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1 Generalized Bonferroni Inequalities

l.a. Let S € ([Z]) be a set of r indices.
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1.b. Following similar calculations to those in (1a) proves the following inequalities:
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l.c. Let p = 8™ For every S C [n], let Eg be the event that all vertices in S are
isolated. It holds that
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Using the equality in (1a), and since () = (1 + 0(1))’2—?, then:
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1.d. Let € > 0. Since >~ Pr[P = r] = 1 is a series of nonnegative and monotonically

decreasing elements, then there exists R for which }° , Pr[P = r] < <. Furthermore, since
n—o

Pr[X, = r] = Pr[P = r], then there exists N such that | Pr[.X,, = r] — Pr[P = r]| < j% for
any n > N and any r < R. Therefore, for any n > N,
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2 Google Interview Question

2.a. For any i € n, let X!(m) denote the number of balls in the ith bin after m steps.
Clearly, X! (m) ~ Bin(m,1/»), and using the Poisson approximation for the Binomial dis-
tribution, we get that X;(m) & Pois(m/n). Therefore, by linearity of expectationa we get

that:
- g ()
E[Xy(m)] =) E |:1{X,i(m):k}:| Rne
=1

A more careful analysis, that follows the footsteps of the proof of the Poisson limit theorem,
m k . .
proves that E [X(m)] =n - e’m/"% + O(1), as required. For the variance of Xj(m): for

every ¢, the random variable 1; Xi (m)=k} 1S & Bernoulli indicator, and hence V [1 { X,i(m):k}i| <

1. Furthermore, it is fairly easy to see that



Therefore:

n
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2.b. Let 6(n ) . Let t = n'/%_ and define a set of t + 1 evenly-spread m;s as follows:
m; = en + (€=an; for every 0 <1 < t. For every such m;, Chebyshev’s inequality yields
ViXk(mi)] _ Om) 0()

Pr“Xk(mZ) - E[Xk<m2)]| Z g] S 52 = n4/3 - n1/3 :

Now, applying a union bound, we get that
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Pr /\ | Xi(my) — B[Xp(m)]| > 6| < (t+1) 7% /37

i=0
and since t = o (nl/ 3) then this probability is o(1); namely, with high probability, | X(m;) —

E[X1(m;)]| < 6 for all our m;s. Now, let m be any natural number in the range [en, Cn).
Let € {0,...,t} be the index for which m; < m < m;,;. We therefore get:

| Xk(m) — E[Xy(m)]| = |Xk(m) — E[X)(m)] + Xy (mi) — E[X)(m;)]—
— Xy (m;) + E[Xy(m)]|
< [Xk(m) = Xi(mi)| + | E[Xx(m)] — E[Xp(my)] |+
+ | Xk (m;) — E[ X (my)]].

Since we throw a single ball in each step, then |Xp(m) — Xp(m;)| < |m —m,| < 2¢=n E)"

Similarly, | E[X),(m)] — E[X),(m,)]| < 2¢¢=n ) . Taking t = w(l) ensures that these bounds are

o(n). Furthermore, we know that | X k(m,) E[X.(m;)]| < & with high probability. Therefore,

with high probability,
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Therefore, for §(n) = 2@ +n** = o(n), we get that with high probability |Xj(m) —
E[X(m)]| < ¢ for all m € [en, Cn].

Xi(m) — E[Xe(m)]] < 2 + 0¥ = ofn).

2.c. We first remark that in this sub-exercise we are not given than en < m* < Cn for
some constant €, C' > 0, and we thus cannot immediately apply (2a) and (2b). Nevertheless,
it can be easily shown that %n < m* < 2n with high probability.

From (2a), we know that E[X,(m)] = e="/"n+ O(1) and E[X;(m)] = e”™/"2n + O(1) =
e~"/"m + O(1). Therefore,

|E[X(m™)] — E[Xo(m")]| > |e’m/"m — e’m/"n} —0(1)
> e " "lm* —n| — O(1).



On the other hand, we get that:

)] = Xi(m") — E[Xo(m")] + Xo(m") + X1 (m™) — Xo(m")| <
] (m*)| + [E[Xo(m")] = Xo(m™)| + | Xy (m") — Xo(m")|
<d(n)+4d(n)+O(1),

where the last inequality holds due to (2b) and since X;(m*) = Xo(m*) + O(1). We can
thus conclude the following:

e |m* — ] — O(1) < [E[X1(m")] — E[Xo(m")]] < 8(n) + 3(n) + O(1),

and namely |m*—n| < 2¢™/"5(n)+O(1)-e™/* whp, as desired. Taking § = e~ /" concludes
the exercise:

| Xo(m") — Bn| < |Xo(m") — E[Xo(m")]| + [E[Xo(m")] — Bn| < é(n) + O(1),
| X1(m*) = Bn| < |Xi(m") — E[Xy(m")]| + [E[X1(m")] — Bn]
< 6(n) + |E[X,(m*)] — 8 (m* 42" (n) + O(1) - e”“*/n)
< 8(n) + | E[X1(m*)] — Bm*| +2B8e™ 8(n) + O(1) - Be™ I
< d(n) +d(n) +26(n) + O(1) = 46(n) + O(1).
2.d. We consider an equivalent game, in which the pills are uniquely labeled {1,...,n},

and whenever we consume the second half of a pill, we insert a new “dummy pill” with the
same label into the bag. This way, the total number of elements (either pills or half-pills) in
the bag is always n, and there is always an element in the bag with each label in [n]. Suppose
we perform t steps of the new experiment, and every time we consume a pill whose label is
i, we throw a ball in the ith bin. Let H (), W () denote the number of half/whole pills
in the game we propose (excluding dummy pills), and let m* denote the first step at which
H(m*) > W(m*). Clearly, our mapping satisfies H(m*) = H(m*) and W (n*) = W (m*).

Due to the equivalence described above between the proposed game and the balls-in-bins
game, we get that whp |[W(m*) — pn| < n(n) and |H(m*) — pn| < n(n) for some §,n as
described in (2¢). Furthermore, since m* = 2n—2W (m*)—H (m*), then with high probability
m* = 2n — (3pn £+ 3n(n)), namely |m* — (2 — 35)n| < 3n(n) with high probability, and that
concludes the exercise.
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