Assignment 2

Random Graphs, Technion, 2017

November 26, 2017

- 1. Solving NP-hard problems on random graphs: Fix c < 1. An algorithm for the maximum clique problem is a deterministic polynomial time algorithm which accepts a graph as an input and outputs a clique in the graph. Show that there is an algorithm for the maximum clique problem which, when run on a G(n, c/n) random graph, outputs a maximum size clique with high probability. Do the same for maximum independent set, minimum vertex cover, minimum feedback vertex set, and chromatic number ("minimum coloring").
- 2. Unicyclic graphs, empirically: Let U_n be the number of connected graphs on n vertices which have exactly n edges. The goal of this exercise is to determine U_n empirically.
 - (a) Calculate $\Pr[G(n, n) \text{ is connected}].$
 - (b) Show how to estimate U_n given many samples of G(n,n) (that is, G(n,m) with m = n).
 - (c) Let X be the estimate of U_n obtained from M many samples. Calculate the standard deviation of X.
 - (d) Assuming that $U_n \approx n^n$, estimate how many samples are needed to determine U_n with a certainty of 99.7% (see Wikipedia).
 - (e) Calculate U_3, U_4, U_5 empirically (that is, by writing a computer program). Can you also calculate U_6 ?

Please provide the source code along with your solution.

3. Unicyclic graphs, combinatorially:

- (a) Give a formula for U_n . One way is to decompose the graph into a cycle, each vertex of which is the root of a tree.
- (b) Calculate U_3, U_4, U_5, U_6 using your formula, and compare to your findings from the preceding exercise. Can you calculate more values of U_n ?

If you used a computer program in part (b), please provide the source code along with your solution.

4. Unicyclic graphs, using the internet: Use an internet search to determine the asymptotic rate of growth of U_n , and compare it to your findings from the preceding exercises.