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1 Basics

1.1 Fourier expansion

In this class, we will study Boolean function analysis on various domains, starting with the Boolean cube
{−1, 1}n.

Question 1.1.1. Let f : {−1, 1}n → R.

(a) Show that f(x1, . . . , xn) can be written as a polynomial in which no variable appears squared (such a
polynomial is called multilinear).

Hint: There are many possible proofs. One option is induction on n.

(b) Show that this representation is unique.

Hint: Once again, there are many possible proofs. You can use a dimension argument, or induction.

The unique representation of a function on {−1, 1}n as a multilinear polynomial is known as its Fourier
expansion:

f =
∑
S⊆[n]

f̂(S)χS , where χS(x) =
∏
i∈S

xi (χ∅ ≡ 1).

The coefficients f̂(S) are known as Fourier coefficients. The functions χS are known as Fourier characters,
because they are characters of the group Zn2 . They form the Fourier basis for the vector space of real-valued
functions on the Boolean cube.

The degree of f is the degree of its Fourier expansion.

Question 1.1.2. Show that f : {−1, 1}n → R depends only on the coordinates in S if and only if its Fourier

expansion is supported on subsets of S, i.e., if f̂(T ) 6= 0 only for T ⊆ S.

Question 1.1.3. Given a function f : {−1, 1}n → R, extend it to Rn using the unique multilinear represen-
tation, and define a function g : {−1, 1}n−1 → R by

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0).

(a) Show that

g(x1, . . . , xn−1) =
f(x1, . . . , xn−1,−1) + f(x1, . . . , xn−1, 1)

2
.

(b) Give a formula for f̂(∅).
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1.2 Orthogonality

A crucial property of the Fourier characters is that they form an orthonormal basis with respect to the inner
product

〈f, g〉 = E[fg] =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

The corresponding norm is
‖f‖2 = 〈f, f〉 = E[f2].

Question 1.2.1. In this question, we will show that the Fourier characters form an orthonormal basis. That
is, ‖χS‖ = 1 and 〈χS , χT 〉 = 0 for S 6= T .

(a) Show that χSχT = χR for an appropriate R.

(b) Show that E[χ∅] = 1 and E[χS ] = 0 if S 6= ∅.
Hint: Choose i ∈ S, and consider pairs of inputs different only on the i’th coordinate.

(c) Show that the Fourier characters form an orthonormal basis.

Using linearity of the inner product, we can prove several useful formulas:

Question 1.2.2. (a) Show that f̂(S) = 〈f, χS〉.

(b) Reprove the formula for f̂(∅).

(c) Show that 〈f, g〉 =
∑
S f̂(S)ĝ(S).

(d) Prove Parseval’s identity: ‖f‖2 =
∑
S f̂(S)2.

(e) Find a formula for V[f ] (the variance of f).

A function whose range is {0, 1} or {−1, 1} is called Boolean (both conventions are used).

Question 1.2.3. Let S ⊆ {−1, 1}n, and let f : {−1, 1}n → {0, 1} be the indicator function of S.

(a) Calculate f̂(∅) in terms of |S|.

(b) Calculate
∑
T f̂(T )2 in terms of |S|.

1.3 Linearity testing

We can now present an application of the Fourier expansion, to property testing.
We consider the following scenario: we are given oracle access to a function f : {−1, 1}n → {−1, 1}, which

somebody claims is equal to some character χS . We want to test this claim by sampling a few (correlated)
values of f .

Question 1.3.1. Show that the Fourier characters satisfy the formula

χS(x)χS(y)χS(xy) = 1, where xy , (x1y1, . . . , xnyn).

This suggests the following text:

Sample x, y ∈ {−1, 1}n, and test that f(x)f(y) = f(xy).

Suppose that a function f : {−1, 1}n → {−1, 1} satisfies f(x)f(y)f(xy) = 1 with high probability, or at
least with nontrivial probability (larger than 1/2). What can we say about f? The following exercises will
answer this question.
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Question 1.3.2. Show that

σ(f) := E
x,y

[f(x)f(y)f(xy)] =
∑
S

f̂(S)3.

Hint: Expand f(x)f(y)f(xy) into a triple sum using the Fourier expansion, and compute the expectation
(with respect to x, y) of each summand.

(The quantity σ(f) is similar to the Gowers U2 norm.)

Question 1.3.3. Define
p(f) = Pr[f(x)f(y)f(xy) = 1].

(a) Express p(f) in terms of σ(f).

(b) Show that if p(f) ≥ 1− ε then

max
S

f̂(S) ≥ 1− 2ε.

Hint: Use
∑
S f̂(S)2 = 1.

(c) Deduce that for the S from part (b),
Pr[f = χS ] ≥ 1− ε.

Hint: Show that Pr[f = χS ] = 1
2 + 1

2 E[fχS ].

(d) Show that if p(f) ≥ 1/2 + δ then E[fχS ] ≥ 2δ for some S (where δ ≥ 0).

(e) Show that E[fχS ] ≥ 2δ for at most 1/(2δ)2 many characters χS .

1.4 Influences

For a function f : {−1, 1}n → R and a coordinate i ∈ [n], we define the Laplacian in direction i by

Lif(x1, . . . , xn) =
f(x1, . . . , xi, . . . , xn)− f(x1, . . . ,−xi, . . . , xn)

2
,

and the i’th influence by
Infi[f ] = ‖Lif‖2.

Question 1.4.1. (a) When is Infi[f ] = 0?

(b) Show that if f : {−1, 1}n → {−1, 1} then

Infi[f ] = Pr[f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . ,−xi, . . . , xn)]

= Pr[f(x1, . . . , 1, . . . , xn) 6= f(x1, . . . ,−1, . . . , xn)].

(c) Show that if f : {−1, 1}n → {−1, 1} is a monotone function (that is, x ≤ y entrywise implies f(x) ≤ f(y))
then

Infi[f ] = E[xif ] = f̂({i}).

Hint: Use f(x1, . . . , 1, . . . , xn) ≥ f(x1, . . . ,−1, . . . , xn).

Question 1.4.2. (a) Compute LiχS .

Hint: Consider two cases: i ∈ S and i /∈ S.

(b) Compute the Fourier expansion of Lif in terms of the Fourier expansion of f .
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(c) Deduce a formula for Infi[f ] in terms of the Fourier coefficients:

Infi[f ] =
∑
S3i

f̂(S)2.

We define the Laplacian of f by

Lf =

n∑
i=1

Lif

and the total influence (or average sensitivity) by

Inf[f ] =

n∑
i=1

Infi[f ].

Question 1.4.3. Let f : {−1, 1}n → {−1, 1}.
The sensitivity of f at a point x is the number of neighbors y (i.e., points differing from x at a single

coordinate) such that f(x) 6= f(y). Show that Inf[f ] is the average sensitivity of f .

Question 1.4.4. Let f : {−1, 1}n → R.

(a) Relate V[f ] and E[(f(x)− f(y))2], where the expectation is over two independent random points x, y in
the hypercube.

(b) Relate Inf[f ] and
∑
x∼y(f(x)− f(y))2, where the sum is over all edges of the hypercube {−1, 1}n, i.e.,

over all pairs of points differing in a single coordinate.

Question 1.4.5. (a) Give a formula for Inf[f ] in terms of the Fourier coefficients.

(b) Give a formula for Lf in terms of the Fourier coefficients.

(c) Deduce that Inf[f ] = 〈f, Lf〉.
Bonus: Prove this directly from the spatial definitions of Lf and Inf[f ] (the latter, in Question 1.4.4).

(d) Prove the (double-sided) Poincaré’s inequality :

V[f ] ≤ Inf[f ] ≤ deg f · V[f ].

Can you prove V[f ] ≤ Inf[f ] combinatorially, using the definitions in Question 1.4.4? (hard)

Which monotone Boolean function has maximal total influence?

Question 1.4.6. Let f : {−1, 1}n → {−1, 1} be monotone.

(a) Show that Inf[f ] = E[(x1 + · · ·+ xn)f ].

(b) Which monotone function maximizes Inf[f ]?

(c) Bonus: Estimate the total influence of this function.

