Assignment 2*

Another way of proving hypercontractivity (under the uniform measure) is through the log Sobolev
inequality for the hypercube {—1,1}":

Ent[f?] := E[f*log(f?)] — E[f*] log E[f?] < 2Inf[f]. (%)
This inequality holds for all f: {—1,1}" — R. Here log is the natural logarithm. We will show that the

log Sobolev inequality is equivalent to the following hypercontractive estimate:

[Te-t fllisere < [Ifl2- ()
We will need the following definitions: (L;f)(x) = [f(z) — f(z @ i)]/2, where z ® i results from = by
flipping the ith coordinate, and L = ;" | L;. (In class we didn’t divide by 2.)

1. Properties of the Laplacian:
(a) Show that (L;f, L;g) = (L;f,g).
Solution: We have

(Lif Lig) = L EI(7(@) — f(x ® )(g(a) — (& 1)
= TEf(@) — fa® o)) + {Ef (@) — f@)gle @ i)] = (L g).

(b) Show that (Lf, f) = Inf[f].

Solution: We have

<Lf7f>=Z<L f )—ZHL f11? = Inf[f].

(c) Show that &7, f = —LT,-:f.
Solution: Notice that L;f =", ¢ f(S)xs and so Lf = Yos |S|£(S)xs. Therefore

d
Tt f = dtZe*t‘S‘f Zet‘SHS\f xs = —LT,'f.

2. Simple properties of the log Sobolev inequality:
(a) Prove that Ent[f?] > 0, and determine when Ent[f?] = 0.

Solution: Convexity of p(z) = 2 log x shows that

E[p(f)] > o (E[f?),

which states that Ent[f?] > 0. Since ¢(z) is strictly convex, equality is possibly only if f? is constant.
(b) What happens to both sides of (x) when f is multiplied by a constant?
Solution: Multiplying f by ¢ has the following effect on the left-hand side:

Ent[(cf)?] = ¢® E[f*(log(f?) + log(c?))] — ¢ E[f*](log E[f?] + log(c?)) = ¢* Ent[f].
Similarly, Inf[cf] = ¢? Inf[f].
(c) Show that Ent[(1 + ef)?] ~ 2V[f]€?, and deduce the Poincaré inequality V[f] < Inf[f] from ().
Solution: The Taylor expansion of ¥(z) = 2% logz? around x = 1 is

P(1+€) = 2e + 36 + O(%).

Therefore
E[(1 4+ ef)] = 2¢E[f] + 32 E[f%] + O(¢)®.

*This assignment is based on exercises 10.22, 10.23, 10.24, 10.26 from Ryan O’Donnell’s Analysis of Boolean functions,
and on Diaconis and Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains.



Similarly, the Taylor expansion of ¢(z) around z =1 is

p(l+¢€) =€+ %eQ + O(€),
and so
P(E[(1+€f)?) = (1 + 2¢E[f] + € E[f?)
= 2¢E[f] + € E[f*] + 2 E[f]* + O(’).

Put together, we have
Ent[(1 + ef)?] = 22 V[f] + O(¢?).
On the other hand,
Inf[l +ef] = €Y |S|f(S)* = € Inf[f].
s

The Poincaré inequality follows.
(d) Show that if (*) holds for all non-negative f then it holds for all f.
Solution: Let g = |f|. Then Ent[g?] = Ent[f?] while

E[(f(2) = f(z ©1))*] = Inf;[f].

e

fifg] = 7 E(If)| ~ £z ® )7 <

If (%) holds for g then
Ent[f] = Ent[g] < 2Inf[g] < 2Inf[f].

3. Log Sobolev follows from hypercontractivity:
Let F'(t) = [|Te—¢ f|pt), for an as yet unspecified p(t) and a non-negative f.
(a) Let G(t) = F(t)?*). Show that

()

/ _ . . p(t)—1
G (t) - p<t)<LTe* f> (Te f) > + p(t)

E[(T.- £)P" log(T,-+ f)P*)].

Solution: Substituting the formula
(a(®)*™)" = a(t)* D~ a’ ()b(t) + a(t)* DV (t) log a(t)
in the expression G(t) = E[(T,-« f)?®] and using 1(c),
G'(t) = E[(To-e /)P LT f)p(t) + (Te-e [P (1) log (T f)]-

We get the form in the exercise by multiplying the second term by %.
(b) Show that

F/(t) = F(t) 7 [—<LTe—tf, (T, YP01) + ;’(g) Ent[(T, f)pm]] .

Solution: Substituting the formula

(a0 = afo) 0= (S8 - H 0y ogatr))

in the expression F(t) = G(t)Y/P®)

F'(t) = F(t)'~*® (—<LTe-tf, (To- fYPO71) + ;’(gl E[(T.- f)P") log(T,—« f)*™]
P’ (t)

p(t)?

E[(T,-« f)®] log E[(Tew(”]) 7



which equals the desired expression.

(c) Let p(t) =1+ €. Show that 20 <1 for all ¢ > 0.

