
Assignment 2∗

Another way of proving hypercontractivity (under the uniform measure) is through the log Sobolev
inequality for the hypercube {−1, 1}n:

Ent[f2] := E[f2 log(f2)]− E[f2] logE[f2] ≤ 2 Inf[f ]. (∗)

This inequality holds for all f : {−1, 1}n → R. Here log is the natural logarithm. We will show that the
log Sobolev inequality is equivalent to the following hypercontractive estimate:

‖Te−tf‖1+e2t ≤ ‖f‖2. (∗∗)

We will need the following definitions: (Lif)(x) = [f(x) − f(x ⊕ i)]/2, where x ⊕ i results from x by
flipping the ith coordinate, and L =

∑n
i=1 Li. (In class we didn’t divide by 2.)

1. Properties of the Laplacian:
(a) Show that 〈Lif, Lig〉 = 〈Lif, g〉.
Solution: We have

〈Lif, Lig〉 =
1

4
E[(f(x)− f(x⊕ i))(g(x)− g(x⊕ i))]

=
1

4
E[(f(x)− f(x⊕ i))g(x)] +

1

4
E[(f(x⊕ i)− f(x))g(x⊕ i)] = 〈Lif, g〉.

(b) Show that 〈Lf, f〉 = Inf[f ].

Solution: We have
〈Lf, f〉 =

∑
i

〈Lif, f〉 =
∑
i

‖Lif‖2 = Inf[f ].

(c) Show that d
dtTe−tf = −LTe−tf .

Solution: Notice that Lif =
∑

i∈S f̂(S)χS and so Lf =
∑

S |S|f̂(S)χS . Therefore

d

dt
Te−tf =

d

dt

∑
S

e−t|S|f̂(S)χS = −
∑
S

e−t|S||S|f̂(S)χS = −LT−te f.

2. Simple properties of the log Sobolev inequality:
(a) Prove that Ent[f2] ≥ 0, and determine when Ent[f2] = 0.

Solution: Convexity of ϕ(x) = x log x shows that

E[ϕ(f2)] ≥ ϕ(E[f2]),

which states that Ent[f2] ≥ 0. Since ϕ(x) is strictly convex, equality is possibly only if f2 is constant.

(b) What happens to both sides of (∗) when f is multiplied by a constant?

Solution: Multiplying f by c has the following effect on the left-hand side:

Ent[(cf)2] = c2 E[f2(log(f2) + log(c2))]− c2 E[f2](logE[f2] + log(c2)) = c2 Ent[f2].

Similarly, Inf[cf ] = c2 Inf[f ].

(c) Show that Ent[(1 + εf)2] ∼ 2V[f ]ε2, and deduce the Poincaré inequality V[f ] ≤ Inf[f ] from (∗).
Solution: The Taylor expansion of ψ(x) = x2 log x2 around x = 1 is

ψ(1 + ε) = 2ε+ 3ε2 +O(ε3).

Therefore
E[ψ(1 + εf)] = 2εE[f ] + 3ε2 E[f2] +O(ε)3.

∗This assignment is based on exercises 10.22, 10.23, 10.24, 10.26 from Ryan O’Donnell’s Analysis of Boolean functions,
and on Diaconis and Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains.
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Similarly, the Taylor expansion of ϕ(x) around x = 1 is

ϕ(1 + ε) = ε+
1

2
ε2 +O(ε3),

and so

ϕ(E[(1 + εf)2]) = ϕ(1 + 2εE[f ] + ε2 E[f2])

= 2εE[f ] + ε2 E[f2] + 2ε2 E[f ]2 +O(ε3).

Put together, we have
Ent[(1 + εf)2] = 2ε2 V[f ] +O(ε3).

On the other hand,

Inf[1 + εf ] = ε2
∑
S

|S|f̂(S)2 = ε2 Inf[f ].

The Poincaré inequality follows.

(d) Show that if (∗) holds for all non-negative f then it holds for all f .

Solution: Let g = |f |. Then Ent[g2] = Ent[f2] while

Infi[g] =
1

4
E[(|f(x)| − |f(x⊕ i)|)2] ≤ 1

4
E[(f(x)− f(x⊕ i))2] = Infi[f ].

If (∗) holds for g then
Ent[f ] = Ent[g] ≤ 2 Inf[g] ≤ 2 Inf[f ].

