Yuval Filmus

July 14, 2021

1. The proof of the FKN theorem in Section 3 of the lecture notes uses the estimate

$$
\mathbb{E}\left[\left(\sum_{i=1}^n c_i x_i\right)^4\right] \leq 3\left(\sum_{i=1}^n c_i^2\right)^2.
$$

Show that this follows from hypercontractivity (up to the constant 3). Let $f = \sum_i c_i x_i$. Then

$$
\mathbb{E}[f^4] = \|f\|_4^4 = \|T_{1/\sqrt{3}}T_{\sqrt{3}}f\|_4^4 \stackrel{(*)}{\leq} \|T_{\sqrt{3}}f\|_2^4,
$$

where (∗) is hypercontractivity. The right-hand side is the square of

$$
||T_{\sqrt{3}}f||_2^2 = \mathbb{E}[(T_{\sqrt{3}}f)^2] = 3\sum_{i=1}^n c_i^2.
$$

We conclude that

$$
\mathbb{E}\left[\left(\sum_{i=1}^n c_i x_i\right)^4\right] \le 9\left(\sum_{i=1}^n c_i^2\right)^2.
$$

2. The goal of this exercise is to present an alternative proof of the FKN theorem using the Berry–Esseen theorem, a quantitative version of the central limit theorem. A special case of the Berry–Esseen theorem states that if $X = \sum_{i=1}^{n} c_i x_i$, where $\sum_{i=1}^{n} c_i^2 = 1$ and $|c_i| \leq \delta$ for all i, then for all $t \in \mathbb{R}$,

$$
|\Pr[X < t] - \Pr[N(0, 1) < t]| \le \delta,
$$

where $N(0, 1)$ is the Gaussian distribution with zero mean and unit variance.

(a) Use the Berry–Esseen to show that the following holds for some constant $c > 0$. If $f = \sum_{i=1}^n a_i x_i$ satisfies $1-c \le \sum_{i=1}^n a_i^2 \le 1$ and $|a_i| \le c$ for all i then $\mathbb{E}[\text{dist}(f, \{\pm 1\})^2] \ge$ c. Let $A = \sqrt{\sum_{i=1}^n a_i^2}$, and define $X = f/A$. Thus $X = \sum_{i=1}^n c_i x_i$, where $|c_i| = |a_i|/A \le$ $\sqrt[n]{\sqrt{1-c}}$ and $\sum_{i=1}^{n} c_i^2 = 1$. Applying the Berry–Esseen theorem twice,

$$
\Pr[-\frac{1}{2} < X < \frac{1}{2}] \ge \Pr[-\frac{1}{2} < N(0, 1) < \frac{1}{2}] - \frac{2c}{\sqrt{1 - c}}.
$$

This shows that

$$
\mathbb{E}[\text{dist}(f,\{\pm 1\})^2] \ge \left(\Pr[-\frac{1}{2} < N(0,1) < \frac{1}{2}] - \frac{2c}{\sqrt{1-c}}\right) \cdot \left(1 - \frac{A}{2}\right)^2
$$
\n
$$
\ge \frac{1}{4}\left(\Pr[-\frac{1}{2} < N(0,1) < \frac{1}{2}] - \frac{2c}{\sqrt{1-c}}\right).
$$

If $c > 0$ is small enough, then the right-hand side is at least c.

