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1. The proof of the FKN theorem in Section 3 of the lecture notes uses the estimate
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Show that this follows from hypercontractivity (up to the constant 3).
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where (∗) is hypercontractivity. The right-hand side is the square of
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We conclude that
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2. The goal of this exercise is to present an alternative proof of the FKN theorem using the
Berry–Esseen theorem, a quantitative version of the central limit theorem.
A special case of the Berry–Esseen theorem states that if X =
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and |ci| ≤ δ for all i, then for all t ∈ R,

|Pr[X < t]− Pr[N(0, 1) < t]| ≤ δ,

where N(0, 1) is the Gaussian distribution with zero mean and unit variance.

(a) Use the Berry–Esseen to show that the following holds for some constant c > 0.
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This shows that
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If c > 0 is small enough, then the right-hand side is at least c.

(b) Explain how to deduce the FKN theorem (in its version for Boolean functions) from this,
possibly with a worse error bound.

We will prove FKN in the following version: if F : {±1}n → {±1} satisfies ‖F>1‖2 ≤ ε
then F is O(ε)-close to a function of the form ±1 or ±xi. We can assume that ε is small
enough, since otherwise FKN is trivial.

Let f = F≤1. Then deg(f) ≤ 1 and E[dist(f, {±1})2 ≤ E[(f − F )2] ≤ ε.
Let g(x0, x1, . . . , xn) = x0f(x0x1, . . . , x0xn), and observe that deg(g) ≤ 1, E[dist(g, {±1})2] ≤
ε, and E[g] = 0. Moreover, ‖g‖2 = ‖f‖2 ≥ 1− ε.
If a, b ∈ {±1} then a− b ∈ {0,±2}. As shown in class, this implies that

E[dist(g(x0, . . . , xi−1, 1, xi+1, . . . , xn)−g(x0, . . . , xi−1,−1, xi+1, . . . , xn), {0,±2})2] = O(ε).

Since g(x0, . . . , xi−1, 1, xi+1, . . . , xn)−g(x0, . . . , xi−1,−1, xi+1, . . . , xn) = 2ĝ({i}), we con-
clude that dist(ĝ({i}), {0,±1}) = O(

√
ε) for all i.

Applying part (a), we see that at least one ĝ({i}) has to be O(
√
ε)-close to σ ∈ {±1}. It

follows that E[gσxi] = 1−O(
√
ε), and so E[(g−σxi)2] = E[g2]+1−2E[gσxi] = O(

√
ε). In

other words, g is O(
√
ε)-close to ±xi. Therefore f is O(

√
ε)-close to some h ∈ {±1,±xi}.

Thus E[(F − h)2] ≤ 2E[(F − f)2] + 2E[(f − h)2] = O(
√
ε).

3. The goal of this exercise is to show that Friedgut’s junta theorem fails for bounded functions.

(a) Let f(x1, . . . , xn) = x1+···+xn√
n

. Calculate Inf1[f ] and Inf[f ].

We first calculate Lif :

Lif =
xi√
n
.

Therefore

Infi[f ] = ‖Lif‖2 =
1

n
.

It follows that Inf[f ] = 1.

(b) Let g(x) result from clipping f(x) to [−1, 1], that is, g(x) = f(x) if f(x) ∈ [−1, 1],
g(x) = −1 if f(x) < −1, and g(x) = 1 if f(x) > 1. Show that Inf[g] = O(1).

We will show more generally that clipping can only reduce individual influences.

Let clip(x) = x if x ∈ [−1, 1], clip(x) = −1 if x < −1, and clip(x) = 1 if x > 1; we say that
x is clipped if x /∈ [−1, 1]; it is clipped to clip(x). Then 4 Infi[h] is the expected value of
(h(x)−h(x⊕i))2, while 4 Infi[clip(h)] is the expected value of (clip(h)(x)− clip(h)(x⊕i))2.
Hence it suffices to show that for all a, b ∈ R,

| clip(a)− clip(b)| ≤ |a− b|.

Suppose, without loss of generality, that a ≥ b. We consider several cases:
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i. If both a, b are clipped to the same value then clip(a) = clip(b).

ii. If a, b are clipped to different values, or if only one of them is clipped, then clipping
has the effect of bringing the two values closer to each other.

iii. If none of a, b are clipped then clip(a)− clip(b) = a− b.
In all cases, | clip(a)− clip(b)| ≤ |a− b|, and we conclude that Infi[clip(h)] ≤ Infi[h], and
so Inf[clip(h)] ≤ Inf[h].

Taking h = f , this shows that Inf[g] ≤ Inf[f ] = 1.

