}. A random π-graph on n vertices is a graph that
looks locally like a tree in which the degree of the root has distribution π.

• The sequence of n× n grids converges to the infinite grid.

• The sequence of d× n grids (for constant d) converges to an infinite grid of height d.
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13.6 Permutons

Counterparts of graphons have been studied in other settings. Perhaps the most natural one is that of
permutations. The counterpart of homomorphism density is the relative order of k random points. For
every (large) permutation τ and (small) permutation π, the density t(π, τ) is the probability that if we
sample |π| inputs at random (where |π| is the size of the domain of π), then their relative order in τ is π.

A permuton is a probability distribution µ on [0, 1]2 such that if (X,Y ) ∼ µ then X ∼ U([0, 1]) and
Y ∼ U([0, 1]). To draw a permutation on n elements, draw n elements (X1, Y1), . . . , (Xn, Yn) from µ,
order them according to the Xi, and output the relative order of the Yi. This is a limit object in the sense
that every sequence of permutations has a subsequence converging to a permuton, where convergence is
defined via the permutation densities defined above.

We say that a permutation τ is k-uniform if t(π, τ) = 1/k! for every π ∈ Sk; this concept generalizes
to permutons. A permuton is uniform if it is k-uniform for all k. For example, U([0, 1])2 is a uniform
permuton. If a convergent sequence of permutations τn satisfies t(π, τn) → 1/k! for every π ∈ Sk, then
their limit is a k-uniform permuton.

In the context of graphs, for a sequence of graphs to be p-quasirandom it sufficed for it to be p-
quasirandom with respect to two graphs: − and □. Is the same true for permutons?

A 3-uniform permuton need not be uniform, as shown by Copper and Petrarca [CP08]. For example,
the permutation 349852167 is 3-uniform but not 4-uniform. Kral’ and Pikhurko [KP13] showed that a
4-uniform permuton is uniform. Their proof resembles the argument for graphs.
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