- (b) Explain how to deduce the FKN theorem (in its version for Boolean functions) from this, possibly with a worse error bound. We will prove FKN in the following version: if $F: \{\pm 1\}^n \to {\pm 1}$ satisfies $||F^{>1}||^2 \le \epsilon$ then F is $O(\epsilon)$ -close to a function of the form ± 1 or $\pm x_i$. We can assume that ϵ is small enough, since otherwise FKN is trivial. Let $f = F^{\leq 1}$. Then $\deg(f) \leq 1$ and $\mathbb{E}[\text{dist}(f, \{\pm 1\})^2 \leq \mathbb{E}[(f - F)^2] \leq \epsilon$. Let $g(x_0, x_1, \ldots, x_n) = x_0 f(x_0 x_1, \ldots, x_0 x_n)$, and observe that $\deg(g) \leq 1$, $\mathbb{E}[\text{dist}(g, \{\pm 1\})^2] \leq$ ϵ , and $\mathbb{E}[g] = 0$. Moreover, $||g||^2 = ||f||^2 \ge 1 - \epsilon$. If $a, b \in {\pm 1}$ then $a - b \in \{0, \pm 2\}$. As shown in class, this implies that $\mathbb{E}[\text{dist}(g(x_0,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n)-g(x_0,\ldots,x_{i-1},-1,x_{i+1},\ldots,x_n),\{0,\pm 2\})^2]=O(\epsilon).$ Since $g(x_0, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) - g(x_0, \ldots, x_{i-1}, -1, x_{i+1}, \ldots, x_n) = 2\hat{g}(\{i\}),$ we conclude that $dist(\hat{g}(\{i\}), \{0, \pm 1\}) = O(\sqrt{\epsilon})$ for all *i*. Applying part (a), we see that at least one $\hat{g}(\{i\})$ has to be $O(\sqrt{\epsilon})$ -close to $\sigma \in \{\pm 1\}$. It follows that $\mathbb{E}[g\sigma x_i] = 1 - O(\sqrt{\epsilon})$, and so $\mathbb{E}[(g - \sigma x_i)^2] = \mathbb{E}[g^2] + 1 - 2 \mathbb{E}[g\sigma x_i] = O(\sqrt{\epsilon})$. In other words, g is $O(\sqrt{\epsilon})$ -close to $\pm x_i$. Therefore f is $O(\sqrt{\epsilon})$ -close to some $h \in {\pm 1, \pm x_i}$. Thus $\mathbb{E}[(F-h)^2] \leq 2 \mathbb{E}[(F-f)^2] + 2 \mathbb{E}[(f-h)^2] = O(\sqrt{\epsilon})$.
- 3. The goal of this exercise is to show that Friedgut's junta theorem fails for bounded functions.
	- (a) Let $f(x_1,...,x_n) = \frac{x_1+...+x_n}{\sqrt{n}}$. Calculate Inf₁[f] and Inf[f]. We first calculate $L_i f$:

$$
L_i f = \frac{x_i}{\sqrt{n}}.
$$

Therefore

$$
Inf_i[f] = ||L_i f||^2 = \frac{1}{n}.
$$

It follows that $\text{Inf}[f] = 1$.

(b) Let $g(x)$ result from clipping $f(x)$ to $[-1, 1]$, that is, $g(x) = f(x)$ if $f(x) \in [-1, 1]$, $g(x) = -1$ if $f(x) < -1$, and $g(x) = 1$ if $f(x) > 1$. Show that Inf[g] = O(1). We will show more generally that clipping can only reduce individual influences. Let $\text{clip}(x) = x$ if $x \in [-1, 1]$, $\text{clip}(x) = -1$ if $x < -1$, and $\text{clip}(x) = 1$ if $x > 1$; we say that x is clipped if $x \notin [-1, 1]$; it is clipped to clip(x). Then $4 \text{Inf}_i[h]$ is the expected value of $(h(x) - h(x^{\oplus i}))^2$, while 4 Inf_i[clip(h)] is the expected value of $(\text{clip}(h)(x) - \text{clip}(h)(x^{\oplus i}))^2$. Hence it suffices to show that for all $a, b \in \mathbb{R}$,

$$
|\operatorname{clip}(a) - \operatorname{clip}(b)| \le |a - b|.
$$

Suppose, without loss of generality, that $a \geq b$. We consider several cases:

- i. If both a, b are clipped to the same value then $\text{clip}(a) = \text{clip}(b)$.
- ii. If a, b are clipped to different values, or if only one of them is clipped, then clipping has the effect of bringing the two values closer to each other.
- iii. If none of a, b are clipped then $\text{clip}(a) \text{clip}(b) = a b$.

In all cases, $|\text{clip}(a) - \text{clip}(b)| \leq |a - b|$, and we conclude that $\text{Inf}_i[\text{clip}(h)] \leq \text{Inf}_i[h]$, and so $\text{Inf}[\text{clip}(h)] \leq \text{Inf}[h]$.

Taking $h = f$, this shows that $\text{Inf}[g] \leq \text{Inf}[f] = 1$.

(c) Show that for some constants $\epsilon > 0$ and $N \in \mathbb{N}$, if $n \geq N$ and g is ϵ -close to a function $h: \{-1,1\}^n \to \mathbb{R}$ (that is, $\mathbb{E}[(g-h)^2] \leq \epsilon$) then h depends on at least $n/2$ variables. We will show that if h depends on fewer than $n/2$ variables, then we reach a contradiction for appropriate ϵ, N . We assume for simplicity that n is even (otherwise, replace $n/2$ with

 $\lfloor n/2 \rfloor$ throughout).

If h depends on fewer than $n/2$ variables, then we can certainly write it as a function depending on exactly $n/2$ variables. Suppose without loss of generality that h depends on the first $n/2$ variables. Define $S = x_1 + \cdots + x_{n/2}$ and $T = x_{n/2+1} + \cdots + x_n$. The central limit theorem shows that $S/\sqrt{n/2}$ and $T/\sqrt{n/2}$ tend to standard Gaussians, and so each of the following events happens with constant probability, say at least $c > 0$, assuming that n is large enough:

- $|S| \leq \frac{1}{4}$ \sqrt{n} .
- \bullet $T \geq \frac{3}{4}$ 4 $\frac{4 \text{ V}^n}{\sqrt{n}}$.
- \bullet $T \leq -\frac{3}{4}$ $\frac{n}{\sqrt{n}}$.