1.5 Fourier levels

We can break up the Fourier expansion of a function into its homogeneous parts:

f=d =
∑
|S|=d

f̂(S)χS .

These are known as the Fourier levels.
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Question 1.5.1. (a) Show that f =
∑n
d=0 f

=d.

(b) Show that ‖f‖2 =
∑n
d=0 ‖f=d‖2.

Hint: Use Parseval’s identity.

(c) Define f≤d, f<d, f≥d, f>d and show that f = f≤d + f>d = f<d + f≥d = f<d + f=d + f>d.

(d) Show that ‖f‖2 = ‖f≤d‖2 + ‖f>d‖2 = ‖f<d‖2 + ‖f≥d‖2 = ‖f<d‖2 + ‖f=d‖2 + ‖f>d‖2.

There are succinct expressions for the Laplacian and total influence in terms of the Fourier levels. The
underlying reason for the existence of these expressions is the fact that the Laplacian is “symmetric with
respect to renaming variables”.

Question 1.5.2. (a) Show that Lf =
∑n
d=0 df

=d.

(b) Show that Inf[f ] =
∑n
d=0 d‖f=d‖2.

Which balanced Boolean functions have minimal average sensitivity?

Question 1.5.3. Let f : {−1, 1}n → {−1, 1} be balanced: E[f ] = 0.

(a) Show that Inf[f ] ≥ 1.

Hint: Use Poincaré’s inequality.

(b) Show that if Inf[f ] = 1 then deg f = 1.

(c) Determine all balanced Boolean functions with minimal total influence.

Hint: If f =
∑n
i=1 aixi is Boolean then no two ai, aj can be non-zero.

1.6 Nisan–Szegedy*

Suppose that f : {−1, 1}n → {−1, 1} has degree d. On how many variables can f depend?

Question 1.6.1. Suppose that g : {0, 1}n → Z. Show that g(y1, . . . , yn) can be expressed uniquely as a
multilinear polynomial in y1, . . . , yn with integer coefficients.

Hint: Use induction on n. Alternatively, show how to express δ functions as multilinear polynomials.

Question 1.6.2. Suppose that f : {−1, 1}n → {−1, 1} has degree d ≥ 1.

(a) Let yi = 1+xi
2 , and define

g(y1, . . . , yn) =
1 + f(x1, . . . , xn)

2
.

Relate the Fourier expansion of f and the multilinear expansion of g.

(b) Show that deg g = d (as a polynomial).

(c) Deduce that all Fourier coefficients of f are integer multiples of 21−d.

(d) Show that |f̂({i})| ≤ E[|Lif |].
Hint: Use the triangle inequality.

(e) Show that Infi[f ] = E[|Lif |], and deduce that for every i, either Infi[f ] = 0 or Infi[f ] ≥ 21−d.

(f) Show that Inf[f ] ≤ d, and deduce that f depends on at most d2d−1 coordinates.

Recently, the upper bound has been improved to O(2d) by Chiarelli, P. Hatami and Saks. The hidden
constant was subsequently improved by Wellens.
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Question 1.6.3. (a) Given a degree d − 1 function depending on C coordinates, construct a degree d
function depending on 2C + 1 coordinates.

(b) Deduce that there exists a degree d function depending on 2d − 1 coordinates.

(c) Can you give a one-shot description of these functions?

We can extend the upper bound to functions attaining a constant number of values.

Question 1.6.4. Suppose that A is a finite set, and f : {−1, 1}n → A has degree d. Show that there exists
a constant C = C(d,A) such that f depends on at most C coordinates. (In fact, C need only depend on d
and |A|.)

Hint: Write f =
∑
a∈A fa, where fa(x) = 1 if f(x) = a and fa(x) = 0 otherwise.

1.7 Noise operator

There are several ways to define the noise operator. We will see four equivalent ways.

Question 1.7.1. Let 0 ≤ ρ ≤ 1, and x ∈ {−1, 1}n. Consider the following two distributions on y, z ∈
{−1, 1}n:

yi =

{
+xi w.p. 1+ρ

2 ,

−xi w.p. 1−ρ
2 ,

zi =

{
xi w.p. ρ,

random± 1 w.p. 1− ρ.

In both cases, the different coordinates are chosen independently.

(a) Show that y, z have the same distribution.

We denote the common distribution as Nρ(x).

(b) Calculate E[xiyi] = E[xizi].

(c) Let (x1, y1) be obtained by choosing x1 uniformly from {±1} and y1 according to Nρ(x1). Let (x2, y2)
be obtained by choosing y2 uniformly from {±1} and x2 according to Nρ(y2).

Show that (x1, y1) and (x2, y2) are identically distributed, and describe their common distribution.

We denote this common distribution Nρ; if (x, y) ∼ Nρ then we say that x, y are ρ-correlated.

The noise operator, a linear operator on the vector space of functions {−1, 1}n → R is defined by

(Tρf)(x) = E
y∼Nρ(x)

[f(y)].

Question 1.7.2. Show that
〈Tρf, g〉 = E

x,y∼Nρ
[f(x)g(y)].

Question 1.7.3. In this question we will find a spectral expression for Tρf .

(a) Calculate Tρ1.

(b) Calculate Tρx1.

(c) Calculate TρχS .

Hint: Use the independence of the noise across the coordinates.

(d) Calculate Tρf in terms of the Fourier expansion of f .

Hint: Use the linearity of Tρ.

Question 1.7.4. Show that for every ρ ∈ (0, 1), the noise operator Tρ is contractive, that is, ‖Tρf‖ ≤ ‖f‖:
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(a) Using the spatial definition given above. Hint: Use E[g]2 ≤ E[g2].

(b) Using the spectral formula.

Applying noise significantly reduces the high degree part of a function.

Question 1.7.5. Show that for every ε > 0 and ρ ∈ (0, 1) there exists a constant d such that

‖(Tρf)>d‖ ≤ ε‖f‖.

There is a fourth way to conceive of the distribution Nρ(x), as a continuous time Markov chain. The
following question is optional.

Question 1.7.6. Consider a continuous time Markov chain which starts at state x ∈ {−1, 1}n, and for each
bit independently, at each infinitesimal interval of length ε, has an ε chance of flipping xi.

(a) Fix i, let t0 = 0, and let t1, t2, . . . be the random times at which bit xi is flipped. Show that t1− t0, t2−
t1, . . . are i.i.d. exponential random variables, and calculate their expectation.

Hint: To calculate Pr[t1 > t], divide [0, t] into t/ε intervals of length ε, and take the limit ε→ 0.

(b) Show that the number of times that xi is flipped up to time t has Poisson distribution, and calculate its
expectation.

Hint: Calculate the probability that a bit is flipped k times using a k-dimensional integral, and use the
formula

∫
0<w1<···<wk<1

dw1 · · · dwk = 1/k!.

(c) Determine the distribution of xi at time t.

Hint: Calculate the Taylor expansion of cosh t = et+e−t

2 .

(d) Express the distribution of the state at time t in the form Nρ(x).

2 Hypercontractivity

One of the major tools in Boolean function analysis is hypercontractivity, a mysterious property which states,
in a formal way, that applying noise “smoothens” the function. This is expressed by relating different Lp
norms:

‖f‖p = p
√

E[|f |p].

When p ≥ 1, this is indeed a norm (i.e., it satisfies the triangle inequality), and

‖f‖∞ = lim
p→∞

‖f‖p = max |f |.

Furthermore, p ≤ q implies ‖f‖p ≤ ‖f‖q.

Question 2.0.1. Check that ‖f‖2 = ‖f‖.

2.1 4-to-2

In this section we will prove Bonami’s lemma

‖T√
1/3
f‖4 ≤ ‖f‖2

and draw some conclusions.

Question 2.1.1. For brevity, we will use T for T√
1/3

in this question. We will prove Bonami’s lemma

‖Tf‖4 ≤ ‖f‖2 by induction.
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(a) Show that the lemma is equivalent to E[(Tf)4] ≤ E[f2]2.

(b) Prove the base case n = 0.

Given the lemma for n− 1, we will prove it for n.

Write f(x1, . . . , xn) = xng(x1, . . . , xn−1) + h(x1, . . . , xn−1).

(c) Show that ‖f‖22 = ‖g‖22 + ‖h‖22.