3. Log Sobolev follows from hypercontractivity:
Let F (t) = ‖Te−tf‖p(t), for an as yet unspecified p(t) and a non-negative f .

(a) Let G(t) = F (t)p(t). Show that

G′(t) = −p(t)〈LTe−tf, (Te−tf)p(t)−1〉+
p′(t)

p(t)
E[(Te−tf)p(t) log(Te−tf)p(t)].

Solution: Substituting the formula

(a(t)b(t))′ = a(t)b(t)−1a′(t)b(t) + a(t)b(t)b′(t) log a(t)

in the expression G(t) = E[(Te−tf)p(t)] and using 1(c),

G′(t) = E[−(Te−tf)p(t)−1(LTe−tf)p(t) + (Te−tf)p(t)p′(t) log(Te−tf)].

We get the form in the exercise by multiplying the second term by p(t)
p(t) .

(b) Show that

F ′(t) = F (t)1−p(t)
[
−〈LTe−tf, (Te−tf)p(t)−1〉+

p′(t)

p(t)2
Ent[(Te−tf)p(t)]

]
.

Solution: Substituting the formula

(a(t)1/b(t))′ = a(t)1/b(t)−1
(
a′(t)

b(t)
− b′(t)

b(t)2
a(t) log a(t)

)
in the expression F (t) = G(t)1/p(t),

F ′(t) = F (t)1−p(t)
(
−〈LTe−tf, (Te−tf)p(t)−1〉+

p′(t)

p(t)2
E[(Te−tf)p(t) log(Te−tf)p(t)]

− p
′(t)

p(t)2
E[(Te−tf)p(t)] logE[(Te−tf)p(t)]

)
,
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which equals the desired expression.

(c) Let p(t) = 1 + e2t. Show that p′(t)
p(t)2 ≤

1
2 for all t ≥ 0.

Solution: The desired inequality reads 4e2t ≤ (1 + e2t)2, which holds since (1− e2t)2 ≥ 0.

(d) Show that (∗∗) implies that F ′(0) ≤ 0, and deduce the log Sobolev inequality.

Solution: Equation (∗∗) states that F (t) ≤ F (0), implying F ′(0) ≤ 0. Since p(0) = 2 and p′(0)/p(0)2 =
1/2, we get

1

2
Ent[f2] ≤ 〈Lf, f〉 = Inf[f ].

4. Hypercontractivity follows from log Sobolev:
(a) Show that for all a, b ≥ 0 and p ≥ 2,

(ap−1 − bp−1)(a− b) ≥ 4(p− 1)

p2
(ap/2 − bp/2)2.

Hint: Justify and use the inequality ( 1
a−b

∫ a

b
tp/2−1 dt)2 ≤ 1

a−b
∫ a

b
tp−2 dt for a > b ≥ 0.

Solution: The inequality in the hint follows from the Cauchy–Schwartz inequality. Calculating the
integrals explicitly, we get

1

(a− b)2
4

p2
(ap/2 − bp/2)2 ≤ 1

a− b
1

p− 1
(ap−1 − bp−1).

Rearrangement gives the inequality.

(b) Show that for p ≥ 2, 〈Lif, Li(f
p−1)〉 ≥ 4(p−1)

p2 〈Li(f
p/2), Li(f

p/2)〉, and deduce 〈Lf, fp−1〉 ≥ 4(p−1)
p2 〈Lfp/2, fp/2〉.

Solution: We have

〈Lif, Li(f
p−1)〉 =

1

4
E[(f(x)− f(x⊕ i))(f(x)p−1 − f(x⊕ i)p−1)]

≥ 4(p− 1)

p2
1

4
E[(f(x)p/2 − f(x⊕ i)p/2)2]

=
4(p− 1)

p2
〈Li(f

p/2), Li(f
p/2)〉.

This shows the first inequality. The second follows from 1(a).

