
Analysis of Boolean functions

Yuval Filmus

January 24, 2016

Contents

1 Basics (21 October 2015) 3
1.1 Property testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 More basic notions (28 October 2015) 7
2.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Biased Fourier expansion (4 November 2015) 12
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1 Basics (21 October 2015)

(Roughly [O’D14, Chapter 1].)
Analysis of Boolean functions studies Boolean functions by treating them as real-valued functions that

happen to be Boolean. The main tool is Fourier analysis. In computer science and electrical engineering
it is more usual to encounter Fourier analysis on Zn or on the real line. In contrast, here the relevant
group is Zn2 , which is a product space, and the flavor of the subject is quite different.

The most popular object of study in the area is a Boolean function on the Boolean cube, f : {0, 1}n →
{0, 1}. Sometimes it will be nicer to change the domain to {1,−1}n and/or the range to {−1, 1}. Where
does the Boolean function come from? It can be a function computed by some circuit. Or it could be
a family of sets, a voting scheme or some graph property. It could also be a probablistically checkable
proof.

An excellent reference on the field is the recent monograph by Ryan O’Donnell [O’D14]. The library
should have two copies of this book.

Fourier expansion It is somewhat nicer to consider functions on {1,−1}n rather than on {0, 1}n.

Claim 1. Every function f : {1,−1}n → R has a unique representation as a multilinear polynomial.

We will provide two proofs of this claim, which is the basis for everything that follows.

Proof. Let t1, . . . , tn ∈ {1,−1}n, and consider the function

δt(x) =

n∏
i=1

1 + tixi
2

.

It’s not too hard to check that δt(t) = 1, and δt(x) = 0 everywhere else. This easily implies that every
function f : {1,−1}n → R can be represented as a multilinear polynomial.

To show that this representation is unique, let us show that the only multilinear polynomial that
vanishes on {1,−1}n is the zero polynomial. The proof is by induction on n. The result is true for n = 0.
Suppose that it’s true for some n, and consider some representation P of zero. Write

P = xn+1Q+R,

where Q,R are multilinear polynomials over x1, . . . , xn. The induction hypothesis shows that R + Q
and R −Q are both the zero polynomials. This implies that R = Q = 0, and so P = 0 is also the zero
polynomial.

The unique representation of f as a multilinear polynomial is known as the Fourier expansion of f :

f =
∑
S⊆[n]

f̂(S)χS .

Here χS(x) =
∏
i∈S xi is known as a Fourier character of Fourier basis vector (it is indeed a multiplicative

character of the group Zn2 ). When the domain is {0, 1}n instead of {1,−1}n, the Fourier character is
given by χS = (−1)

∑
i∈S xi .

Degree The degree of f is the degree of its multilinear representation. There is also a spatial inter-
pretation of degree: it is the minimum d such that f can be written as a linear combination of d-juntas
(functions depending on d coordinates). Indeed, on one hand, χS is an |S|-junta, and on the other, any
d-junta has degree d.

Boolean functions of degree d. Suppose we have a Boolean function of degree d, say from {−1, 1}n
to {−1, 1}. On how many variables can the function depend? (A function f depends on a variable xi if
there is a pair of inputs x, y differing only in the ith coordinate such that f(x) 6= f(y).) Let N(d) denote
the maximal number of such variables for unbounded n, which turns out to be finite. It is easy to see
that N(0) = 0.
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A bit harder is seeing that N(1) = 1. First of all, the function f(x1) = x1 shows that N(1) ≥ 1. In

the other direction, let us consider a general degree 1 function f . I claim that f̂({i}) 6= 0 for at most

one index i. For suppose that f̂({i}), f̂({j}) 6= 0 for i 6= j. By substituting values for all other variables,
we can assume without loss of generality that i = 1, j = 2 and n = 2. The function is then

f = f̂(∅) + f̂({1})x1 + f̂({2})x2.

We now have to consider several cases, according to the signs of f̂({1}), f̂({2}). All cases are similar, so
let us consider the case that both are positive. This implies that

f(−1,−1) < f(−1,+1) < f(+1,+1),

which contradicts the fact that f is Boolean.
What about N(d) for general d? At first one might conjecture that N(d) = d, but in fact N(d) is

much larger. The following construction shows that N(d) ≥ 2d− 1. We consider a decision tree of depth
d, where at each internal node we have a variable dictating which way to go, and each leaf contains the
desired output variable. (A more common example with only 2d−1 + d − 1 variables is the addressing
function, in which all internal nodes at a given depth are assigned the same variable.) We can take all
variables to be distinct, and the result is a Boolean function of degree d depending on 2d − 1 variables
(try it out!).

This construction is not optimal. For example, for d = 2 we can show that N(d) ≥ 4 by considering
the function

a(x+ y) + b(x− y)

2
.

If a = b then the value of this function is ax, and otherwise it is ay; this shows that the function is
Boolean. This construction turns out to be optimal, so that N(d) = 4. Indeed, using influences one
can show the upper bound N(d) ≤ d2d−1. The asymptotic value of N(d) isn’t known. Perhaps you can
determine it?

Levels of the Fourier expansion We partition the set of Fourier coefficients according to the size
of the set S. All coefficients f̂(S) for |S| = k form level k of the Fourier expansion, and we collect them
together in

f=k =
∑
|S|=k

f̂(S)χS .

Written out, all monomials in the multilinear representation of f=k have the same degree k, and so f=k

is homogeneous. Clearly

f =

n∑
k=0

f=k,

and this coarse decomposition suffices in many cases, though not when we discuss specific coordinates.
Similar self-explanatory notations are f<k, f≤k, f>k, f≥k.

Orthonormality We define an inner product on the space of functions from {1,−1}n → R by

〈f, g〉 = E
x

[f(x)g(x)] =
1

2n

∑
x∈{1,−1}n

f(x)g(x).

Under this inner product, it is easy to check that each χS has unit norm, simply since χ2
S ≡ 1. What

about the inner product between χS and χT when S 6= T? It is

〈χS , χT 〉 = E
x

[∏
i∈S

xi
∏
i∈T

xi

]
= E

x

 ∏
i∈S4T

xi

 = E
x

[χS4T (x)].

Since S 6= T , there is some i ∈ S4T , and so

〈χS , χT 〉 = E
xi

[
xi E

x−i

[
χ(S4T )\i(x)

]]
= 0.
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(Here x−i consists of all variables except xi.) So the different characters are orthogonal (this is actually
true in every group). In particular, they are linearly independent. Since there are 2n of them, and the
dimension of the space of functions {1,−1}n → R is also 2n, we deduce that the Fourier characters form
an orthonormal basis for this space. This is another proof of Claim 1.

Consequences of the orthonormality of characters The orthonormality of characters immediately
implies an important identity, known as Parseval’s identity:

〈f, g〉 =
∑
S,T

f̂(S)ĝ(T )E[χSχT ] =
∑
S

f̂(S)ĝ(S).

In particular, we get an expression for the L2 norm of f :

E
x

[f(x)2] = ‖f‖2 = 〈f, f〉 =
∑
S

f̂(S)2.

Orthonormality of characters also implies a formula for the individual Fourier coefficients:

〈f, χU 〉 =
∑
S

f̂(S)〈χS , χU 〉 = f̂(U).

In particular, since χ∅ = 1, we get that f̂(∅) = E[f ]. This implies that

V[f ] = E[f2]− E[f ]2 =
∑
S 6=∅

f̂(S)2.

