
Assignment 2: Solution Sketch

Itay Hazan
Random Graphs, Technion, 2017

January 19, 2018

1 Solving NP-Hard Problems on Random Graphs

First, we make the following important observations:

• Since c
n

= 1
n
− ω

(
1

n4/3

)
, then whp every component of the graph is either a tree or

unicyclic (see the section on the Unicyclic Regime in the lecture notes).

• For any f(n) = ω(1), the size of the largest component of G(n, c/n) is at most O(log n+
f(n)). Choosing f(n) = log log n shows that the largest component contains O(log n)
vertices (whp).

We now sketch an algorithm and a brief correctness argument for each of the mentioned
problems:

Maximum Clique. Since the graph is unicyclic whp, then there are no cliques on four
vertices or more in the graph (whp). It therefore suffices to find a clique on three vertices
or less in order to output a maximum clique whp. The simplest brute force algorithm, that
goes over all possible subsets of V of size 3 or less and checks if they define a clique will do.

Maximum Independent Set. The largest independent set of a graph is the union of the
largest independent sets of each of its components. It therefore suffices to argue a way to
find the maximum independent set of each component. Since we know that each component
contains at most c log n vertices whp, then a brute force algorithm that finds a maximum
independent set in a component by going through all possible subsets of the vertices and
checking for each subset whether it forms an independent set takes 2c logn = nc = poly(n).
Since there are at most n components, then applying this procedure for every component
takes polynomial time.

Minimum Vertex Cover. Recall that for every graph G = (V,E), S ⊂ V is an indepen-
dent set of G iff V \S is a vertex cover for G. Therefore, if S is a maximum independent set
the V \ S is a minimum vertex cover. We can therefore run the algorithm for finding (whp)
a maximum independent set, and returning the complement of its output.

1

Minimum Feedback Vertex Set. Given a graph G, we must remove at least one vertex
from every cycle in G in order to transform it into a tree. Since whp every component in
G(n, c/n) is unicyclic, then it suffices to run DFS on each component and remove every vertex
from which a backwards edge goes out.

Chromatic Number. Recall that in G(n, c/n), each component is either a tree or unicyclic
whp. We know that the chromatic number of trees is 2, and the chromatic number of cycles
is either 2 or 3, depending on the parity of the number of vertices: if there is an even number
of vertices, then the cycle can be colored with two alternating colors, and otherwise we need
an extra color. We therefore output the following: if there is an odd cycle in G, answer ‘3’.
Otherwise, answer ‘2’.

2 Unicyclic Graphs, Empirically

2.a. Let N =
((n

2)
n

)
denote the number of graphs with n vertices and n edges. Denote

p = Pr[G(n, n) is connected]. Clearly,

p =
Un

N
.

2.b. Suppose we sample t graphs G1, . . . , Gt ∼ G(n, n), and let us define an indicator Ii
for every i ∈ [t] as follows:

Ii =

{
1 if Gi is connected

0 otherwise
.

Clearly, I1, . . . , It are i.i.d. Ber(p) random variables. Define Ī = 1
t

∑
i∈[t] Ii. By the weak

law of large numbers, Ī
P−→ p, and therefore we can use Ī as an estimator for p. We can

therefore estimate Un by
[
Ī ·
((n

2)
n

)]
.

2.c. Since the Iis are i.i.d., then

V[
∑
i∈[t]

Ii] =
∑
i∈[t]

V[Ii] = tp(1− p).

Therefore,

V[Ī] = V

1

t

∑
i∈[t]

Ii

 =
1

t2
V[
∑
i∈[t]

Ii] =
p(1− p)

t
.

Since X =
[
Ī ·
((n

2)
n

)]
, then

V[X] =

((n
2

)
n

)2

· p(1− p)
t

,

2

i.e.

σ[X] =

((n
2

)
n

)
·
√
p(1− p)

t
.

2.d. By the 68-95-99.7 rule, Pr[|X−Un| ≤ 3σ(X)] ≈ 0.997. Requiring Pr[X = Un] ≈ 0.997
is the same as requiring Pr[|X − Un| < 1/2] ≈ 0.997. It therefore suffices to demand that
3σ(X) < 1

2
, namely:

t > 36

((n
2

)
n

)2

· p(1− p).

It therefore also suffices to require

t > 36

((n
2

)
n

)2

· p,

and since Un = p ·
((n

2)
n

)
, then we get:

t > 36

((n
2

)
n

)
Un ≈ 36

((n
2

)
n

)
nn

.

2.e. I wrote the following code, that uses a python library called networkx to easily repre-
sent graphs:

import networkx as nx

from scipy.special import binom

for n in [3,4,5]:

num_graphs = int(36 * binom(binom(n,2),n) * n**n) + 1

num_connected = 0

for i in range(num_graphs):

num_connected += int(nx.is_connected(nx.gnm_random_graph(n,n)))

print(’U_{} = {}’.format(n, num_connected/num_graphs*binom(binom(n,2),n)))

The output was:

U_3 = 1.0

U_4 = 15.0

U_5 = 222.005

3

3 Unicyclic Graphs, Combinatorially

3.a. Every connected unicyclic graph can be viewed as a cycle whose vertices are “roots”
for trees.

Let 3 ≤ k ≤ n denote the number of vertices in the cycle. We sum over the possible
values of k: There are two main approaches towards this:

1. The number of rooted k-forests on n vertices is
(
n
k

)
knn−k−1 (see Cayley’s Formula:

A Page from a Book by Arnon Avron and Nachum Dershowitz for proof). After
partitioning the n vertices into k rooted trees, we connect all of the roots in a cycle.
There are (k−1)!

2
ways of sorting k elements in a cycle, and hence we get:

Un =
n∑

k=3

(
n

k

)
knn−k−1 · (k − 1)!

2
.

2. First, choose k vertices for the cycle
(
n
k

)
, order them (k−1)!

2
, and then partition the rest

of the vertices into k sets for the k trees
(

n−k
n1,...,nk

)
, and order them within the trees.

Un =
n∑

k=3

(k − 1)!

2

(
n

k

) ∑
0≤n1,...,nk≤n−k∑

ni=n−k

(
n− k

n1, . . . , nk

) k∏
i=1

(ni + 1)ni−1.

3.b. The calculations are left for the reader.

4 Unicyclic Graphs, Using the Internet

Plugging ‘1, 15, 222, 3360’ into the Online Encyclopedia of Integer Sequences gives the
following page. In one of the results in this page, the following asymptotic expansion of Un

is given:

Un = nn− 1
2

(√
2π

4
− o(1)

)
.

We therefore conclude that Un = Θ(nn− 1
2).

4

https://oeis.org/A057500

	Solving NP-Hard Problems on Random Graphs
	Unicyclic Graphs, Empirically
	Unicyclic Graphs, Combinatorially
	Unicyclic Graphs, Using the Internet