Hint: Either use the Fourier expansion, or expand E[f2].

(d) Show that Tf = xn√
3
Tg + Th.

(e) Deduce that

E[(Tf)4] =
1

9
E[(Tg)4] + 2E[(Tg)2(Th)2] + E[(Th)4].

(f) Apply the Cauchy–Schwarz inequality to deduce

E[(Tf)4] ≤ 1

9
E[(Tg)4] + 2

√
E[(Tg)4]

√
E[(Th)4] + E[(Th)4].

(g) Apply the induction hypothesis on g, h and conclude the proof.

Hölder’s inequality states that if 1 ≤ p, q ≤ ∞ satisfy 1/p+ 1/q = 1 (we say that p, q are conjugate) then
〈f, g〉 ≤ ‖f‖p‖g‖q.

Using Hölder’s inequality, we can obtain a similar statement with the L2 norm on the left-hand side.

Question 2.1.2. In this exercise, we will show the “conjugate” Bonami’s lemma.

(a) Show that 〈Tρf, g〉 = 〈f, Tρg〉, and conclude that ‖Tρf‖22 = 〈f, T 2
ρ f〉.

(b) Use Hölder’s inequality to deduce ‖T1/√3f‖22 ≤ ‖f‖4/3‖T 2
1/
√
3
f‖4.

(c) Use Bonami’s lemma to deduce
‖T1/√3f‖2 ≤ ‖f‖4/3.

Using this, we can show that every low-degree Boolean function is a junta (depends on a constant number
of coordinates).

Question 2.1.3. Let f : {−1, 1}n → {−1, 1} have degree d.

(a) Let fi , Lif . Show that |fi| ∈ {0, 1}, and so ‖fi‖pp is the same for all p ≥ 1.

(b) Show that ‖T1/√3fi‖22 ≥ 3−d‖fi‖22.

Hint: Use deg fi ≤ deg f .

(c) Apply the conjugate Bonami’s lemma to deduce 3−d‖fi‖22 ≤ ‖fi‖32.

(d) Deduce that either Infi[f ] = 0 or Infi[f ] ≥ 9−d.

(e) Conclude that f depends on at most d9d coordinates.

Hint: Use the double-sided Poincaré’s inequality.

Hypercontractivity shows that bounded-degree functions are “reasonable”, in various ways.

Question 2.1.4 (Concentration). Suppose that deg f = d.
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(a) Show that ‖f‖4 ≤
√

3
d‖f‖2.

Hint: Apply hypercontractivity to g = T√3f .

(b) Prove a concentration bound beating Chebyshev’s inequality:

Pr[|f − E[f ]| ≥ s
√
V[f ]] ≤ 9d

s4
.

Hint: Consider f − E[f ].

Later we will see an even better concentration bound.

The Paley–Zygmund inequality states that if X ≥ 0 then for t ∈ [0, 1],

Pr[X > tE[X]] ≥ (1− t)2E[X]2

E[X2]
.

If you haven’t seen it before, try to prove this inequality.

Question 2.1.5 (Anti-concentration). Show that if deg f = d then for t ∈ [0, 1],

Pr[|f − E[f ]| ≥ t
√
V[f ]] ≥ (1− t2)29−d.

2.2 Friedgut–Kalai–Naor

In this section, Boolean will mean ±1-valued. We start by extending Question 1.5.3.

Question 2.2.1. Suppose that f : {−1, 1}n → R has degree at most 1.

(a) Show that if at least two Fourier coefficients f̂({i}), f̂({j}) are non-zero then f cannot be Boolean.

Hint: Fix all other coordinates.

(b) Determine all Boolean functions of degree at most 1.

Now suppose that f almost has degree 1, in the sense that ‖f>1‖ is small. Must f be close to a Boolean
degree 1 function? This is the statement of the FKN theorem.

Question 2.2.2. Suppose that f : {−1, 1}n → {−1, 1} satisfies E[f ] = 0 (we will later get rid of this
assumption) and ‖f>1‖2 = ε.

(a) Use anti-concentration to show that

E[|(f=1)2 − 1|] = Ω

(
1

2

√
V[(f=1)2]− ε

)
.

Hint: Use E[(f=1)2] = 1− ε and |x− 1| ≥ |x− (1− ε)| − ε.

(b) Show that (f=1)2 − 1 = −2ff>1 + (f>1)2, deduce

E[|(f=1)2 − 1|] = O(
√
ε),

and conclude V[(f=1)2] = O(ε).

(c) Calculate this variance to be

V[(f=1)2] = 4
∑

1≤i<j≤n

f̂({i})2f̂({j})2 = 2(1− ε)2 − 2

n∑
i=1

f̂({i})4.

Hint: Calculate the Fourier expansion of (f=1)2 (first part) and complete the square (second part).
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(d) Deduce that f̂({i})2 = 1−O(ε) for some i ∈ [n].

Hint: Use
∑n
i=1 f̂({i})2 = 1− ε.

(e) Conclude that Pr[f 6= g] = O(ε) for some g = ±xi.
Hint: Relate Pr[f 6= g] to E[fg] as in linearity testing.

We get rid of the assumption E[f ] = 0 using a trick.

Question 2.2.3. Let f : {−1, 1}n → {−1, 1} satisfy ‖f>1‖2 = ε. Define

g(x0, x1, . . . , xn) = x0f(x0x1, . . . , x0xn).

(a) Show that g is Boolean, has zero mean, and satisfies ‖g>1‖2 = ε.

Hint: Calculate the Fourier expansion of g.

(b) Prove the FKN theorem: Pr[f 6= h] = O(ε) for some dictator h ∈ {±1,±x1, . . . ,±xn} (a dictator is a
function depending on at most one coordinate).

Hint: Show that Pr[f 6= xi] = Pr[g 6= xi] and Pr[f 6= 1] = Pr[g 6= x0].

An equivalent formulation of the theorem relaxes the condition of being Boolean rather than the condition
of having degree 1.

Question 2.2.4. Suppose that f : {−1, 1}n → R has degree 1 and satisfies

E[dist(f, {−1, 1})2] , E[min(|f − 1|, |f + 1|)2] = ε.

(a) Let F result from rounding f to ±1 (i.e., F is the sign of f). Show that ‖F>1‖2 ≤ ε, and so ‖F −h‖2 =
O(ε) for some dictator h.

Hint: Use ‖F −F≤1‖2 ≤ ‖F − f‖2, which follows from F≤1 being the projection of F to the vector space
of functions of degree at most 1.

(b) Use the inequality (a+ b)2 ≤ 2(a2 + b2) (the L2
2 triangle inequality) to conclude that ‖f − h‖2 = O(ε).

2.3 Kahn–Kalai–Linial theorem

The Kahn–Kalai–Linial theorem (1988) started the field of Boolean function analysis. It answers the following
question. Suppose that f : {−1, 1}n → {−1, 1} is a balanced Boolean function. How low can the maximal
influence be? The Poincaré inequality shows that the maximal influence is at least 1/n, but actually more
is true.

Question 2.3.1. Let f : {01, 1}n → {−1, 1}. Define MaxInf[f ] = maxi Infi[f ].

(a) Show that Infi[f ]3/2 ≥ ‖T1/√3Lif‖2 (using the conjugate Bonami lemma), and deduce

∑
S 6=∅

3−|S|f̂(S)2 ≤
∑
S

|S|
3|S|

f̂(S)2 ≤
√

MaxInf[f ] Inf[f ].

(b) Define a probability distribution S on non-empty subsets of [n] by Pr[S = S] ∝ f̂(S)2. Show that
E[|S|] = Inf[f ]/V[f ].

(c) Use Jensen’s inequality for the function 3−x to deduce

3− Inf[f ]/V[f ]

Inf[f ]/V[f ]
≤
√

MaxInf[f ].
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(d) Deduce the KKL theorem:

MaxInf[f ] = Ω

(
log n

n
V[f ]

)
.

Hint: Show that if MaxInf[f ]/V[f ] ≤ C log3 n
n for small enough C > 0, then the inequality from the

preceding item is violated.

The original motivation for proving the KKL theorem was an application to bribing.