Orthonormality also implies formulas of the style

‖f‖2 =

n∑
k=0

‖f=k‖2.

Linearity A function f : {±1}n → {±1} is linear if f(xy) = f(x)f(y). (This is a piece of terminology
we will only use in this lecture.) Here xy is given by (xy)i = xiyi; in the {0, 1} world this corresponds
to XOR. It is easy to check that every Fourier character is linear. It is not too difficult to see that the
converse also holds. First, f(1) = f(1)2 = 1. This implies that f(x) =

∏
xi=−1 f(ei), where ei is the

vector which is −1 only in coordinate i. We conclude that f = χS , where S = {i : f(ei) = −1}.

1.1 Property testing

Already at this stage, we can present an application of Fourier analysis, to property testing. The goal
in property testing is to decide whether a given function f satisfies a given property using a few random
samples of f . We would like the tester to say YES with high probability if f satisfies the property, and to
say NO with high probability if f doesn’t satisfy it. However, this is usually too much to ask. Consider
the property of being linear. Given a linear function f , if we change f at a few places then it stops being
linear, but any property tester reading just a few values of f has very small chance of noticing. In order
to fix that, we change our requirements:

• If f satisfies the property, then the property tester always answers YES.

• If f is ε-far from every function satisfying the property, then the property tester answers NO with
constant probability. (The probability itself can be enhanced by repetition.)

Blum–Luby–Rubinfeld A natural tester for linearity samples x, y ∈ {±1}n at random, and checks
that f(xy) = f(x)f(y). This tester always answers YES if f is linear. What happens if f is far from
linear? To analyze this, we first find an expression for the success probability of the tester on an arbitrary
function f :

σ = E
x,y

[
1 + f(x)f(y)f(xy)

2

]
.
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What is this expression equal to?

E
x,y

[f(x)f(y)f(xy)] =
∑
S,T,U

f̂(S)f̂(T )f̂(U) E
x,y

[χS(x)χT (y)χU (xy)].

Since χU is linear,
E
x,y

[χS(x)χT (y)χU (xy)] = E
x

[χS(x)χU (x)]E
y
[χT (y)χU (y)].

This vanishes unless S = U = T , and so

E
x,y

[f(x)f(y)f(xy)] =
∑
S

f̂(S)3.

Therefore

σ =
1

2
+

1

2

∑
S

f̂(S)3.

Suppose that the tester succeeds with probability 1/2+ε for some ε > 0. This implies that
∑
S f̂(S)3 =

2ε. On the other hand, ∑
S

f̂(S)3 ≤
(

max
S

f̂(S)
)∑

S

f̂(S)2 = max
S

f̂(S).

Therefore there exists some S such that f̂(S) ≥ 2ε. In other words, 〈f, χS〉 ≥ 2ε. Now

Pr[f = χS ] = E
[

1 + fχS
2

]
=

1

2
+

1

2
〈f, χS〉 ≥

1

2
+ ε,

and so f is (1/2− ε)-close to a linear function.
Stated differently, if f is ε-far from a linear function, then the tester succeeds with probability at

most 1/2 − ε, and so fails with probability at least 1/2 + ε. By repeating it 1/ε times, we get a tester
which samples the function at O(1/ε) points and makes an error with some constant probability.

This analysis is due to Bellare, Coppersmith, H̊astad, Kiwi and Sudan [BCH+96]. The original anal-
ysis of Blum, Luby and Rubinfeld [BLR93] was combinatorial. Recently a new combinatorial argument
was worked out by David, Dinur, Goldenberg, Kindler, and Shinkar [DDG+15].
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2 More basic notions (28 October 2015)

(Roughly [O’D14, Chapter 2], additionaly covering Section 3.4 and perhaps Section 3.5.)

Influence Given a Boolean function f , how important is the input xi? This notion is captured by a
quantity called the influence:

Infi[f ] = Pr
x

[f(x) 6= f(x⊕ ei)].

What does this have to do with Fourier analysis? There is a different way of writing the same formula,
which works when the function f is {±1}-valued (a very similar formula works for {0, 1}-valued functions):

Infi[f ] =
1

4
E
x

[(f(x)− f(x⊕ ei))2].

As a bonus, this definition makes sense even for non-Boolean functions. Why did we choose (f(x) −
f(x ⊕ ei))

2 over, say, |f(x) − f(x ⊕ ei)|? Since our definition facilitates the use of Fourier analysis.
We can define the derivative in direction i of a function f by (Lif)(x) = f(x) − f(x ⊕ ei), and then
Infi[f ] = (1/4)‖Lif‖2. We use the notation Lif since the Laplacian of f , an important quantity in
spectral graph theory that (might) show up later, is given by Lf =

∑
i Lif .

In order to compute the Fourier expansion of Lif , let us start by computing the Fourier expansion of
f(x⊕ ei). If f(x) =

∑
S f̂(S)χS(x) then f(x⊕ ei) =

∑
S f̂(S)χS(x)χS(ei), and so the Fourier coefficient

of S is f̂(S)χS(ei). Therefore the Fourier expansion of Lif is

Lif =
∑
S

f̂(S)(1− χS(ei))χS = 2
∑
S3i

f̂(S)χS .

Parseval’s identity immediately shows that

Infi[f ] =
1

4
‖Lif‖2 =

∑
S3i

f̂(S)2.

This very neat formula will be very useful in the future.
A related notion is the total influence, given by

Inf[f ] =
∑
i

Infi[f ].

If f is a Boolean function that encodes some set A ⊆ 2[n], then the total influence measures the edge-
perimeter of A. The edge-perimeter of A, written ep(A), is the number of edges of the Boolean hypercube
whose one end is in A, and whose other end is in A (those are called bichromatic edges). The relation is
Inf[f ] = ep(A)/2n. If f depends on d coordinates then clearly Inf[f ] = ep(A)/2n ≤ d, since only edges
in these directions can be bichromatic. A stronger bound is in fact true: Inf[f ] ≤ deg f . This is due to
the spectral formula for Inf[f ], which we obtain directly from the formulas for Infi[f ]:

Inf[f ] =
∑
S

|S|f̂(S)2.

If deg f ≤ d then we can bound |S| ≤ d and so Parseval’s identity shows that Inf[f ] ≤ d. Another

easy inequality is V[f ] ≤ Inf[f ], since V[f ] sums f̂(S)2 over all non-zero |S|. Altogether, we get the
double-sided Poincaré inequality:

V[f ] ≤ Inf[f ] ≤ (deg f)V[f ].

(In fact, only the lower bound V[f ] ≤ Inf[f ] should be called Poincaré’s inequality.)
An alternative formula for Inf[f ] is

Inf[f ] =

n∑
d=0

d‖f=d‖2.

This shows that Inf[f ] only depends on the weight distribution of the Fourier expansion on the various
levels.
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L1 influences What about the alternative definition Inf
(1)
i [f ] = 1

2 Ex[|f(x) − f(x ⊕ ei)|]? In this

case we know that if ‖f‖∞ ≤ 1 and deg f = d then Inf(1)[f ] ≤ min(d2, n) (see [FHKL]), but it is

conjectured that in fact Inf(1)[f ] ≤ d.

