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1 Generalized Bonferroni Inequalities
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1.b. Following similar calculations to those in (1a) proves the following inequalities:
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1.c. Let p = logn+c
n

. For every S ⊂ [n], let ES be the event that all vertices in S are
isolated. It holds that
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Using the equality in (1a), and since
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, then:
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1.d. Let ε > 0. Since
∑∞

r=0 Pr[P = r] = 1 is a series of nonnegative and monotonically
decreasing elements, then there exists R for which
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4
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2 Google Interview Question

2.a. For any i ∈ n, let X i
k(m) denote the number of balls in the ith bin after m steps.

Clearly, X i
k(m) ∼ Bin(m, 1/n), and using the Poisson approximation for the Binomial dis-

tribution, we get that X i
k(m) ≈ Pois(m/n). Therefore, by linearity of expectationa we get

that:

E [Xk(m)] =
n∑
i=1

E
[
1{Xi

k(m)=k}

]
≈ n · e−m/n (m/n)k

k!
.

A more careful analysis, that follows the footsteps of the proof of the Poisson limit theorem,

proves that E [Xk(m)] = n · e−m/n (m/n)k

k!
+ O(1), as required. For the variance of Xk(m): for

every i, the random variable 1{Xi
k(m)=k} is a Bernoulli indicator, and hence V

[
1{Xi

k(m)=k}

]
≤

1. Furthermore, it is fairly easy to see that

Cov
(
1{Xi

k(m)=k},1{Xj
k(m)=k}

)
< 0.
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Therefore:

V [Xk(m)] =
n∑
i=1

V
[
1{Xi

k(m)=k}

]
+ 2

∑
i<j

Cov
(
1{Xi

k(m)=k},1{Xj
k(m)=k}

)
= O(n).

2.b. Let δ̃(n) = n2/3. Let t = n1/6, and define a set of t + 1 evenly-spread mis as follows:

mi = εn+ (C−ε)n
t

i for every 0 ≤ i ≤ t. For every such mi, Chebyshev’s inequality yields

Pr[|Xk(mi)− E[Xk(mi)]| ≥ δ̃] ≤ V[Xk(mi)]

δ̃2
=
O(n)

n4/3
=
O(1)

n1/3
.

Now, applying a union bound, we get that

Pr

[
t∧
i=0

|Xk(mi)− E[Xk(mi)]| ≥ δ̃

]
≤ (t+ 1)

O(1)

n1/3
,

and since t = o
(
n1/3
)

then this probability is o(1); namely, with high probability, |Xk(mi)−
E[Xk(mi)]| ≤ δ̃ for all our mis. Now, let m be any natural number in the range [εn, Cn].
Let i ∈ {0, . . . , t} be the index for which mi ≤ m ≤ mi+1. We therefore get:

|Xk(m)− E[Xk(m)]| = |Xk(m)− E[Xk(m)] +Xk(mi)− E[Xk(mi)]−
−Xk(mi) + E[Xk(mi)]|
≤ |Xk(m)−Xk(mi)|+ |E[Xk(m)]− E[Xk(mi)]|+
+ |Xk(mi)− E[Xk(mi)]|.

Since we throw a single ball in each step, then |Xk(m) − Xk(mi)| ≤ |m − mi| ≤ 2 (C−ε)n
t

.

Similarly, |E[Xk(m)]−E[Xk(mi)]| ≤ 2 (C−ε)n
t

. Taking t = ω(1) ensures that these bounds are

o(n). Furthermore, we know that |Xk(mi)−E[Xk(mi)]| ≤ δ̃ with high probability. Therefore,
with high probability,

|Xk(m)− E[Xk(m)]| ≤ 2
(C − ε)n

t
+ n

2/3 = o(n).

Therefore, for δ(n) = 2 (C−ε)n
t

+ n2/3 = o(n), we get that with high probability |Xk(m) −
E[Xk(m)]| ≤ δ for all m ∈ [εn, Cn].

2.c. We first remark that in this sub-exercise we are not given than εn ≤ m∗ ≤ Cn for
some constant ε, C > 0, and we thus cannot immediately apply (2a) and (2b). Nevertheless,
it can be easily shown that 1

2
n ≤ m∗ ≤ 2n with high probability.

From (2a), we know that E[X0(m)] = e−m/nn+O(1) and E[X1(m)] = e−m/nm
n
n+O(1) =

e−m/nm+O(1). Therefore,

|E[X1(m
∗)]− E[X0(m

∗)]| ≥
∣∣e−m/nm− e−m/nn

∣∣−O(1)

≥ e−
m∗/n|m∗ − n| −O(1).
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On the other hand, we get that:

|E[X1(m
∗)]− E[X0(m

∗)]| ≤
|E[X1(m

∗)]−X1(m
∗)− E[X0(m

∗)] +X0(m
∗) +X1(m

∗)−X0(m
∗)| ≤

|E[X1(m
∗)]−X1(m

∗)|+ |E[X0(m
∗)]−X0(m

∗)|+ |X1(m
∗)−X0(m

∗)|
≤ δ(n) + δ(n) +O(1),

where the last inequality holds due to (2b) and since X1(m
∗) = X0(m

∗) + O(1). We can
thus conclude the following:

e−
m∗/n|m∗ − n| −O(1) ≤ |E[X1(m

∗)]− E[X0(m
∗)]| ≤ δ(n) + δ(n) +O(1),

and namely |m∗−n| ≤ 2em
∗/nδ(n)+O(1) ·em

∗/n whp, as desired. Taking β = e−m∗/n concludes
the exercise:

|X0(m
∗)− βn| ≤ |X0(m

∗)− E[X0(m
∗)]|+ |E[X0(m

∗)]− βn| ≤ δ(n) +O(1),

|X1(m
∗)− βn| ≤ |X1(m

∗)− E[X1(m
∗)]|+ |E[X1(m

∗)]− βn|

≤ δ(n) +
∣∣∣E[X1(m

∗)]− β
(
m∗ + 2e

m∗/nδ(n) +O(1) · em
∗/n
)∣∣∣

≤ δ(n) + |E[X1(m
∗)]− βm∗|+ 2βe

m∗/nδ(n) +O(1) · βem
∗/n

≤ δ(n) + δ(n) + 2δ(n) +O(1) = 4δ(n) +O(1).

2.d. We consider an equivalent game, in which the pills are uniquely labeled {1, . . . , n},
and whenever we consume the second half of a pill, we insert a new “dummy pill” with the
same label into the bag. This way, the total number of elements (either pills or half-pills) in
the bag is always n, and there is always an element in the bag with each label in [n]. Suppose
we perform t steps of the new experiment, and every time we consume a pill whose label is
i, we throw a ball in the ith bin. Let H̃(m̃), W̃ (m̃) denote the number of half/whole pills
in the game we propose (excluding dummy pills), and let m̃∗ denote the first step at which
H̃(m̃∗) ≥ W̃ (m̃∗). Clearly, our mapping satisfies H̃(m̃∗) = H(m∗) and W̃ (m̃∗) = W (m∗).

Due to the equivalence described above between the proposed game and the balls-in-bins
game, we get that whp |W (m∗) − βn| ≤ η(n) and |H(m∗) − βn| ≤ η(n) for some β, η as
described in (2c). Furthermore, since m∗ = 2n−2W (m∗)−H(m∗), then with high probability
m∗ = 2n− (3βn± 3η(n)), namely |m∗ − (2− 3β)n| ≤ 3η(n) with high probability, and that
concludes the exercise.
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