Question 2.3.2. Let f : {−1, 1}n → {−1, 1}. We think of f as a voting scheme for an election with n voters
and two candidates. We assume that f is monotone: changing an input from −1 to 1 cannot change the
result from 1 to −1.

(a) Show that if −1 + ε ≤ E[f ] ≤ 1− ε then there is a variable xi such that E[f |xi=1| ≥ E[f ] + Ω( logn
n ).

(b) Suppose that f is candidate-oblivious: f(−x1, . . . ,−xn) = −f(x1, . . . , xn). Show that there exists a set
S of O(n/ log n) voters such that E[f |xS=1] ≥ 1− ε.

(c) How big should S be if f is the majority function?

Ajtai and Linial, improving on the majority function, constructed a function in which S has to contain
at least Ω(n/ log2 n) voters.

The following example shows that when V[f ] = Θ(1), the KKL inequality is tight.

Question 2.3.3. For parameters n,m such that m | n, the tribes function is a function on n variables xij ,
where i ∈ [n/m] and j ∈ [m], given by

Tribesn,m =
∨
i

∧
j

xij .

(Here ∨ is max and ∧ is min).

(a) Find a value of m for which E[Tribesn,m] ≈ 0.

(b) Estimate Infij [Tribesn,m] for that value of m, and compare to the KKL theorem.

Hint: Determine which inputs are such that flipping xij changes the result.

2.4 Friedgut’s junta theorem

If f : {−1, 1}n → {−1, 1} is a k-junta, that is, if f depends on k coordinates, then deg f ≤ k and so Inf[f ] ≤ k.
Friedgut’s junta theorem gives a kind of converse to this statement.

Question 2.4.1. Let f : {−1, 1}n → {−1, 1} have total influence k. We will try to approximate f by a
junta. The variables of the junta will be

J = {i : Infi[f ] ≥ τ},

for a suitable τ .

(a) Show that |J | ≤ k/τ .

(b) Define g to be the J-junta obtained from f by averaging over all other variables. Show that

‖f − g‖2 =
∑
S 6⊆J

f̂(S)2.

Hint: Show that g is obtained from f by retaining only the Fourier coefficients corresponding to subsets
of J .
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(c) Given ε > 0, show that ∑
|S|≥k/ε

f̂(S)2 ≤ ε.

Hint: Define a probability distribution S on subsets of [n] by Pr[S = S] ∝ f̂(S)2, and calculate E[|S|].

(d) Using Infi[f ]3/2 ≥ ‖T1/√3Lif‖2, show that when i /∈ J ,∑
|S|≤k/ε
i∈S

f̂(S)2 ≤ 3k/ε Infi[f ]3/2 ≤ 3k/ε
√
τ Infi[f ].

(e) Conclude from the last three items that

‖f − g‖2 ≤ ε+ k3k/ε
√
τ ,

and calculate a value of τ for which the right-hand side is O(ε).

(f) Let G be the Boolean function resulting from rounding g. Show that G is a 2O(k/ε)-junta satisfying
Pr[f 6= G] = O(ε).

Hint: Show that pointwise, |f(x)−G(x)| = O(|f(x)− g(x)|), and use the L2
2 triangle inequality.

The exponential dependence on k is necessary, as the example of Tribes shows: Question 2.3.3 shows that
the (balanced) tribes function has total influence O(log n), yet depends in an essential way on all coordinates.

Bourgain’s tail bound is the stronger result that a function either has mass Ω(V[f ]/
√
k) beyond level k,

or can be approximated by a junta

2.5 General hypercontractivity

So far we have considered hypercontractivity only for the norms (4, 2) or (2, 4/3). A similar result holds for
a general pair (p, q) satisfying 1 ≤ p ≤ q <∞.

The proof will require a corollary of Hölder’s inequality. It is well-known (and follows essentially from
the Cauchy–Schwarz inequality) that

‖f‖2 = sup
g 6=0

〈f, g〉
‖g‖2

.

In the same way, we can deduce from Hölder’s inequality that if 1/q + 1/r = 1 then

‖f‖q = sup
g 6=0

〈f, g〉
‖g‖r

.

You might want to verify that this indeed follows from Hölder’s inequality.
We will show that

‖Tρf‖q ≤ ‖f‖p, where ρ =

√
p− 1

q − 1
.

The proof is by induction on n. The case n = 1, known as the two-point inequality (why?), is not particularly
enlightening, so we will just show the tensorization step.

Question 2.5.1. Let f, g : {−1, 1}n+1 → R, and suppose that we have proved hypercontractivity for n.

(a) Use Hölder’s inequality to deduce that for functions f ′, g′ : {01, 1}n → R,

〈Tρf ′, g′〉 ≤ ‖f ′‖p‖g′‖r,

where r is the conjugate of q (i.e., 1/q + 1/r = 1).
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(b) For σ ∈ {−1, 1}, define fσ(x1, . . . , xn) = f(x1, . . . , xn, σ), and define gσ similarly. Show that

〈Tρf, g〉 ≤ E
xn+1,yn+1∼Nρ

[‖fxn+1
‖p‖gxn+1

‖r].

(c) Let F (x) = ‖fx‖p and G(x) = ‖gx‖r. Show that

〈Tρf, g〉 ≤ 〈TρF,G〉 ≤ ‖F‖p‖G‖r = ‖f‖p‖g‖r.

(d) Use the consequence of Hölder’s inequality to deduce ‖Tρf‖q ≤ ‖f‖p.

The two most important cases are when p = 2 (generalizing (4, 2)) and when q = 2 (generalizing (2, 4/3)).

Question 2.5.2. Let p ≤ 2 ≤ q, and suppose that f : {−1, 1}n → R has degree d.

(a) Show that ‖f‖q ≤
√
q − 1

d‖f‖2.

Hint: Apply hypercontractivity to T√q−1f .

(b) Show that ‖f‖2 ≤
√
p− 1

−d‖f‖p.

The sharp form of hypercontractivity has many applications.

Question 2.5.3 (Concentration). Suppose that f : {−1, 1}n → R has degree d. Show that there exist
constants C1, C2 > 1 such that for t ≥ Cd1 ,

Pr[|f − E[f ]| ≥ t
√

V[f ]] ≤ C−t/d2 .

Hint: Assume E[f ] = 0, and use ‖f‖q ≤
√
q − 1

d‖f‖2 together with Markov’s inequality for an appropriately
chosen q depending on t, d.

Question 2.5.4 (Small set expansion). Show that for every subset A ⊆ {−1, 1}n,

Pr
x∈A

y∼Nρ(x)

[y ∈ A] ≤ (|A|/2n)
1−ρ
1+ρ .

Hint: Consider 〈Tρ1A, 1A〉 = ‖T√ρ1A‖2.

Small set expansion states that if A is small and we run a short random walk starting at A (cf. the final
definition we gave of the noise operator), then it is very likely that we escape A.

The following two questions are optional.

Question 2.5.5 (Level-k inequality). Suppose that f : {−1, 1}n → {0, 1} has mean E[f ] = α. Show that
for k ≤ 2 ln(1/α) we have

‖f≤k‖2 ≤
(

2e

k
ln(1/α)

)k
α2.

Hint: Use ‖f≤k‖2 ≤ ρ−k〈Tρf, f〉 for an appropriate ρ.

This inequality has recently been improved by Chin Ho Lee in Fourier bounds and pseudorandom gener-
ators for product tests.

Question 2.5.6. A generalization of Hölder’s inequality states that

〈f, g〉 ≤ ‖f‖αp ‖g‖βq

whenever α/p+ β/q = 1.
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(a) Use the generalized Hölder inequality to show that

‖f‖22 ≤ ‖f‖
(2+ε)/(1+ε)
2+ε ‖f‖ε/(1+ε)1 .

(b) Apply hypercontractivity to show that if deg f ≤ d then

‖f‖2 ≤
√

1 + ε
d(2+ε)/ε‖f‖1,

and deduce ‖f‖2 ≤ ed‖f‖1 by taking the limit ε→ 0.

(c) Show that if E[f ] = 0 then E[f1f>0] = ‖f‖1/2, and deduce using Cauchy–Schwarz that

1

2
‖f‖1 ≤ ed‖f‖1

√
Pr[f > 0].