The upper bound Inf(1)[f ] ≤ n is trivial. The other upper bound Inf(1)[f ] ≤ d2 relies on a general-
ization of the classical Markov’s inequality from approximation theory. Markov’s inequality states that
if f is a univariate polynomial of degree d satisfying |f(x)| ≤ 1 for all |x| ≤ 1 then |f ′(x)| ≤ d2 for all
|x| ≤ 1; the maximum is attained by the Chebyshev polynomials at the point x = 1 (among else).

Using the classical inequality itself, one gets the slightly weaker upper bound of 2d2, which is what
we show here. We actually show that at each point x, 1

2

∑
i |f(x)− f(x⊕ ei)| ≤ 2d2; for convenience we

focus on the point x = 1. Let S = {i : f(x) ≥ f(x⊕ ei)}. Then

1

2

∑
i

|f(x)− f(x⊕ ei)| =
1

2

∑
i∈S

[f(x)− f(x⊕ ei)]−
1

2

∑
i/∈S

[f(x)− f(x⊕ ei)].

We will bound both terms by d2. In fact, for every S we will bound 1
2

∑
i∈S [f(x) − f(x ⊕ ei)] by d2

in absolute value. (The generalization of Markov’s inequality allows us to bound both terms at once.)
Calculation along the lines above gives

1

2

∑
i∈S

[f(x)− f(x⊕ ei)] =
∑
T

|T ∩ S|f̂(T )χT (x).

In particular, at the point x = 1 we get

1

2

∑
i∈S

[f(1)− f(1⊕ ei)] =
∑
T

|T ∩ S|f̂(T ).

Consider now the function g(y) = f(

S︷︸︸︷
y ,

S︷︸︸︷
1 ). Easy calculation shows that g′(1) is exactly the quantity

we wish to bound. In view of Markov’s inequality, we can deduce that |g′(1)| ≤ d2 if we can show that
|g(y)| ≤ 1 for all |y| ≤ 1. In fact, more is true: |f(x)| ≤ 1 for all x ∈ [−1, 1]n, since f is multilinear and
so obtains its optima at endpoints of the cube. Indeed, consider any point x ∈ [−1, 1]n. As a function
of x1 (fixing all other variables), f is of the form f(x1) = αx1 + β, and so attains its maximum and
minimum on one of the endpoints. Repeating the same argument n−1 more times, we see that f attains
its optimal at endpoints, and so f([−1, 1]n) ⊆ [−1, 1].

Nisan–Szegedy The notion of influences allows us to prove a theorem of Nisan and Szegedy [NS94]:
a Boolean function f of degree d depends on at most d2d−1 variables. We do this by showing that if f
depends on a variable xi then Infi[f ] ≥ 1/2d−1. Since the total influence of f is at most d, it follows
that f depends on at most d2d−1 variables.

To prove this claim, we first prove a version of the Schwartz–Zippel lemma (called Schwartz’s lemma
by Nisan and Szegedy) for the Boolean cube: Let f : {−1, 1}n → R be a non-zero function of degree d.
Then f has at least 2n−d non-zeroes. The proof is by induction on n and d (technically, the induction is
on n + d). When n = d the result is clear. Consider now some n > d, and write f = xng + h. We now
have to consider three cases:

1. Case 1: g + h = 0. In this case we can write f = (xn − 1)g, where deg g ≤ d − 1 is non-zero. By
induction we known that over the cube {−1, 1}n−1, g has at least 2(n−1)−(d−1) = 2n−d non-zeroes.
These correspond to 2n−d non-zeroes of f .

2. Case 2: −g + h = 0. In this case we can write f = (xn + 1)g, and reason as in case 1.

3. Case 3: Both g+h and −g+h are non-zero. In that case by induction we know that each of these
have at least 2n−1−d non-zeroes, and we obtain at least 2n−d non-zeroes of f .

Recall that Infi[f ] = 1
4‖Lif‖

2 = Pr[Lif 6= 0]. While Lif itself has degree d, it is divisible by xi, and
in fact Pr[Lif 6= 0] = Pr[(Lif)/xi 6= 0]. Since (Li)f/xi has degree d − 1, Schwartz’s lemma shows that
either (Lif)/xi = 0 or Pr[(Lif)/xi 6= 0] ≥ 1/2d−1, completing the proof.
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Noise stability Another useful basic notion is that of noise stability, which measures how sensitive a
given function is to noise applied to its inputs. Given a vector x, define a vector y by taking yi = xi
with probability 1+ρ

2 and yi = −xi with probability 1−ρ
2 (where ρ ∈ [−1, 1]). We denote this distribution

Nρ(x), and define the noise operator Tρ by

(Tρf)(x) = E
y∼Nρ(x)

[f(y)].

What happens if we apply the noise operator to a Fourier character? Let’s start with a simple example,
the function f = χi:

Tρχi =
1 + ρ

2
(xi) +

1− ρ
2

(−xi) = ρxi.

More generally, TρχS = ρ|S|χS , and so

Tρf =
∑
S

ρ|S|f̂(S)χS =
∑
d

ρdf=d.

Applying noise reduces the higher-order parts of f more heavily than it does the lower-order parts.
A simple calculation reveals the following connection between Tρ and total influence:

Inf[f ] =

∥∥∥∥∂Tρfρ (ρ = 1)

∥∥∥∥2

.

In the future, we will be interested in expressions of the form

〈Tρf, g〉 = E
x

E
y∼Nρ(x)

[f(x)g(y)] = E
(x,y)∼Nρ

[f(x)g(y)].

Here Nρ is a pair of ρ-correlated inputs: each of the marginals is uniform, and E[xiyi] = ρ. Note that
the relation between x and y is symmetric: if we take y as uniformly random and x ∼ Nρ(y) then we
obtain the same distribution. (This means that the operator Tρ is self-adjoint.)

2.1 Learning

PAC learning is a central area in computational complexity. Initiated by Lesley Valiant, it attempts to
model the same situations encountered in practice in the discipline of machine learning. Learning has
very close ties to the subject of our course, but we will only touch it briefly.

Consider the following situation. There is a function f , which is given to us as a blackbox. We also
know that f belongs to some concept class F . Our task is to come up with a function g which is close to
f . In order to do that, we are given access to random samples of the function f . Our goal is to design an
algorithm that makes as few samples as possible, and efficiently generates a function g which is ε-close
to f , where ε is a parameter. Our algorithm is allowed to fail, but we require that it succeed with high
probability (or at least large constant probability).

Fourier learning Many concept classes satisfy a property known as Fourier concentration, in which
there are only a few Fourier coefficients which are “significant”. We say that the Fourier expansion of a
function f : {−1, 1}n → {−1, 1} is ε-concentrated on the set of coefficients E if∑

S∈E
f̂(S)2 ≥ 1− ε.

In words, all but an ε-fraction of the Fourier weight resides in the set of coefficients E . A concept class
is ε-concentrated on E if all functions in the concept class satisfy the condition.

Theorem 1. Suppose that a concept class F is ε-concentrated on E. Then F can be efficiently learned
up to an error of ε using Õ(|E|/ε) samples.

To prove the theorem, we need to use the ubiquitous Chernoff bound, in the following form. Suppose
that X1, . . . , Xm are independent random variables such that Xi ∈ [a, b], and let X̄ be their mean. Then
for all t ≥ 0,

Pr[|X̄ − E[X̄]| ≥ t] ≤ 2e−2mt2/(b−a)2

.
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Proof. The idea is to estimate f̂(S) for all S ∈ E . How do we do that? Given m samples (x, f(x)), we
calculate an approximation f̃(S) by taking the empirical average of f(x)χS(x). Chernoff’s bound states
that

Pr[|f̃(S)− f̂(S)| > δ] ≤ 2e−mδ
2/2.

