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1. Penney’s Game.

(a) Penney flips a fair coin twice. What is the probability that he gets two Heads
(HH)? What is the probability that he get Heads followed by Tails (HT )? Are
these probabilities the same?

(b) Now, Penney flips a fair coin repeatedly until he gets two Heads in a row (HH).
What is the expected number of coin flips it should take? What if Penney flips the
coin until he gets Heads followed by Tails (HT )? Are these expectations the same?

(c) Penney and his friend, Victor, now play the following game: they flip a coin repeat-
edly until either HH emerges (in which case, Penney wins) or HT emerges (Victor
wins). Is the game fair?

(d) Penney and Victor alter their game as follows: each now picks a three-outcome-
pattern (i.e. HHH,HHT,HTH, . . . ), and they flip a coin until either pattern
emerges (in which case, the player who chose that pattern wins). Penney picks
HHT as his pattern, and Victor picks THH. Is the game fair?

2. The Two Children Problem.

(a) Alice has two children, one of whom is a girl. What is the probability that Alice has
two girls?

(b) Bob has two children, one of whom is a girl born on a Tuesday. What is the proba-
bility that Bob has two girls? (Hint: The answer is not the same)

3. Elchanan Mossel’s Dice Paradox. You throw a die until you get 6. What is the
expected number of throws (including the throw giving 6) conditioned on the event that
all throws gave even numbers? (Hint: The answer is not 3)

4. The Monty Hall Problem. You have been selected to participate in the game show
“It’s All Monty Hall”, where you are presented 3 doors. Monty Hall (†2017), the game
show host, tells you that behind one of the doors stands a car, and behind each of the
other two stands a goat. You pick one of the doors (at random, of course). Monty Hall
now opens one of the two remaining doors, behind which stands a goat. You are then
given the choice of either sticking with your door or switching to the second unopened
door. What option should you choose?

5. The Coupon Collector’s Problem. There are n different types of coupons. Each day,
the mail carrier puts one (uniformly chosen) random coupon in your mailbox. Since there
are many houses in the neighborhood, she cannot remember which coupon she already
gave to whom, and thus the mail carrier may give the same coupon more than once.
What is the expected number of days before you collect at least one copy of each of the
n coupons? Give a tight asymptotic bound as a function of n.



6. The Birthday Paradox.

(a) What is the minimal number of people n such that with probability at least 1/2 there
exists a pair that shares the same birthday?

(b) Suppose now there are D days in a year. Give a tight asymptotic bound for n as a
function of D.

7. Fixed Points in Random Permutations. A permutation on n elements is a bijection
π : [n]→ [n]. A fixed point in a permutation π is an index i ∈ [n] for which π(i) = i.

(a) A rearrangement is a permutation that has no fixed points. Show that the number
of rearrangements on n elements is approximately n!/e.

(b) Prove that the expected number of fixed points in a (uniformly chosen) random
permutation on n elements is 1.

(c) Prove that as n → ∞, the distribution of the number of fixed points in a random
permutation on n elements approaches a Poisson distribution with rate λ = 1.

8. Biased Random Walk on Z. Given p ∈ [0, 1], let
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Assume 0 ≤ q < r ≤ 1. Prove that for all t ∈ N and for all z ∈ Z
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(Hint : Use coupling of Bernoulli variables to define another pair of random walks on Z,
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t , and prove the inequality on the coupled pair)
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