(d) Conclude that if E[f ] = 0 and f 6= 0 then

Pr[f > 0] ≥ e−2d

4
.

3 Biased hypercube

3.1 Skewed hypercube

So far we have considered functions on the Boolean cube {−1, 1}n with respect to the uniform measure. In
many situations, it is natural to consider a biased measure. For example, a G(n, p) random graph is formed
by putting in each edge with probability p. When p = 1/2, we get the uniform measure on all graphs, but
we are often interested in much smaller p.

It will be more natural to consider {0, 1}n instead of {−1, 1}n. The measures we consider will be

µp(x1, . . . , xn) = px1+···+xn(1− p)(1−x1)+···+(1−xn).

Question 3.1.1. Let S be a random subset of [n] obtained by putting in each element with probability p.
Show that 1S ∼ µp, where 1S is the characteristic function of S, which we can also think of as a vector of
length n.

When n =
(
m
2

)
, the distribution µp is the law of G(m, p).

We define the inner product and the various norms just as in the case of the Boolean cube, taking
expectation with respect to µp rather than with respect to the uniform measure.

When p 6= 1
2 , the Fourier characters are no longer orthonormal, and so we have to use different functions.

Question 3.1.2. Find all functions ω : {0, 1} → R that, together with 1, form an orthonormal basis for the
functions on {0, 1} with respect to µp.

Hint: Write ω(x) = x−α
β , and find α and β.

The function ω is unique up to sign, and there is no common convention regarding the sign. We will
choose the expression in which β > 0.

Question 3.1.3. For a subset S ⊆ [n], define

ωS(x) =
∏
i∈S

ω(xi).

Show that the ωS form an orthonormal basis for all functions on {0, 1}n.
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Since the ωS form a basis, every function has a unique Fourier expansion of the form

f =
∑
S⊆[n]

f̂(S)ωS .

One big difference between the uniform case and the skewed case is that we no longer have ωSωT = ωS4T
(check!).

There are two natural ways to define influence. One is spectral:

Infi[f ] =
∑
S3i

f̂(S)2.

The other is spatial:

Question 3.1.4. (a) Show that

Infi[f ] = p(1− p)E[(f(x)− f(x⊕ ei))2],

where x⊕ ei is obtained from x by flipping the ith input.

(b) Show that

Infi[f ] =
1

2
E[(f(x)− f(y))2],

where y is obtained from x by resampling the ith coordinate.

(c) Show that when f is monotone and Boolean (that is {0, 1}-valued) then Infi[f ] =
√
p(1− p)f̂({i}).

Hint: Look up the corresponding question in the uniform case.

Some people prefer the normalization Infi[f ] = E[(f(x)− f(x⊕ ei))2], in which case the spectral formula

will be Infi[f ] = 1
p(1−p)

∑
S∈i f̂(S)2.

Similarly, there are two ways to define the noise operator. Spectrally, we use the exact same formula:

Tρf =

n∑
d=0

ρdf=d,

where f=d is defined analogously to the case p = 1
2 . The corresponding spatial definition is:

Question 3.1.5. (a) Given x ∼ µp, let y be the random vector in which each coordinate is resampled with
probability 1− ρ. Show that

Tρf(x) = E[f(y)].

(b) Calculate the joint distribution of (xi, yi) in this experiment.

When p is constant, or at least bounded away from 0 and 1, hypercontractivity holds, with a very similar
proof.

3.2 Erdős–Ko–Rado

The Erdős–Ko–Rado theorem is a basic result in extremal combinatorics. Although usually stated for subsets
of
(
[n]
k

)
, it has an analog in the µp setting.

A family F ⊆ 2[n] is intersecting if any two sets in F have at least one element in common. The
µp-measure of F , denoted µp(F ), is the probability that a random x ∼ µp belongs to F .

Question 3.2.1. (a) Give an example of an intersecting family F with µp(F ) = p.
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(b) Show that when p = 1/2, every intersecting family has measure at most 1/2.

Hint: A set cannot intersect its complement.

(c) Show that when p > 1/2, as n→∞ there are intersecting families with measure arbitrarily close to 1.

Hint: Take all sets of size larger than n/2.

The interesting setting is thus p < 1/2. The Erdős–Ko–Rado theorem states that µp(F ) ≤ p for all
intersecting families F . We will prove this using a spectral method.

Question 3.2.2. In this question, p < 1/2.

(a) Construct a 2[1] × 2[1] matrix B such that

(i) B({1}, {1}) = 0.

(ii) ω∅ is an eigenvector with eigenvalue 1.

(iii) ω{1} is an eigenvector with eigenvalue λ (you have to determine λ).

(b) Construct a 2[n] × 2[n] matrix A such that

(i) B(S, T ) = 0 whenever S, T are intersecting.

(ii) ω∅ is an eigenvector with eigenvalue 1.

(iii) All other ωS are also eigenvectors.

Hint: Let A = B⊗n, the tensor or Kronecker power of B.

(c) Suppose F is intersecting. Show that 〈1F , A1F 〉 = 0. (This is the inner product with respect to µp.)

(d) Expand 〈1F , A1F 〉 in terms of the Fourier coefficients of 1F .

(e) Use 1̂F (∅)2 = µp(F )2 and
∑
S 6=∅ 1̂F (S)2 = µp(F )(1− µp(F )) to conclude µp(F ) ≤ p.

(f) What can you conclude when µp(F ) = p?

Katona came up with a simple argument which is also worthwhile to know. The following questions are
optional.

Question 3.2.3. Let p < 1/2, and let F ⊆ 2[n] be an intersecting family.
Consider the experiment in which n points are thrown on a unit circumference circle. Consider a “window”

of length p on the circumference, and let S be the set of points falling inside it.

(a) Show that µp(F ) = Pr[S ∈ F ].

(b) Show that the same formula holds if we choose the location of the window randomly.

(c) Show that for every fixed location of the points, the measure of windows such that S ∈ F is at most p.
(This is a bit subtle.)

(d) Conclude that µp(F ) ≤ p.

Question 3.2.4. Suppose that f(x) =
∑n
i=1 wixi and E[f ] ≥ 0. Define q = Pr[f ≥ 0].

(a) When p is the reciprocal of an integer, show that q ≥ p.

(b) Can you extend the argument to other values of p?

(c) Can you find values of p for which q < p for some f?

(d) What is the minimal value of q for these values of p?
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3.3 Friedgut–Kalai sharp threshold theorem

Suppose that f : {0, 1}n → {0, 1} is monotone and non-constant. Our goal is to understand how fast f
increases from 0 to 1.

Question 3.3.1. Let f : {0, 1}n → {0, 1} be a non-constant monotone Boolean function, and let F (p) be
the expectation of f under µp.

(a) Show that F (p) is increasing.

Hint: Given p ≤ q, construct a coupling (x, y) such that x ∼ µp, y ∼ µq, and x ≤ y. This shows that
F (p) ≤ F (q). Since F is a polynomial, it is strictly increasing.

(b) Show that there exists a unique critical probability pc such that F (pc) = 1/2.

(c) Show that F (min(Cp, 1)) ≥ 1− (1− F (p))C for integer C ≥ 1.

Hint: If we OR C many µp vectors then we get a µq vector, for q ≤ Cp.

(d) Deduce that for every ε > 0 there exists C > 0 such that F (min(Cp, 1)) ≥ 1− ε and F (p/C) ≤ ε.

We now give a formula for the derivative of µp(f) := E[f(µp)] in terms of the total influence of f , for
monotone f .

Question 3.3.2. Let f : {0, 1}n → R. Extend f to a function on [0, 1]n → R using its multilinear expansion.

(a) Use multilinearity to show that f(p, . . . , p) = Ex∼µp [f(x)].

Hint: Show this first for xi, then for general monomials.

(b) Use multilinearity to show that

∂f

∂xi
(x) = f(x|xi=1)− f(x|xi=0).

(c) Conclude the formula

E
µp

[
∂f

∂xi

]
=

1√
p(1− p)

f̂({i}).

Hint: The foregoing shows that E[∂f/∂xi] = E[f(x|xi=1)− f(x|xi=0)].

(d) Use the chain rule to deduce

d

dp
E
µp

[f ] =
1√

p(1− p)

n∑
i=1

f̂({i}).