Choose δ2 = ε/|E| and m = 2|E| log(10|E|)/ε. Calculation shows that with constant probability, |f̃(S)−
f̂(S)| ≤ δ for all S ∈ E . For the rest of the proof, suppose that this event happens.

Define h =
∑
S∈E f̃(S)χS . We have

‖h− f‖2 =
∑
S∈E

(f̃(S)− f̂(S))2 +
∑
S/∈E

f̂(S)2 ≤ 2ε.

This is great, but there is one problem: h is not a Boolean function! Fortunately, this is easy to fix.
Let g = sgnh. What can we say about ‖f −g‖2? Consider a specific point x, and suppose that h(x) ≥ 0,
so that g(x) = 1. If f(x) = 1 then |g(x) − f(x)| ≤ |h(x) − f(x)|. If f(x) = −1 then |g(x) − f(x)| = 2
while |h(x)− f(x)| ≥ 1. Either way, |g(x)− f(x)| ≤ 2|h(x)− f(x)|, and so ‖f − g‖2 ≤ 8ε.

Finally, notice that ‖f − g‖2 = E[(f − g)2] = 8 Pr[f 6= g], and so Pr[f 6= g] ≤ 2ε.

Learning monotone functions As a sample application, we’ll show how to learn monotone functions.
These are functions such that x ≤ y implies f(x) ≤ f(y), and are popular in computational complexity.
If f is monotone, then

Infi[f ] = Pr[f(x) 6= f(x⊕ei)] = Pr
x−i

[f(x−i, 1) = 1, f(x−i,−1) = −1] =
1

2
E
x−i

[f(x−i, 1)−f(x−i,−1)] = f̂({i}).

What is the maximal total influence that a monotone function can have?

Inf[f ] =

n∑
i=1

f̂({i}) = E
x

[f(x)(x1 + · · ·+ xn)].

Clearly this expression is maximized when f(x) = sgn(x1 + · · · + xn) (the majority function), in which
case it is

Inf[f ] ≤ E[|x1 + · · ·+ xn|] = O(
√
n).

Where did we get this last estimate? The central limit theorem shows that x1 + · · · + xn is close to a
normal distribution with zero mean and variance n. Dividing by

√
n, we get that x1+···+xn√

n
is close to a

standard Gaussian, and so the expectation of x1 + · · ·+ xn should scale like
√
n. The constant can also

be calculated if we really care. We will discuss more how to formalize this argument later in the course
(we can also just use the central limit theorem directly).

How does a bound on the influence imply spectral concentration? Let S be a random variable with
Pr[S = S] = f̂(S)2 (S is known as the spectral sample). Then Inf[f ] = E[|S|], and so Pr[|S| > Inf[f ]/ε] <
ε. In other words, ∑

|S|>Inf[f ]/ε

f̂(S)2 < ε.

We deduce that monotone functions are ε-concentrated on Fourier coefficients of degree O(
√
n/ε). The-

orem 1 thus implies that they can be ε-learned using Õ(nO(
√
n/ε)/ε) samples. This may not look like

much, but it is better than the trivial Õ(2n) coupon-collectors bound.

Goldreich–Levin algorithm So far we have considered learning from random samples. Another
popular model of learning is learning by queries. In this model, we can query particular values of the
function f . This model comes up naturally in cryptography, and it was in this context that Goldreich
and Levin came up with their algorithm. Previously we have shown how to test that a function is linear.
Suppose that f is close to linear. We know that it must be close to some character. Can we find this
character? The Goldreich–Levin algorithm acomplishes just that, and more: it can find all significant
Fourier coefficients.
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The idea is to do some sort of binary search. To that end, for J ⊆ [n] and x ∈ {−1, 1}J , define

f |J=x(y) = f(x, y) to be a function {−1, 1}J → {−1, 1}. What is the Fourier expansion of fJ=x? For
T ⊆ J ,

E
y
[fJ=x(y)χT (y)] =

∑
S

f̂(S)χS∩J(x)E[χS∩J(y)χT (y)] =
∑

S∩J=T

f̂(S)χS∩J(x).

Written differently,

f̂J=x(T ) =
∑
U⊆J

f̂(T ∪ U)χU (x).

Squaring:

f̂J=x(T )2 =
∑

U,V⊆J

f̂(T ∪ U)f̂(T ∪ V )χU (x)χV (x).

Taking expectation over x:

E
x

[f̂J=x(T )2] =
∑

U,V⊆J

f̂(T ∪ U)f̂(T ∪ V )E[χU (x)χV (x)] =
∑
U⊆J

f̂(T ∪ U)2.

As before, we can estimate this quantity for all T, J by sampling, say using the formula Ex,y,z[f(x, y)f(x, z)χT (yz)].

Suppose one Fourier coefficient dominates the Fourier expansion of f , say f̂(S)2 ≥ 2/3. At the first
step, we find out whether n ∈ S or n /∈ S. How do we do that? Choosing J = {1, . . . , n − 1} and
T = ∅, {n}, we estimate

σ0 =
∑
n/∈S

f̂(S)2, σ1 =
∑
n∈S

f̂(S)2.

If (say) n ∈ S, then by taking enough samples, it will be extremely likely that σ0 < 1/2 < σ1, while if
n /∈ S, it will be extremely likely that σ1 < 1/2 < σ0. We can therefore determine whether n ∈ S, and
continuing this way we recover all of S.

A simple modification of this algorithm (left to the reader) finds all 1/τ2 (or less) Fourier coefficients
which are at least τ in magnitude.
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3 Biased Fourier expansion (4 November 2015)

(Roughly [O’D14, Section 8.4] and parts of [Fri08].)

The idea The classical Fourier basis makes sense when we are interested in properties of function
f : {−1, 1}n → {−1, 1} under the uniform distribution. However, in many cases we are actually interested
in a different distribution, namely the µp distribution. It is nicer to consider this distribution as a
distribution over {0, 1}n, or over subsets of [n]. The distribution µp is given by

µp(S) = p|S|(1− p)n−|S|.

When p = 1/2, we recover the uniform distribution. There is also a simple generative model: to generate
a set according to µp, put each element inside with probability p. Stated differently, we generate a vector
in {0, 1}n by taking each coordinate independently to be a Bernoulli p random variable.

Where does µp come up? Random graphs. Percolation. Extremal combinatorics. And even computer
science!

Biased characters One important property of the Fourier basis is that if a function f depends only
on the coordinates in a set J , then its Fourier expansion is concentrated in coefficients S ⊆ J . Another is
that the basis is orthonormal. It turns out that these properties determine the Fourier characters almost
uniquely (up to sign). (It is a special case of a more general expansion, the Efron–Stein decomposition.)

What is the corresponding basis for µp? It’s instructive to consider the case n = 1 first. We are
looking for two elements, ω∅ and ω{1}, that form an orthonormal basis, and furthermore ω∅ is constant
(due to the “junta” property). This forces ω∅ ≡ 1 (up to sign). What about ω{1}? Suppose ω{1}(0) = α
and ω{1}(1) = β. Then (1 − p)α2 + pβ2 = 1 (unit norm) and (1 − p)α + pβ = 0 (orthogonality). The

latter implies that α = −p
1−pβ, and so

(1− p) p2

(1− p)2
β2 + pβ2 = 1 =⇒ p2 + p(1− p)

1− p
β2 = 1 =⇒ β2 =

1− p
p

.