(c) Show that for some constants ε > 0 and N ∈ N, if n ≥ N and g is ε-close to a function
h : {−1, 1}n → R (that is, E[(g − h)2] ≤ ε) then h depends on at least n/2 variables.

We will show that if h depends on fewer than n/2 variables, then we reach a contradiction
for appropriate ε,N . We assume for simplicity that n is even (otherwise, replace n/2 with
bn/2c throughout).

If h depends on fewer than n/2 variables, then we can certainly write it as a function
depending on exactly n/2 variables. Suppose without loss of generality that h depends on
the first n/2 variables. Define S = x1 + · · ·+xn/2 and T = xn/2+1 + · · ·+xn. The central

limit theorem shows that S/
√
n/2 and T/

√
n/2 tend to standard Gaussians, and so each

of the following events happens with constant probability, say at least c > 0, assuming
that n is large enough:

� |S| ≤ 1
4

√
n.

� T ≥ 3
4

√
n.

� T ≤ −3
4

√
n.

Let x1, . . . , xn/2 be an input for which |S| ≤ 1
4

√
n, which happens with probability at

least c. If h(x1, . . . , xn/2) ≤ 0 then with probability at least c, we have T ≥ 3
4

√
n, and on

these inputs (g − h)2 ≥ 1
4 . Similarly, if h(x1, . . . , xn/2) ≥ 0 then with probability at least

c, we have T ≤ −3
4

√
n, and on these inputs (g − h)2 ≥ 1

4 . Therefore

E[(g − h)2] ≥ c2

4
.

4. The goal of this exercise is to show that the parameters in Friedgut’s junta theorem are tight.

(a) Let f : {−1, 1}2m+m → {−1, 1} be the addressing function f(x, y) = xy (that is, x ∈
{−1, 1}2m , y ∈ {−1, 1}m, and we interpret y as an index into x). Calculate the individual
influences and the total influence of f .

The influence of a variable xi is the probability that flipping xi flips the output of f . This
happens precisely when y = i, which happens with probability 2−m. Hence the influence
of xi is 2−m.

The influence of a variable yi is the probability that flipping yi flips the output of f . Let
y = j and y⊕i = k. Then xj 6= xk with probability 1/2. Hence the influence of yi is 1/2.

The total influence of f is thus

2m · 2−m +m · 1
2 = 1

2m+ 1.
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(b) Let g : {−1, 1}2m+m+k → {−1, 1} be the function given by g(x, y, z) = f(x, y) if z = 1
(where z ∈ {−1, 1}k), and g(x, y, z) = 1 otherwise. Calculate the individual influences
and the total influence of g.

To calculate the influence of xi or yi, note that when z = 1, which happens with prob-
ability 2−k, they have the same influence that they have in f , and in contrast, if z 6= 1
then they have no influence. Therefore the influence of xi is 2−m−k, and the influence of
yi is 2−k−1.

To calculate the influence of zi, notice first that if z1, . . . , zi−1, zi+1, . . . , zk 6= 1 then
flipping zi has no effect. Otherwise, when zi = −1 the output is 1, and when zi = 1 the
output is f(x, y). It is easy to check that f(x, y) is balanced, that is, Pr[f(x, y) = 1] = 1/2,
and so the influence of zi is 2−(k−1) · (1/2) = 2−k.

The total influence of g is thus

2−k Inf[f ] + k · 2−k =
m/2 + k + 1

2k
.

(c) Let m = k and ε = 2−k/100. Show that if h : {−1, 1}2m+m+k → {−1, 1} is ε-close to g
(that is, Pr[g 6= h] ≤ ε) then h depends on 2Ω(Inf[g]/ε) variables.

First of all, let us notice that when m = k and ε = 2−k/100, we have Inf[g] = Θ(k/2k)
and so Inf[g]/ε = Θ(k). Therefore we need to show that h must depend on 2Ω(k) variables.

If Pr[g 6= h] ≤ ε then Pr[g 6= h | z = 1] ≤ ε/Pr[z = 1] = 1/100. When z = 1, g(x, y, z) =
f(x, y), and so defining H(x, y) = h(x, y,1), it suffices to show that if Pr[f 6= H] ≤ 1/100
then H depends on 2Ω(m) variables (recall m = k).

Let S be the set of i such that H does not depend on xi. If i ∈ S then Pr[f 6= H | y =
i] = 1/2, and so

Pr[f 6= H] ≥ 1

2
· |S|

2m
.

This shows that |S| ≤ 2m/50, and in particular, H depends on at least (1 − 1/50)2m

variables.
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