(e) When f is monotone and Boolean, use Question 3.1.4 to show that

d

dp
E
µp

[f ] =
Inf[f ]

p(1− p)
=

n∑
i=1

E
µp

[(f(x)− f(x⊕ ei))2].

Above we have proved the KKL theorem only for p = 1/2, but the proof goes through for arbitrary
p. When taking into account the hypercontractive parameters for µp, we obtain the following result: If
f : {0, 1}n → {0, 1} is a Boolean function then with respect to µp,

max
i

Infi[f ] = Ω

(
1

log(1/min(p, 1− p))
· log n

n
V[f ]

)
.
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Question 3.3.3. Let f : {0, 1}n → {0, 1} be a monotone Boolean function, and suppose that f is transitive-
symmetric: f is invariant under some transitive permutation group.1

(a) Show that all influences of f are identical.

(b) Show that if p ≤ 1/2 then
d

dp
E
µp

[f ] = Ω

(
log n

p log(1/p)
V[f ]

)
.

Question 3.3.4 (Friedgut–Kalai). Let f : {0, 1}n → {0, 1} be a non-constant monotone Boolean function
which is transitive-symmetric, and define F (p) = Eµp [f ]. Let pc ≤ 1/2 be the critical probability of f .

(a) Let ε ∈ (0, 1/3), and define a parameter η by

η = B log(1/ε) · log(1/pc)

log n
,

where B is a large enough constant. Define

p− = (1− η)pc, p+ = (1 + η)pc.

Assuming η < 1/2, show that the bound in the preceding question holds for all p ∈ [p−, p+] even when
p is replaced by pc.

(b) Show that for an appropriate choice of B, for all p ∈ [p−, p+] we have

F ′(p) ≥ 2 ln(1/2ε)

ηpc
F (p)(1− F (p)).

(c) For p ∈ [p−, pc], obtain a lower bound on F ′(p)/F (p) and so on (lnF (p))′.

(d) Deduce that F (p−) ≤ ε. Similarly deduce that F (p+) ≥ 1− ε.
Hint: For the latter, consider (ln(1− F (p))′.

This shows that all transitive-symmetric functions have threshold window of scale log(1/pc)
logn . The theory

of sharp thresholds, developed by Friedgut, Bourgain, Kalai, and Hatami, studies better bounds of this form
when the functions have more symmetries or when they are known not to correlate with “local structures”.

4 Invariance principle

4.1 Gaussian space

So far we have considered functions on the Boolean cube {−1, 1}n. The invariance principle relates function
on the Boolean cube with functions on Gaussian space, which is Rn with the Gaussian measure

γ(x1, . . . , xn) =

(
1√
2π

)n
e−(x

2
1+···+x

2
n)/2.

It is a standard fact that this is indeed a probability measure. We define the inner product and norm
according to this measure:

〈f, g〉 = E
γ

[fg], ‖f‖p =

(
E
γ

[|f |p]
)1/p

.

Question 4.1.1. Show that the Fourier characters xS are orthogonal and have unit norm.

The rest of this section is somewhat beyond the scope of this class, so feel free to skip some questions.

1A permutation group is a subset of Sn. It operates on {0, 1}n by permuting the coordinates. A permutation group is
transitive if for each i, j, there is a permutation sending i to j.
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4.1.1 Hermite basis

A technicality which doesn’t occur for finite domains is that we cannot consider arbitrary functions. We will
only be interested in measurable functions with finite L2 norm, a space we denote by L2(Rn, γ). Henceforth
we will not always state that our functions are measurable and have finite norms.

The Fourier characters form an orthonormal basis for the space of all functions on the Boolean cube.
The same doesn’t hold for Gaussian space, even when n = 1. Indeed, the space of functions R → R is
infinite-dimensional. We therefore need to expand the Fourier basis to a larger basis known as the Hermite
basis.

Question 4.1.2. (a) Suppose that h2(x) = ax2 + bx + c has unit norm and is orthogonal to the two one-
dimensional Fourier characters 1, x. Determine h2 (up to sign).

(b) Suppose that h3(x) = ax3 + bx2 + cx+ d has unit norm and is orthogonal to 1, x, h2. Determine h3 (up
to sign).

The general formula is

hi(x) =
(−1)i√
i! · e−x2/2

d

dxi
e−x

2/2.

Question 4.1.3. Check that this formula agrees with h0 = 1, h1 = x, and the value of h2 which you
calculated above.

Question 4.1.4. (a) Show that

etx−t
2/2 =

∞∑
i=0

hi(x)
ti√
i!
.

Hint: Write etx−t
2/2 = ex

2/2e−(t−x)
2/2, and use the Taylor expansion of the latter around t = 0.

(b) Show that Eγ [e(t+s)x] = e(t+s)
2/2, and conclude that E[etx−t

2/2esx−s
2/2] = ets.

Hint: Complete the square and use 1√
2π

∫∞
−∞ e−y

2/2 = 1.

(c) Conclude that the hi have unit norm and are orthogonal.

Hint: Compare the Taylor expansion of ets to the expansion of etx−t
2/2esx−s

2/2 from part (a).

The Hermite polynomials are a basis for L2(R, γ) in the following sense: for every function f there exist
coefficients ci such that

f =

∞∑
i=0

cihi a.e.

This is known as the Hermite expansion of f .
Since the proof involves basic measure theory, we only sketch it here:

(a) From general principles, it suffices to show that if 〈f, hi〉 = 0 for all i then f = 0 a.e.

(b) If 〈f, hi〉 = 0 for all i then the Fourier transform of f , which is f̂(t) = 〈f, e−itx〉, vanishes.

(c) The Fourier transform is invertible, hence f = 0.

We extend the Hermite basis to Rn in the natural way:

hi1,...,in(x1, . . . , xn) = hi1(x1) · · ·hin(xn).

Question 4.1.5. Show that n-dimensional Hermite basis is an orthonormal collection of functions.
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4.1.2 Noise

We can extend all the setup of Boolean function analysis from the Boolean cube to Gaussian space. For our
purposes, it will suffice to consider only the noise operator and hypercontractivity.

The noise operator can be defined in at least three different ways. We will only present two of them. The
third is via Brownian motion.

Question 4.1.6. For a function f ∈ L2(R, γ) and parameter ρ, define a function Uρf by

Uρf(x) = E
z∼γ

[f(ρx+
√

1− ρ2z)].

Show that
〈f, Uρg〉 = E

x,y
[f(x)g(y)],

where x, y are sampled from a Gaussian distribution with zero mean and covariance matrix

(
1 ρ
ρ 1

)
. (We

say that x, y are ρ-correlated Gaussians.)

Hint: Show that if x, z ∼ γ and y = ρx+
√

1− ρ2z, then x, y are ρ-correlated Gaussians.

Question 4.1.7. Calculate Uρhi for i = 0, 1, 2.

The pattern persists.

Question 4.1.8. (a) Fix two unit vectors a, b ∈ R2 such that 〈a, b〉 = ρ, and let g ∼ γ be a two-dimensional
Gaussian. Show that x = 〈a, g〉 and y = 〈b, g〉 are ρ-correlated Gaussians.

(b) Show that E[esx−s
2/2ety−t

2/2] = estρ.

Hint: Write esx+ty = esa1g1+tb1g1esa2g2+tb2g2 and use Ew∼γ [erw] = er
2/2.

(c) Conclude that 〈Uρhi, hj〉 = 0 if i 6= j and ρi otherwise, and so Uρhi = ρihi.

Hint: Use Question 4.1.4(a).

Question 4.1.9. (a) Extend the definition of Uρ to functions on Rn.

(b) Compute Uρhi1,...,in .

(c) Explain how to decompose f =
∑∞
i=0 f

=i so that Uρf =
∑∞
i=0 ρ

if=i.

4.1.3 Rotation sensitivity

The invariance principle, which we discuss below, reduces questions about the Boolean cube to questions on
Gaussian space. Here is an example of the kind of reasoning which is possible on Gaussian space.

Question 4.1.10. Let f : Rn → R. For an angle θ, define

RSθ(f) =
1

2
E
x,y

[(f(x)− f(y))2],

where x, y are cos θ-correlated.