Therefore β = ±
√

1−p
p and α = ∓

√
p

1−p . We choose the solution ω{1}(0) =
√

p
1−p and ω{1}(1) = −

√
1−p
p

so that when p = 1/2, we get the usual Fourier basis (under the mapping 0 7→ 1, 1 7→ −1).
How do we extend this basis to many coordinates? Tensorisation! With some abuse of notation, we

define

ωS(x1, . . . , xn) =

n∏
i=1

ωS∩{i}(xi).

Why does this work? Let’s calculate E[ωSωT ]:

E[ωSωT ] =

n∏
i=1

E
xi

[ωS∩{i}(xi)ωT∩{i}(xi)].

Note that the individual coordinates xi also have the measure µp (this is because µp is a product measure).
Therefore if S = T then we get E[ω2

S ] = 1, whereas if i ∈ S4T then Exi [ωS∩{i}(xi)ωT∩{i}(xi)] = 0 and
so E[ωSωT ] = 0. So the ωS are an orthonormal basis with respect to µp!

It is also pretty clear that ωS satisfies the junta property. Therefore ωS is the basis we were after.
While the basis ωS satisfies some properties of the Fourier basis (which we use below), it lacks others.
For example, the “characters” ωS are no longer multiplicative! So we have to be careful.

Influence and noise stability We can extend the definitions of influence and noise stability. Out of
the several possible normalizations, the most convenient one for defining the influence is

Infi[f ] =
∑
S3i

f̂(S)2.

This is a spectral definition, and the corresponding spatial definition is

Infi[f ] = p(1− p)E[(f(x)− f(x⊕ ei))2].
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Indeed, let us compute the Fourier expansion of g = f |xi=1 − f |xi=0. If i ∈ S then it is easy to check
that ĝ(S) = 0 (indeed, g doesn’t depend on i). If i /∈ S then

ĝ(S) = E
x−i

[(f(x−i, 1)− f(x−i, 0))ωS(x−i)],

whereas

f̂(S ∪ {i}) = E
x−i

[
−
(
p

√
1− p
p

f(x−i, 1) + (1− p)
√

p

1− p
f(x−i, 0)

)
ωS(x−i)

]
= −

√
p(1− p)ĝ(S).

There is also a simpler formula for monotone Boolean f . Let g = f |xi=1 − f |xi=0. When f is
monotone, g2 = g, and so

Infi[f ] = p(1− p)E[g2] = p(1− p)E[g] = p(1− p)ĝ(∅) = −
√
p(1− p)f̂({i}).

For noise stability, we similarly choose the normalization satisfying

Tρf =
∑
S

ρ|S|f̂(S)ωS .

What is the corresponding spatial definition? Let yi = xi with probability ρ, and yi = zi ∼ µp with
probability 1 − ρ. This extends the previous definition, since when p = 1/2, we get that yi = x1

with probability ρ + (1 − ρ)/2 = (1 + ρ)/2. We claim that (Tρf)(x) = Ey[f(y)]. To check this, it is
enough to verify that the formula works for the characters ω∅ and ω{1} (why?). Clearly Tρω∅ = ω∅, and
(Tρω{1})(x) = ρω{1}(x) + (1− ρ)E[ω{1}(z)] = ρω{1}(x), due to orthogonality of characters.

Russo–Margulis Let f : {0, 1}n → {0, 1} be a Boolean function. How does the measure of f change
with respect to p? To find the answer, express f as a multilinear polynomial in x1, . . . , xn. Recall that
one way of showing that such a representation exists is using the formula

f(x) =
∑
y

f(y)δy(x), δy(x) =

n∏
i=1

{
1− xi yi = 0,

xi yi = 1.

This shows that
f(p, . . . , p) =

∑
y

f(y)δy(p, . . . , p) =
∑
y

f(y)µp(y) = E
µo

[f ].

We are going to calculate ∂f
∂xi

. Since f is multilinear, it is easy to check that

∂f

∂xi
(x−i) = f(x−i, 1)− f(x−i, 0).

Indeed, a monomial not depending on xi just vanishes, and a monomial of the form xim turns to
m− 0 = m. Now, we have already seen this formula: it is the function g from above! So

E
µp

[
∂f

∂xi

]
= E
µp

[g] = ĝ(∅) = − 1√
p(1− p)

f̂p({i}),

where f̂p signifies which Fourier expansion we are talking about. Applying the chain rule,

∂

∂p
E
µp

[f ] =
∂

∂p
f(p, . . . , p) =

n∑
i=1

∂f

∂xi
(p, . . . , p) =

n∑
i=1

E
µp

[
∂f

∂xi

]
= − 1√

p(1− p)

n∑
i=1

f̂p({i}).

When f is furthermore monotone and Boolean, we obtain the simple formula

∂

∂p
E
µp

[f ] =
Inf(p)[f ]

p(1− p)
=

n∑
i=1

Pr
x∼µp

[f(x) 6= f(x⊕ ei)].

We will see later on what the Russo–Margulis lemma is good for.
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3.1 Erdős–Ko–Rado

What is the µp Fourier basis good for? It allows a simple proof of a version of the Erdős–Ko–Rado
theorem [EKR61]. It’s not quite the classical version, but it’s definitely cleaner.

Let F be a family of subsets of [n]. We say that F is intersecting if whenever S, T ∈ F then S∩T 6= ∅.
How large can the measure of F be? If p > 1/2 then we can take all sets of size at least n/2 + 1. This
is an intersecting family, and the central limit theorem implies that its measure tends to 1 as p tends to
∞. So the problem is only interesting for p ≤ 1/2.

Can you think of a “large” intersecting family? One example is a star : all sets containing some point
i. A star has measure p. The Erdős–Ko–Rado theorem states that no family has larger measure, and
when p < 1/2, stars are the unique maximizers (when p = 1/2 there are other optimal families, such as
those intersecting [2t+ 1] in at least t+ 1 points).

Here is a magical spectral proof due to Friedgut. We will design a matrix A with the following
characteristics:

1. If f is the characteristic vector of an intersecting family then 〈f,Af〉p = 0 (here 〈f, g〉p =
Eµp [f(x)g(x)]). This is equivalent to (µpf)′Af = 0, where (µpf)(x) = µp(x)f(x).

2. The eigenvectors of A are the ωS .

We’ll see later why we want these properties; they had been identified previously by Hoffman and
Lovász. How do we find the matrix A? We solve the one-dimensional problem, and tensorise. Let B be
the matrix for n = 1:

B =

(
α β
γ 0

)
.

Note that at the corner we must have 0, to accommodate the intersecting family {1}. We can assume
without loss of generality that the eigenvalue corresponding to ω∅ is 1, and so α + β = 1 and γ = 1.
What about the other eigenvector? A vector

(
x y

)
is a multiple of ω{1} if (1 − p)x + py = 0. One of

the solutions is x = p, y = −(1− p), and so we must have

0 = (1− p)(pα− (1− p)(1− α)) + p2 = (1− p)α+ p2 − (1− p)2 = (1− p)α+ 2p− 1.

We conclude that α = 1−2p
1−p and so β = 1− α = p

1−p . Altogether,

B =

( 1−2p
1−p

p
1−p

1 0

)
.

