1. **Convergence to Poisson distribution.** If \(p = \frac{\log n + c}{n} \), then the expected number of isolated vertices tends to \(\lambda = e^{-c} \). Let \(X \) be the number of isolated vertices. In class we showed that \(\Pr[X = 0] \to e^{-\lambda} \). Show that for any integer \(k \geq 0 \),
\[
\Pr[X = k] \to e^{-\lambda} \frac{\lambda^k}{k!}.
\]
In other words, \(X \) converges in distribution to a Poisson distribution with expectation \(\lambda \).

2. **Convergence to non-Poisson distribution.** Let \(H \) be a strictly balanced graph, and let \(H^{(2)} \) consist of two disjoint copies of \(H \) (on twice as many vertices). Determine the asymptotic distribution of the number of copies of \(H^{(2)} \) in \(G(n,p) \) for \(p = cn^{-1/d(H)} \) (recall that \(d(H) \) is half the average degree of \(H \)). (You may find it easier to start with the special case in which \(H \) is a single edge.)

3. **Poisson multivariate distribution.** If \(p = c/n \) then the distribution of the degree of a single vertex tends to a Poisson distribution with expectation \(c \). Show that for any constant \(t \), the joint distribution of the degrees of \(t \) vertices tends to the distribution of \(t \) independent copies of the same Poisson distribution.

4. **Normal distribution.** If \(p = c/n \) then the probability that a single vertex is isolated tends to \(e^{-c} \). Consider the following random variables:
 - \(X \) is the number of isolated vertices in \(G(n,p) \).
 - \(X' \sim \text{Bin}(n, e^{-c}) \).
 - \(Y = \frac{X - e^{-c}n}{\sqrt{e^{-c}(1-e^{-c})n}} \).
 - \(Y' = \frac{X' - e^{-c}n}{\sqrt{e^{-c}(1-e^{-c})n}} \).

 It is known that for each \(k \), \(\mathbb{E}[Y^k] \to \mathbb{E}[N(0,1)^k] \), where \(N(0,1) \) is the standard normal distribution (see for example Section 8 of this); when \(k \) is odd, \(\mathbb{E}[N(0,1)^k] = 0 \), and when \(k \) is even, \(\mathbb{E}[N(0,1)^k] = \frac{k!}{2^{k/2}(k/2)!} \).

 (a) Show that for each \(k \), the expected number of \(k \)-tuples of (distinct) isolated vertices is asymptotic to \(e^{-ck}n^k \).

 (b) Deduce that \(\mathbb{E}[Y^k] \to \mathbb{E}[N(0,1)^k] \) for each \(k \) by comparing \(Y \) to \(Y' \) (Wrong!)

 (c) It is known that part (b) implies that \(Y \) converges in distribution to \(N(0,1) \), that is, for each \(t \), \(\Pr[Y < t] \to \Pr[N(0,1) < t] \). What does \(X \) converge to in distribution?