(a) Show that RSθ(f) = ‖f‖2 − 〈f, Ucos θf〉.

(b) When f is Boolean (±1-valued), show that RSθ(f) = 2 Pr[f(x) 6= f(y)].

Recall that we can generate two ρ-correlated Gaussians using the method of Question 4.1.8. We can use
the same method to couple two correlated pairs.
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Question 4.1.11. Let α, β be angles, and consider a Boolean function f : Rn → {±1}.

(a) Show that there exist two-dimensional vectors a, b, c such that ](a, b) = α, ](b, c) = β and ](a, c) =
α+ β.

(b) Use the method of Question 4.1.8 to show that RSα+β(f) ≤ RSα(f) + RSβ(f).

Hint: Let g ∼ γ, and define x = 〈a, g〉, y = 〈b, g〉, z = 〈c, g〉. Use Pr[f(x) 6= f(z)] ≤ Pr[f(x) 6=
f(y)] + Pr[f(y) 6= f(z)].

(c) Show that RSπ/2(f) = V[f ].

Hint: Two π/2-correlated Gaussians are independent.

(d) Conclude that if ρ = cos(π/2k) for integer k then

〈f, Uρf〉 ≤ 1− 2 cos−1 ρ

π
V[f ].

(e) Show that the inequality is tight for f = sgn(x1).

Hint: Let x, y be sampled as before (with ](a, b) = θ). The value of f(x), f(y) depends only on the angle
γ of g: for example, sgn(x1) > 0 iff γ ∈ (α − π/2, α + π/2). Figure out for which values of γ we have
f(x) 6= f(y).

Note 〈f, Uρf〉 = ‖U√ρf‖2, and so
√
〈f, Uρf〉 satisfies the triangle inequality. This implies that the

maximum of 〈f, Uρf〉 over functions f : Rn → [−1, 1] is obtained on “extreme functions”, which are Boolean
functions. In other words, the results of the preceding question are valid for all functions f : Rn → {−1, 1}.
We skip the formal argument.

4.1.4 Hypercontractivity

We can deduce hypercontractivity for Gaussian space from hypercontractivity on the Boolean cube using
the central limit theorem.

Question 4.1.12. (a) Let x1, x2, . . . be infinitely many independent random variables distributed uniformly
over {−1, 1}. Define σ(m) = x1+···+xm√

m
. Show using the central limit theorem that σ → γ, in an

appropriate sense.

(b) Let (x1, y1), (x2, y2), . . . be infinitely many independent ρ-correlated ±1 random variables, that is,
E[xiyi] = ρ. Define σ(m) = x1+···+xm√

m
and τ (m) = y1+···+ym√

m
. Show that (σ(m), τ (m)) tends to ρ-correlated

Gaussians.

Hint: Show that E[σ(m)τ (m)] = ρ.

(c) For f ∈ L2(R, γ), define f (m) : {−1, 1}m → R by f (m)(x1, . . . , xm) = f(σ(m)). Show that

lim
m→∞

〈Tρf (m), g(m)〉 = 〈Uρf, g〉 and lim
m→∞

‖f (m)‖p = ‖f‖p.

(For the latter statement, we need f ∈ Lp(R, γ), i.e., we need that ‖f‖p exists.)

(d) Conclude hypercontractivity for Gaussian space, with the same parameters as the Boolean cube.
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4.2 Invariance principle

The central limit theorem states that for x1, . . . , xn ∼ {−1, 1},

x1 + · · ·+ xn√
n

−→ N(0, 1).

Here N(0, 1) is the standard Gaussian distribution. More generally,

a1x1 + · · ·+ anxn ≈ N(0, a21 + · · ·+ a2n),

as long as none of the ai is too large compared to the rest. The Berry–Esseen theorem states this in a
quantitative way. Let us normalize so that

∑n
i=1 a

2
i = 1. Then for all t,

|Pr[a1x1 + · · ·+ anxn < t]− Pr[N(0, 1) < t]| = O

(
n∑
i=1

|ai|3
)

= O(max
i
|ai|).

The invariance principle generalizes this statement from linear forms to low-degree polynomials.
In stating the invariance principle, we need to figure out two ingredients:

1. Given a function on the Boolean cube, what is the corresponding distribution?

2. What is the correct error term generalizing maxi |ai|?

Whereas for linear forms there is a “universal” limiting distribution, the same cannot be true even for
quadratic polynomials. Indeed,

x1x2 + · · ·+ x2n−1x2n√
n

−→ N(0, 1)

whereas (
x1 + · · ·+ xn√

n

)2

−→ N(0, 1)2.

The solution is simple but ingenious.

Question 4.2.1. Let z1, . . . , zn be independent standard Gaussians. Show that

n∑
i=1

aizi ∼ N(0, a21 + · · ·+ a2n).

Therefore the Berry–Esseen can be seen as stating that

a1x1 + · · ·+ anxn ≈ a1z1 + · · ·+ anzn,

where the quality of the approximation depends on maxi |ai| (assuming
∑n
i=1 a

2
i = 1). This shows how to

lift an arbitrary function from the Boolean cube to Gaussian space. It turns out that the correct error term
depends on the maximum influence of the function.

Whereas the Berry–Esseen theorem is stated in terms of CDFs (cumulative distribution functions), it
will be easier to do the calculations for test functions satisfying appropriate constraints.

We start with the argument for linear forms, and then show how to generalize it to arbitrary low-degree
functions.

Question 4.2.2. Let x1, . . . , xn be i.i.d. random ±1 variables, let g1, . . . , gn be i.i.d. standard Gaussians,
and let Ψ satisfy |Ψ′′′′(z)| ≤ B for all z.

Define f(y1, . . . , yn) = a1y1 + · · ·+ anyn, and for 0 ≤ i ≤ n, let

Ei = E[Ψ(f(x1, . . . , xi, gi+1, . . . , gn))].
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(a) Let 1 ≤ i ≤ n. Show that for an appropriate random variable C,

Ei − Ei−1 = E[Ψ(C + aixi)−Ψ(C + aigi)].

(b) Use the Taylor expansion of Ψ around C to show that

|Ei − Ei−1| = O(Ba4i ).

Hint: Use E[xki ] = E[zki ] for k = 0, 1, 2, 3.

(c) Conclude that

|E[Ψ(f(x1, . . . , xn))]− E[Ψ(f(g1, . . . , gn))]| = O

(
B

n∑
i=1

a4i

)
.

In order to deduce the Berry–Esseen theorem as stated above, we need the following rather technical
result. The following question is optional.

Question 4.2.3. (a) Define a function µ by

µ(x) =

{
Ke−1/(1−x

2), if − 1 ≤ x ≤ 1,

0, otherwise.

Show that some choice of K makes µ a probability density function.

(b) Prove by induction that for k ≥ 0, µ(k)(x) = pk(x)(1− x2)−2kµ(x), where pk is a polynomial.

(c) Show that for every k there exists a constant Ck such that |µ(k)(x)| ≤ Ck for all x.

(d) Let s(x) = [x ≤ 0], that is, s(x) = 1 if x ≤ 0, and s(x) = 0 otherwise. For η > 0, define

sη(x) = E
y∼µ

[s(x+ ηy)] = E
y∼µ

[s(x/η + y)].

Show that for k ≥ 1 and |x| ≤ η, |s(k)η (x)| ≤ Ck/ηk for all x. (Here s
(k)
η is the kth derivative of sη.)

Hint: Write sη(x) =
∫ −x/η
−1 µ(y) dy.

(e) Show that sη(x) = s(x) for |x| ≥ η, and sη is decreasing for |x| ≤ η.

(f) Show that for every random variable X,

Pr[X < −η] ≤ E[sη(X)] ≤ Pr[X < η].

Using the function sη, we can obtain a version of Berry–Esseen for CDFs.

Question 4.2.4. Let f(y1, . . . , yn) = a1y1 + · · ·+ anyn, where
∑n
i=1 a

2
i = 1, and let δ =

∑n
i=1 a

4
i .

(a) Applying Berry–Esseen for a shift of sη/2, show that for every t,

Pr[f(x1, . . . , xn) < t] ≤ Pr[f(g1, . . . , gn) < t+ η] +O(δ/η4).