What are the eigenvalues corresponding to ω∅ and ω{1}? We have already calculated λ∅ = 1, and it is

easy to see that λ = λ{1} = β
γ = − p

1−p .
Now that we have the matrix B, how do we form the matrix A? We use the tensor product con-

struction once again! This is sometimes known as the Kronecker product of matrices (illustrate on the
board). It is not hard to check that the eigenvectors and eigenvalues also tensorise — for the latter,
tensorization is just multiplication! So A = B⊗n (the n-fold tensor product of B) has ωS as eigenvector,

with eigenvalue λ|S|. This implies that Âf(S) = λ|S|f̂(S), and so if f is intersecting,

0 = 〈f,Af〉p =
∑
S

λ|S|f̂(S)2.

Note that λ|S| ≥ λ, since λ ≥ −1.
Suppose that f is the characteristic vector of a family F . It’s easy to check that f̂(∅) = µp(F). Since

f2 = f , we also have µp(F) = ‖f‖2 =
∑
S f̂(S)2. Therefore

0 = µp(F)2 +
∑
S 6=∅

λ|S|f̂(S)2 ≥ µp(F)2 + λ
∑
S 6=∅

f̂(S)2 = µp(F)2 + λ(µp(F)− µp(F))2.

Therefore µp(F)2 ≤ −λ(µp(F)− µp(F)2), and so (1 + λ)µp(F) ≤ −λ, implying

µp(F) ≤ −λ
1− λ

=

p
1−p

1
1−p

= p.

We got the bound we wanted!
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Uniqueness The proof is a bit long, but we can get more out of it. When p < 1/2, λ > −1, and so

µp(F) = p is possible only if all inequalities were strict, that is, if f̂(S) = 0 for |S| > 1. Therefore

f(x1, . . . , xn) = µp(F) +

n∑
i=1

ciω{i}(xi),

for some coefficients ci. Since f is Boolean, it’s easy to check that at most one ci can be non-zero. This
implies that f is a dictatorship.

Stability The big advantage of this proof is that it implies even more. Suppose that p < 1/2 and that

µp(F) ≥ p− ε. Then most of the Fourier weight should be concentrted on the Fourier coefficients f̂(S)
for |S| ≤ 1. In fact, one can calculate that all but an Op(ε)-fraction of the weight lies there. Therefore
f is Op(ε)-close to a dictatorship g, which however need not be Boolean! The fundamental theorem of
Friedgut, Kalai and Naor implies that f is Op(ε)-close to a Boolean dictatorship h, which must be a
star. So the only way that µp(F) can be close to p is if it’s close to an optimal family! This is known as
stability.

Katona’s proof There is a much simpler proof due to Katona [Kat72], using a method known as
Katona’s circle method. Take the unit circumference circle, and a window of length p sitting on it. Throw
n points randomly on the circumference. The set of points lying inside the window has distribution µp,
and so µp(F) is the probability that the set inside the window is in F .

We can generate the same distribution by throwing n points and then placing the window randomly on
the circumference. I claim that for any deterministic point locations, the measure of window locations
corresponding to sets in F is at most p, which immediately implies the bound µp(F) ≤ p. Indeed,
consider some placement of the window for which the contents is in F ; we call such a location a F-
location. Rotate it clockwise all the way while keeping it a F-location. Now rotate it counter-clockwise
all the way. Since F is intersecting, any two F-locations must intersect (as windows). This makes it
clear then when rotating the window counter-clockwise, we could have rotated it at most by p, since
beyond that the windows are disjoint. This completes the proof.

Uniform families The classical Erdős–Ko–Rado theorem is stated a bit differently. Let
(

[n]
k

)
be the

collection of all subsets of [n] = {1, . . . , n} of cardinality k. When k > n/2, all sets in
(

[n]
k

)
intersect. The

Erdős–Ko–Rado theorem states that when k ≤ n/2, an intersecting subfamily of
(

[n]
k

)
has cardinality at

most
(
n−1
k−1

)
, and this is attained for stars (when k < n/2, only for stars).

Dinur and Safra [DS05] showed how to derive the µp-version of the theorem from its uniform version.
Let p < 1/2, and let F be an intersecting family on n points. The idea is that we can view F also as an
intersecting family on N points for N > n. Taking N → ∞ will allow us to recover the theorem, using
the following calculation:

µp(F) =

N∑
k=0

pk(1− p)N−k
∣∣∣∣F ∩ ([N ]

k

)∣∣∣∣
≤
N/2∑
k=1

pk(1− p)N−k
(
N − 1

k − 1

)
+

N∑
k=N/2+1

pk(1− p)N−k
(
N

k

)

≤
N−1∑
k=1

p(k−1)+1(1− p)(N−1)−(k−1)

(
N − 1

k − 1

)
+ Pr[Bin(N, p) > N/2]

= p+ Pr[Bin(N, p) > N/2].

Since p < 1/2, as N →∞ the error terms tends to 0, and we deduce µp(F) ≤ p.
We can also go the other way but the argument is more complicated and there is some loss (see

Friedgut [Fri08]).
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t-intersecting families There are many extensions of the basic Erdős–Ko–Rado theorem. For exam-
ple, Ahlswede and Khachatrian [AK97, AK99] proved the optimal analog for t-intersecting families, in

which any two sets must have at least t points in common. They show that if F ⊆
(

[n]
k

)
is t-intersecting

and for some integer r ≥ 0,

(k − t+ 1)

(
2 +

t− 1

r + 1

)
≤ n ≤ (k − t+ 1)

(
2 +

t− 1

r

)
,

then |F| is at most the size of the family

Ft,r =

{
A ∈

(
[n]

k

)
: |A ∩ [t+ 2r]| ≥ [t+ r]

}
.

Furthermore, if n is strictly inside this interval then Ft,r is the unique optimum (up to coordinate
renaming), and at the “breakpoints” there are two optimal families Ft,r and Ft,r±1 (depending on the
end of the interval).

The µp-analog of the Ahlswede–Khachatrian theorem is nicer to state: if F is t-intersecting and for
some integer r ≥ 0,

r

t+ 2r − 1
≤ p ≤ r + 1

t+ 2r + 1
,

then µp(F) is at most the µp-measure of the family

Ft,r = {A ⊆ [t+ 2r] : |A| ≥ t+ r} .

Again this family is unique (for the “breakpoints” this is first proved in [Fil13]).
Wilson [Wil84] and Friedgut [Fri08] gave spectral proofs of the case r = 0, Wilson in the uniform

setting and Friedgut in the µp setting. We don’t know how to prove the cases r ≥ 1 using spectral
methods.
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4 Hypercontractivity (11 November 2015)

([O’D14, Sections 9.1,9.2,9.4,9.5,10.1].)
In this lecture we will concentrate on the classical Fourier expansion, though everything also works

for the skewed Fourier expansion. For this reason, our functions will be on the domain {−1, 1}n. We
will frequently use Lp norms, defined by ‖f‖p = E[|f |p]1/p. For p ≥ 1, these norms satisfy the triangle
inequality.

We will require the classical Hölder inequality:

〈f, g〉 ≤ ‖f‖p‖g‖q, for
1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞.

This inequality also implies a dual definition of the Lp norm:

‖f‖p = sup
g 6=0

〈f, g〉
‖g‖q

.