Solution: The desired inequality reads 4e?! < (1 + €2!)?, which holds since (1 — €2%)% > 0.

(d) Show that (*x) implies that F’(0) < 0, and deduce the log Sobolev inequality.

Solution: Equation (xx) states that F(t) < F(0), implying F’(0) < 0. Since p(0) = 2 and p/(0)/p(0)? =
1/2, we get

%Ent[ F2 < (LS, f) = Inf[f).

4. Hypercontractivity follows from log Sobolev:
(a) Show that for all a,b >0 and p > 2,

(apfl _ bpfl)(a _ b) > 4(pg 1) (ap/2 _ bp/2)2.

p
Hint: Justify and use the inequality (ﬁ fba tP/2=1dt)? < %b ba tP=2dt for a > b > 0.

Solution: The inequality in the hint follows from the Cauchy—Schwartz inequality. Calculating the

integrals explicitly, we get
;i( P2 _pp/2)2 < _b
(a —b)? p? “a—-bp-1

Rearrangement gives the inequality.
(b) Show that for p > 2, (Lif, Li(f*~1)) > 22 (L;(f#/2), L;(f*/%)), and deduce (Lf, f~1) > 2 (L fr/2 fr/2),

p

(aP~! — P ).

Solution: We have

(Lo L) = 2E[(f(x) - flz & D) (@)~ = flae i)

4

> 2Bl - fwe i
A EN AT

This shows the first inequality. The second follows from 1(a).
(c) Show that the log Sobolev inequality implies that F’(t) < 0 (see previous exercise), and deduce (xx).
Solution: The log Sobolev inequality shows that

BT, ) = 220 a7, ) < 2O (7, 02,
Now 1(b) shows that
41’;2);1 Inf((T, . f)7/2) = “p],ft(i);lw(ntf)p(“/% (To o fYPO/2) < (LT, f, (T [P0,

In view of 3(b), this shows that F'(t) < 0. In particular, F(t) < F(0) for all ¢ > 0, which is just a
restatement of (k).

5. Independent proof of log Sobolev:
(a) Let g(t) = 2t — Ent[(1 + tx1)?] (here n = 1). Show that g(0) = ¢’(0) = 0 and ¢”(t) > 0 for |t| < 1,
and deduce that g(t) > 0 for all |¢t] < 1.

Solution: We can write explicitly

g(t) =2t — (1 +t)*log(1 +t) — (1 —t)*log(1 — t) + (1 + %) log(1 + %)

1+¢2 1—¢
"(t) = 4t + 2t 1 2log ——
g'(t) +2tlog 5 + 2log -
4¢2 1+ t2
"(t) = 21
g'(t) t2+1+ BT



The last expression is clearly non-negative for [¢|] < 1. This shows that ¢'(t) < 0 for ¢ < 0 and so
g(t) > g(0) for t < 0, and similarly ¢’(t) > 0 for ¢ > 0 implying g(¢t) > ¢(0) for ¢ > 0. This shows that
g(0) < g(t) for all [t| < 1.

(b) Deduce the log Sobolev inequality for n = 1. Hint: replace f by |f|/E[|f]].

Solution: According to 2(b),2(d), we can assume that f is non-negative and E[f] = 1. Since E[f] = 1,
f has the form f(z) =1+ ta. Since f >0, |[t| < 1. The log Sobolev inequality follows from g(¢) > 0.

(c) Show that for any two functions f,¢g on {—1,1}" we have
2
(VEIF - VEG?) <El/f-9)
Solution: This is a simple application of the Cauchy—Schwartz inequality:

(VE[f?] - VE[g?))* = E[f*] + El¢*] - 2VE[f?| E[¢?] < E[f*] + El¢*] — 2E[fg] = E[(f - 9)*].

(d) Deduce the general log Sobolev inequality. Hint: use induction on n, employing the one-dimensional
log Sobolev inequality in the inductive step.

Solution: Let fi(z1,...,z,) = f(z1,...,2n,1) and f_(21,...,2,) = f(21,...,2pn, —1). Assume induc-
tively that (%) holds for fy, f_. Then

Ent(f?] = 2 E[/2 log(/2)] + 1 ELf? log(r2)] — 28 EU] o B+ B

N = N =

2 2 2 2
Ent(f2]+ © Entlf2) + L EI/2) log B2 + L B{f2)log [ 2] — T H T BV o BRI RS

We can bound the first two terms by induction. For the remaining terms, define h(1) = /E[f?] and

h(—1) = {/E[f?], so that the remaining terms are Ent[h?]. Using one-dimensional log Sobolev inequality

to bound these terms, we obtain

Ent[f?] < Inf[f}] + Inf[f_] + 2 Inf[h] = Inf[f;] + Inf[f_] + \/M; E[f2]

< Inf[f4] + Inf[f_] + w.

Finally,
E[(f, — £)7]

2I0f[f] = 23 Tnf,[f] + 2 Tnf,y g [f] = Tnflf] + Tnf[f ] + =L
i=1

This completes the proof.