(b) Show that Pr[t ≤ f(g1, . . . , gn) ≤ t+ η] = O(η).

Hint: Notice that f(g1, . . . , gn) ∼ N(0, 1), and use the fact that the density of N(0, 1) is bounded.

(c) Conclude that
Pr[f(x1, . . . , xn) < t] ≤ Pr[f(g1, . . . , gn) < t] +O(η + δ/η4).
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(d) Prove the same inequality in the other direction, and choose the best value of η to obtain a version of
Berry–Esseen for CDF distance.

The proof of the invariance principle is very similar.

Question 4.2.5. Let x1, . . . , xn be i.i.d. random ±1 variables, let g1, . . . , gn be i.i.d. standard Gaussians,
and let Ψ satisfy |Ψ′′′′(z)| ≤ B for all z.

Let f be a degree d multivariate polynomial in n variables, and for 0 ≤ i ≤ n, define

Ei = E[Ψ(f(x1, . . . , xi, gi+1, . . . , gn))].

(a) Write f(y1, . . . , yn) = yik(y1, . . . , yn) + h(y1, . . . , yn). Show that

|Ei − Ei−1| = O(B E[k4]).

(b) Show that yik = Lif , and conclude that E[k2] = Infi[f ].

(c) Use hypercontractivity to bound E[k4] = Od(Infi[f ]2).

(d) Conclude that

|E[Ψ(f(x1, . . . , xn))]− E[Ψ(f(g1, . . . , gn))]| = Od(B‖f‖2 max
i

Infi[f ]).

Hint: Use the double-sided Poincaré inequality.

Question 4.2.6. Carbery and Wright showed that if f is a degree d multivariate polynomial of unit norm,
then the probability that f(γ) lies in an interval of length η is O(dη1/d).

Use this to give a bound on

|Pr[f(x1, . . . , xn) < t]− Pr[f(g1, . . . , gn) < t]|

in terms of the maximum influence of f .

So far our invariance principle applies for functions Ψ with bounded fourth moment. It is often better to
consider Lipschitz functions instead. A function Ψ is C-Lipschitz if |Ψ(x)−Ψ(y)| ≤ C|x− y|. The following
question is optional.

Question 4.2.7. Let Ψ be C-Lipschitz, and fix η > 0.
Define Ψη(x) = E[Ψ(x+ ηy)], where y is a standard Gaussian.

(a) Let φ(z) = 1√
2π
e−z

2/2. Prove by induction that φ(k)(z) = Pk(z)φ(z), where Pk(z) is a polynomial.

(b) Conclude that for every k ≥ 0 there exists a constant Ck such that |φ(k)(z)| ≤ Ck for all z.

(c) Show that |Ψη(x)−Ψ(x)| = O(ηC) for all x.

Hint: Use the fact that E[|y|] = O(1).

(d) Show that

Ψη(x) =
1

η

∫ ∞
−∞

Ψ(y)φ

(
x− y
η

)
dy.

(e) Deduce that for k ≥ 1,

Ψ(k)
η (x) =

1

ηk+1

∫ ∞
−∞

Ψ(y)φ(k)
(
x− y
η

)
dy.

(f) Conclude that |Ψ(k)
η (x)| = Ok(C/ηk−1) for all x.

Hint: Without loss of generality Ψ(x) = 0, and then |Ψ(y)| ≤ C|x− y|. Now make a change of variables
to get something independent of η.

Question 4.2.8. Prove an invariance principle for Lipschitz functions Ψ.
Hint: Apply the invariance principle to Ψη, incuring an extra error of 2Cη, and optimize η.
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4.3 Majority is stablest

Consider a balanced function f : {−1, 1}n → {−1, 1}. How stable can f be to noise? That is, how large can
〈Tρf, f〉 be?

Question 4.3.1. Let f : {−1, 1}n → {−1, 1} be balanced (E[f ] = 0), and let ρ ∈ (0, 1).

(a) Show that 〈Tρf, f〉 ≤ ρ.

(b) Show that equality holds iff f is a dictator.

A dictator is noise-stable because it’s a junta. What if we rule out juntas? One natural way is to put a
bound on the individual influences. When the maximum influence is small, the invariance principle implies
(as we will work out) that the function behaves as if it lived in Gaussian space.

In Gaussian space there are no preferred directions, so dictators don’t make sense (this is because Gaussian
space is rotation-invariant). Indeed, Borell’s theorem states that the most stable balanced function is a
halfspace through the origin. In a slightly stronger form, it states that if f : Rn → [−1, 1] and h : R→ {−1, 1}
is a threshold function with the same mean then for all ρ ∈ (0, 1),

〈Uρf, f〉 ≤ 〈Uρh, h〉.

We proved a special case of this result for balanced f in Question 4.1.11.
In the rest of this section, we will show that if all influences of f : {−1, 1}n → [−1, 1] are small, then

〈Tρf, f〉 is not much larger than the corresponding answer in Gaussian space. The proof is a bit technical,
so you can skip some of the calculations to get the gist of the argument.

We start with the case in which f has small degree, say deg f = d.

Question 4.3.2. Let f : {−1, 1} → [−1, 1] have degree d, and extend f to Rn using its Fourier expansion.

(a) Show that 〈Tρf, f〉 = E[S(T√ρf)], where S(x) = min(x2, 1).

Hint: Since T√ρ is an averaging operator, T√ρf ∈ [−1, 1].

(b) Show that S is 2-Lipschitz, and so obtain a bound on∣∣∣∣ E
{−1,1}n

[S(T√ρf)]− E
γ

[S(U√ρf)]

∣∣∣∣ .
(c) It might seem that we can bound the latter expectation using Borell’s theorem, but actually U√ρf need

not be [−1, 1]-valued. Let clip be the function that clips its argument to [−1, 1]. Bound |E[U√ρf ] −
E[clip(U√ρf)]|.
Hint: Apply the invariance principle to the 1-Lipschitz function dist[−1,1], which measures the L1-distance
of its argument to the interval [−1, 1]; use E{−1,1}n [dist[−1,1](T√ρf)] = 0.

(d) Let Λρ(µ) be the bound given by Borell’s theorem (i.e., 〈Uρh, h〉 where h is a hyperplane with E[h] = µ).
Show that Λρ is Lipschitz.

Hint: Let x, y be ρ-correlated Gaussians. Since 〈Uρh, h〉 = ‖h‖2−2 Pr[h(x) 6= h(y)] = 1−4 Pr[x < µ < y],
it suffices to show that Pr[x < µ < y] is Lipschitz in µ.

(e) Apply Borell’s theorem to clip(U√ρf) to obtain a bound on Eγ [S(clip(U√ρf))].

(f) Deduce a bound on Eγ [S(U√ρf)] using the fact that S is Lipschitz, and conclude a bound on 〈Tρf, f〉.

When f doesn’t have low degree, we make it low degree by adding a small amount of noise.

Question 4.3.3. Let f : {−1, 1}n → [−1, 1], and extend f to Rn using its Fourier expansion.
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(a) Let g = T1−δf . Show that ‖g>d‖1 ≤ ‖g>d‖2 ≤ e−dδ.

(b) Find a value of ρ′ such that 〈Tρ′g, g〉 = 〈Tρf, f〉.

(c) Show that if Ψ is C-Lipschitz then∣∣ E
{−1,1}n

[Ψ(g)]− E
γ

[Ψ(g)]
∣∣ ≤ ∣∣ E

{−1,1}n
[Ψ(g≤d)]− E

γ
[Ψ(g≤d)]

∣∣+ 2C‖g>d‖1.

(d) Apply the preceding question to obtain a bound on 〈Tρf, f〉 in terms of ρ′ and the maximum influence
of f .

(e) Show that

|〈Tρf, f〉 − 〈Tρ′f, f〉| ≤
|ρ− ρ′|
1− ρ′

.

Hint: Note d
dρ 〈Tρf, f〉 =

∑∞
d=1 dρ

d−1‖f=d‖2. Use dρd−1 ≤ 1
1−ρ .

(f) Deduce a bound on 〈Tρf, f〉 in terms of ρ and the maximum influence of f when E[f ] = 0.
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