The ≥ direction follows immediately from the inequality. For the ≤ direction, take g = fp−1, so that
〈f, g〉 = ‖f‖pp. On the other hand, since q = p/(p − 1), ‖g‖qq = E[gq] = E[fp] = ‖f‖pp, and so the

right-hand side is ‖f‖p(1−1/q)
p = ‖f‖p.

More generally,

〈f, g〉 ≤ ‖f‖αp ‖g‖βq , for
α

p
+
β

q
= 1, α+ β = 2, 1 ≤ p, q ≤ ∞, 0 ≤ α, β.

Contractivity One of the fundamental techniques in analysis of Boolean functions is hypercontractiv-
ity, which states that applying noise to a function smoothens it. Often, this is applied to low-degree
polynomials, and the conclusion is that low-degree polynomials are reasonable, that is, they don’t behave
too crazily.

Before getting into hypercontractivity, let us mention a much simpler property, namely, contractivity.
What happens when we apply the noise operator Tρ to a function f (for |ρ| ≤ 1)?

‖Tρf‖2 =

∥∥∥∥∥∑
S

ρ|S|f̂(S)χS

∥∥∥∥∥
2

=
∑
S

ρ2|S|f̂(S)2 ≤
∑
S

f̂(S)2 = ‖f‖2.

So Tρ contracts the L2 norm of f .
Another way of seeing this is using the formula

(Tρf)(x) = E
y∼Nρ(x)

[f(y)],

where y is obtained from x by flipping each bit with probability 1−ρ
2 . Another way of stating this is

Tρf = E
z∼Nρ(1)

[f⊕z], where f⊕z(x) = f(x1z1, . . . , xnzn).

The triangle inequality implies that

‖Tρf‖ = ‖ E
z∼Nρ(1)

[f⊕z]‖ ≤ E
z∼Nρ(1)

[‖f⊕z‖] = ‖f‖,

since f and f⊕z have the same norm (here we use the fact that the uniform measure on {−1, 1}n is
invariant under XOR). This inequality actually holds for every Lp norm, not only L2.

Hypercontractivity I Surprisingly, we can say more:

‖T1/
√

3f‖4 ≤ ‖f‖2.

In words, T1/
√

3 smoothens f so much that its L4 norm becomes comparable to its original L2 norm!
The proof is by induction. The case n = 0 is obvious, so consider some n ≥ 1. Write

f(x1, . . . , xn) = xng(x1, . . . , xn−1) + h(x1, . . . , xn−1).
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Why is this decomposition a good idea? Since

T1/
√

3f =
1 + 1√

3

2

[
xnT1/

√
3g + T1/

√
3h
]

+
1− 1√

3

2

[
−xnT1/

√
3g + T1/

√
3h
]

=
1√
3
T1/
√

3xng + T1/
√

3h.

Another way of seeing that is through the spectral formula for Tρ.
Using E[xn] = E[x3

n] = 0 and E[x2
n] = E[x4

n] = 1, we calculate

E[(T1/
√

3f)4] = E

[(
1√
3
xnT1/

√
3g + T1/

√
3h

)4
]

=
1

9
E[(T1/

√
3g)4] +

6

3
E[(T1/

√
3g)2(T1/

√
3h)2] + E[(T1/

√
3h)4]

≤ 1

9
E[(T1/

√
3g)4] + 2

√
E[(T1/

√
3g)4]E[(T1/

√
3h)4] + E[(T1/

√
3h)4]

≤
(√

E[(T1/
√

3g)4] +
√

E[(T1/
√

3h)4]
)2

,

using Cauchy–Schwartz. Applying the induction hypothesis,

E[(T1/
√

3f)4] ≤ (E[g2] + E[h2])2 = E[f2]2.

Taking fourth roots, we obtain ‖T1/
√

3f‖4 ≤ ‖f‖2.

Applying Hölder’s inequality The hypercontractive inequality we have just proved has L2 norm
on the right. We can get a similar hypercontractive inequality with an L2 norm on the left using Hölder’s
inequality. First, notice that for every ρ,

‖Tρf‖22 =
∑
S

ρ2|S|f̂(S)2 = 〈f, T 2
ρ f〉.

Applying this for ρ = 1/
√

3 together with Hölder’s inequality (using the fact that 4/3 and 4 are conjugate
norms), we get

‖T1/
√

3f‖
2
2 = 〈f, T 2

1/
√

3
f〉 ≤ ‖f‖4/3‖T 2

1/
√

3
f‖4.

Applying our earlier hypercontractivity result, we deduce

‖T1/
√

3f‖
2
2 ≤ ‖f‖4/3‖T1/

√
3f‖2,

and so
‖T1/

√
3f‖2 ≤ ‖f‖4/3.

Low-degree functions are reasonable Suppose that f has degree d. Then for ρ > 1 (say ρ =
√

3),

‖Tρf‖22 =
∑
S

ρ2|S|f̂(S)2 ≤ ρ2d‖f‖22.

Similarly, for ρ ∈ (0, 1) we have ‖Tρf‖22 ≥ ρ2d‖f‖22. Combining this with our hypercontractivity results,
we deduce

‖f‖4 = ‖T1/
√

3T
√

3f‖4 ≤ ‖T√3f‖2 ≤
√

3
d
‖f‖2,

1
√

3
d
‖f‖2 ≤ ‖T1/

√
3f‖2 ≤ ‖f‖4/3.
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Hypercontractivity II With more work, we can deduce similar inequalities involving other pairs of
norms: for all 1 ≤ p ≤ q ≤ ∞ and f : {−1, 1}n → R,

‖Tρf‖q ≤ ‖f‖p for all 0 ≤ ρ ≤
√
p− 1

q − 1
.

The starting point is the following elementary inequality, which holds for all 1 ≤ p ≤ q ≤ ∞ and all
functions f : {−1, 1} → R:

‖Tρf‖q ≤ ‖f‖p for all 0 ≤ ρ ≤
√

(p− 1)/(q − 1).

The proof is not very enlightening so we skip it. It is usually known as the “two-point inequality”, since
if we write f(x) = a+ bx then we can write it as

q

√
(a+ ρb)q + (a− ρb)q

2
≤ p

√
(a+ b)p + (a− b)p

2
,

which is a (parametric) inequality depending only on the two parameters a, b (and really only on one of
them, since we can fix a = 1).

Applying Hölder’s inequality, we deduce that for any f, g ∈ {−1, 1} → R,

〈Tρf, g〉 ≤ ‖Tρf‖q‖g‖q/(q−1) ≤ ‖f‖p‖g‖q/(q−1).

The crucial point is that this inequality tensorises. That is, if it works for functions {−1, 1} → R, then
it also works for functions {−1, 1}n → R for every n. We prove this by induction on n.

We already have the case n = 1. For general n, write x = (x′, xn), y = (y′, yn), and let fb(x
′) =

f(x′, b), gb(y
′) = g(y′, b). Recall that

〈Tρf, g〉 = E
x,y∼Nρ

[f(x)g(y)].

Since Nρ is a product distribution, we can write

〈Tρf, g〉 = E
xn,yn∼Nρ

E
x′,y′∼Nρ

[fxn(x′)gyn(y′)] ≤ E
xn,yn∼Nρ

[‖fxn‖p‖gyn‖q/(q−1)],

using the induction hypothesis. Now write F (x) = ‖fx‖p and G(y) = ‖gy‖q/(q−1). Applying the case
n = 1 again, we have

〈Tρf, g〉 ≤ E
x,y∼Nρ

[F (x)G(y)] ≤ ‖F‖p‖G‖q/(q−1) = ‖f‖p‖g‖q/(q−1),

since for example
‖F‖pp = E

x
[F (x)p] = E

x
E
x′

[fx(x′)p] = ‖f‖pp.