Let $x_1, \ldots, x_{n/2}$ be an input for which $|S| \leq \frac{1}{4}$ \sqrt{n} , which happens with probability at least c. If $h(x_1, \ldots, x_{n/2}) \leq 0$ then with probability at least c, we have $T \geq \frac{3}{4}$ $\frac{3}{4}\sqrt{n}$, and on these inputs $(g-h)^2 \geq \frac{1}{4}$ $h(x_1, \ldots, x_{n/2}) \geq 0$ then with probability at least c, we have $T \le -\frac{3}{4}\sqrt{n}$, and on these inputs $(g-h)^2 \ge \frac{1}{4}$ $\frac{1}{4}$. Therefore

$$
\mathbb{E}[(g-h)^2] \ge \frac{c^2}{4}.
$$

- 4. The goal of this exercise is to show that the parameters in Friedgut's junta theorem are tight.
	- (a) Let $f: \{-1,1\}^{2^m+m} \to \{-1,1\}$ be the addressing function $f(x,y) = x_y$ (that is, $x \in$ $\{-1,1\}^{2^m}, y \in \{-1,1\}^m$, and we interpret y as an index into x). Calculate the individual influences and the total influence of f .

The influence of a variable x_i is the probability that flipping x_i flips the output of f. This happens precisely when $y = i$, which happens with probability 2^{-m} . Hence the influence of x_i is 2^{-m} .

The influence of a variable y_i is the probability that flipping y_i flips the output of f. Let $y = j$ and $y^{\oplus i} = k$. Then $x_j \neq x_k$ with probability 1/2. Hence the influence of y_i is 1/2. The total influence of f is thus

$$
2^m \cdot 2^{-m} + m \cdot \frac{1}{2} = \frac{1}{2}m + 1.
$$

(b) Let $g: \{-1,1\}^{2^m+m+k} \to \{-1,1\}$ be the function given by $g(x,y,z) = f(x,y)$ if $z = 1$ (where $z \in \{-1,1\}^k$), and $g(x, y, z) = 1$ otherwise. Calculate the individual influences and the total influence of g.

To calculate the influence of x_i or y_i , note that when $z = 1$, which happens with probability 2^{-k} , they have the same influence that they have in f, and in contrast, if $z \neq 1$ then they have no influence. Therefore the influence of x_i is 2^{-m-k} , and the influence of y_i is 2^{-k-1} .

To calculate the influence of z_i , notice first that if $z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_k \neq 1$ then flipping z_i has no effect. Otherwise, when $z_i = -1$ the output is 1, and when $z_i = 1$ the output is $f(x, y)$. It is easy to check that $f(x, y)$ is balanced, that is, $Pr[f(x, y) = 1] = 1/2$, and so the influence of z_i is $2^{-(k-1)} \cdot (1/2) = 2^{-k}$.

The total influence of q is thus

$$
2^{-k}\ln\{f\} + k \cdot 2^{-k} = \frac{m/2 + k + 1}{2^k}.
$$

(c) Let $m = k$ and $\epsilon = 2^{-k}/100$. Show that if $h: \{-1,1\}^{2^m+m+k} \to \{-1,1\}$ is ϵ -close to g (that is, $Pr[g \neq h] \leq \epsilon$) then h depends on $2^{\Omega(\text{Inf}[g]/\epsilon)}$ variables.

First of all, let us notice that when $m = k$ and $\epsilon = 2^{-k}/100$, we have $\text{Inf}[g] = \Theta(k/2^k)$ and so Inf[g]/ $\epsilon = \Theta(k)$. Therefore we need to show that h must depend on $2^{\Omega(k)}$ variables. If $Pr[g \neq h] \leq \epsilon$ then $Pr[g \neq h | z = 1] \leq \epsilon/Pr[z = 1] = 1/100$. When $z = 1$, $g(x, y, z) =$ $f(x, y)$, and so defining $H(x, y) = h(x, y, 1)$, it suffices to show that if $Pr[f \neq H] \leq 1/100$ then H depends on $2^{\Omega(m)}$ variables (recall $m = k$).

Let S be the set of i such that H does not depend on x_i . If $i \in S$ then $\Pr[f \neq H \mid y =$ i = 1/2, and so

$$
\Pr[f \neq H] \ge \frac{1}{2} \cdot \frac{|S|}{2^m}.
$$

This shows that $|S| \le 2^m/50$, and in particular, H depends on at least $(1 - 1/50)2^m$ variables.