(c) Show that the log Sobolev inequality implies that F ′(t) ≤ 0 (see previous exercise), and deduce (∗∗).
Solution: The log Sobolev inequality shows that

p′(t)

p(t)2
Ent[(Te−tf)p(t)] =

2(p(t)− 1)

p(t)2
Ent[(Te−tf)p(t)] ≤ 4p(t)− 1

p(t)2
Inf[(Te−tf)p(t)/2].

Now 1(b) shows that

4p(t)− 1

p(t)2
Inf[(Te−tf)p(t)/2] =

4p(t)− 1

p(t)2
〈L(Te−tf)p(t)/2, (Te−tf)p(t)/2〉 ≤ 〈LTe−tf, (Te−tf)p(t)−1〉.

In view of 3(b), this shows that F ′(t) ≤ 0. In particular, F (t) ≤ F (0) for all t ≥ 0, which is just a
restatement of (∗∗).
5. Independent proof of log Sobolev:
(a) Let g(t) = 2t2 − Ent[(1 + tx1)2] (here n = 1). Show that g(0) = g′(0) = 0 and g′′(t) ≥ 0 for |t| < 1,
and deduce that g(t) ≥ 0 for all |t| ≤ 1.

Solution: We can write explicitly

g(t) = 2t2 − (1 + t)2 log(1 + t)− (1− t)2 log(1− t) + (1 + t2) log(1 + t2)

g′(t) = 4t+ 2t log
1 + t2

1− t2
+ 2 log

1− t
1 + t

g′′(t) =
4t2

t2 + 1
+ 2 log

1 + t2

1− t2
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The last expression is clearly non-negative for |t| < 1. This shows that g′(t) ≤ 0 for t ≤ 0 and so
g(t) ≥ g(0) for t ≤ 0, and similarly g′(t) ≥ 0 for t ≥ 0 implying g(t) ≥ g(0) for t ≥ 0. This shows that
g(0) ≤ g(t) for all |t| ≤ 1.

(b) Deduce the log Sobolev inequality for n = 1. Hint: replace f by |f |/E[|f |].
Solution: According to 2(b),2(d), we can assume that f is non-negative and E[f ] = 1. Since E[f ] = 1,
f has the form f(x) = 1 + tx. Since f ≥ 0, |t| < 1. The log Sobolev inequality follows from g(t) ≥ 0.

(c) Show that for any two functions f, g on {−1, 1}n we have(√
E[f2]−

√
E[g2]

)2
≤ E[(f − g)2].

Solution: This is a simple application of the Cauchy–Schwartz inequality:

(
√
E[f2]−

√
E[g2])2 = E[f2] + E[g2]− 2

√
E[f2]E[g2] ≤ E[f2] + E[g2]− 2E[fg] = E[(f − g)2].

(d) Deduce the general log Sobolev inequality. Hint: use induction on n, employing the one-dimensional
log Sobolev inequality in the inductive step.

Solution: Let f+(x1, . . . , xn) = f(x1, . . . , xn, 1) and f−(x1, . . . , xn) = f(x1, . . . , xn,−1). Assume induc-
tively that (∗) holds for f+, f−. Then

Ent[f2] =
1

2
E[f2+ log(f2+)] +

1

2
E[f2− log(f2−)]−

E[f2+] + E[f2−]

2
log

E[f2+] + E[f2−]

2

=
1

2
Ent[f2+] +

1

2
Ent[f2−] +

1

2
E[f2+] logE[f2+] +

1

2
E[f2−] logE[f2−]−

E[f2+] + E[f2−]

2
log

E[f2+] + E[f2−]

2
.

We can bound the first two terms by induction. For the remaining terms, define h(1) =
√
E[f2+] and

h(−1) =
√
E[f2−], so that the remaining terms are Ent[h2]. Using one-dimensional log Sobolev inequality

to bound these terms, we obtain

Ent[f2] ≤ Inf[f+] + Inf[f−] + 2 Inf[h] = Inf[f+] + Inf[f−] +

√
E[f2+]−

√
E[f2−]

2

≤ Inf[f+] + Inf[f−] +
E[(f+ − f−)2]

2
.

Finally,

2 Inf[f ] = 2

n∑
i=1

Infi[f ] + 2 Infn+1[f ] = Inf[f+] + Inf[f−] +
E[(f+ − f−)2]

2
.

This completes the proof.
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