So we have proved that for all f, g ∈ {−1, 1}n → R,

〈Tρf, g〉 ≤ ‖f‖p‖g‖q/(q−1).

Finally, to deduce the actual hypercontractivity result, we need to use the dual definition of Lq norm:

‖Tρf‖q = sup
g 6=0

〈Tρf, g〉
‖g‖q/(q−1)

≤ sup
g 6=0
‖f‖p.

It is useful to consider the cases p = 2 and q = 2:

‖T1/
√
q−1f‖q ≤ ‖f‖2, ‖T√p−1f‖2 ≤ ‖f‖p.

As before, when deg f = d we deduce

‖f‖q ≤
√
q − 1

d
‖f‖2, ‖f‖2 ≤

√
p− 1

−d
‖f‖p.
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4.1 Applications

Large deviation bounds Hypercontractivity implies that low-degree polynomials satisfy large devi-
ation bounds: they are rarely very far from their mean (as measured in standard deviations). One such

large deviation bound states that for all t ≥
√

2e
d
,

Pr[|f | ≥ t‖f‖2] ≤ exp(− d

2e
t2/d).

When d = 1, we get the expected e−t
2

dependency familiar from the central limit theorem. For higher-
degree polynomials, the tails decay slower, but still very fast. The proof follows the usual method of
moments. Assume for simplicity that ‖f‖2 = 1. For an appropriate q ≥ 2, Markov’s inequality gives

Pr[|f | ≥ t] = Pr[|f |q ≥ tq] ≤ E[|f |q]
tq

=
‖f‖qq
tq

.

Since ‖f‖q ≤
√
q − 1

d‖f‖2 =
√
q − 1

d
, we deduce that

Pr[|f | ≥ t] ≤ ((q − 1)d/2/t)q.

Choosing q = t2/d/e, the bound is at most

(qd/2/t)q = (1/ed/2)q = exp(−d
2
q) = exp(− d

2e
t2/d).

The condition t ≥
√

2e
d

ensures that q = t2/d/e ≥ 2.

L2 norm versus L1 norm Hypercontractivity shows that for a low-degree polynomial, the L2 and
L1 norms are comparable: if deg f = d then

‖f‖2 ≤ ed‖f‖1.

Choose ε > 0. The generalized Hölder inequality implies that

〈f, f〉 ≤ ‖f‖(2+ε)/(1+ε)
2+ε ‖f‖ε/(1+ε)

1 .

Hypercontractivity shows that ‖f‖2+ε ≤
√

1 + ε
d‖f‖2, and so

‖f‖22 ≤
√

1 + ε
d(2+ε)/(1+ε)‖f‖(2+ε)/(1+ε)

2 ‖f‖ε/(1+ε)
1 .

Rearranging,

‖f‖ε/(1+ε)
2 ≤

√
1 + ε

d(2+ε)/(1+ε)‖f‖ε/(1+ε)
1 .

Raising to the power (1 + ε)/ε,

‖f‖2 ≤
√

1 + ε
d(2+ε)/ε‖f‖1.

As ε→ 0, it is easy to check that (1 + ε)(2+ε)/ε → e2, and so

‖f‖2 ≤ ed‖f‖1.

As an application, we can lower bound the probability that f exceeds its expectation. Consider for
simplicity the case E[f ] = 0. Since E[f1f>0] = −E[f1f<0], we see that E[f1f>0] = ‖f‖1/2. Cauchy–
Schwartz implies that

1

2
‖f‖1 = E[f1f>0] ≤ ‖f‖2

√
Pr[f > 0] ≤ ed‖f‖1

√
Pr[f > 0],

and we deduce that unless f is constant,

Pr[f > 0] ≥ e−2d

4
.
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Anticoncentration Can low-degree functions be very concentrated around any point? Hypercontrac-
tivity shows this is impossible. For the proof, we need the Paley–Zygmund inequality: if Z ≥ 0 then for
all θ ∈ (0, 1),

Pr[Z ≥ θE[Z]] ≥ (1− θ)2E[Z]2

E[Z2]
.

The idea is to write Z = Z<θ E[Z] + Z≥θ E[Z]. Clearly

E[Z] = E[Z<θ E[Z]] + E[Z≥θ E[Z]] ≤ θE[Z] + E[Z1Z≥θ E[Z]].

Applying Cauchy–Schwartz, we can bound the second term by
√
E[Z2]

√
Pr[Z ≥ θE[Z]], and so

(1− θ)2 E[Z]2 ≤ E[Z2] Pr[Z ≥ θE[Z]],

implying the inequality.

Suppose deg f = d. Hypercontractivity implies that ‖f‖4 ≤
√

3
d‖f‖2, and so the Paley–Zygmund

inequality (with θ = 1/4) implies that

Pr[|f | ≥ ‖f‖2/2] = Pr[f2 ≥ ‖f‖22/4] ≥ 9

16

‖f‖42
‖f‖44

≥ 91−d

16
.

In particular,

Pr[|f − E[f ]| ≥
√
V[F ]/2] ≥ 91−d

16
.

Small set expansion Suppose that A ⊆ {−1, 1}n has measure α, that we pick some random point in
A, and then apply some noise. What is the probability that we stay inside A? This probability turns out
to be small, and this property is known as small-set expansion. To see this, let f = 1A, so that E[f ] = α.
Hypercontractivity with q = 2 shows that

‖T√p−1f‖2 ≤ ‖f‖p = α1/p.

On the other hand,

‖T√p−1f‖22 = 〈f, Tp−1f〉 = Pr
x,y∈Np−1

[x, y ∈ A] = α Pr
x∈A,

y∈Np−1(x)

[y ∈ A].

If we put p = 1 + ρ, then this implies that

α Pr
x∈A,

y∈Nρ(x)

[y ∈ A] ≤ α2/(1+ρ),

or equivalently,
Pr
x∈A,

y∈Nρ(x)

[y ∈ A] ≤ α(1−ρ)/(1+ρ).

Biased Fourier expansion So far we have only discussed the uniform distribution on {−1, 1}n, but
everything carries over to µp for general p. In particular, for every q ≥ 2 ≥ r there exists some ρ > 0
such that

‖Tρf‖q ≤ ‖f‖r,

all norms with respect to µp. There is an explicit expression for ρ, but usually it is not needed; all we
need is that ρ is continuous in q, r.
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5 Consequences (18 November 2015)

([O’D14, Sections 9.1,9.6,10.3].)
Hypercontractivity is essential in the proof of many basic theorems in analysis of Boolean functions.

5.1 Friedgut–Kalai–Naor

Suppose that a function f : {−1, 1}n → {−1, 1} is affine, that is, of the form f(x1, . . . , xn) = a0+
∑
i aixi.

What can we say about the coefficients? It is not hard to see that at most one xi can be non-zero, and
so f must be constant or a dictatorship: a function depending on a single coordinate. The Friedgut–
Kalai–Naor theorem [FKN02] is a relaxed version of this result, stating that if f is almost affine, then f
is close to a dictatorship. While the theorem can be proved directly (as was done in the original paper
as well as by Kindler and Safra [KS04]), it has a particularly simple proof using hypercontractivity.

The Friedgut–Kalai–Naor theorem states that if f : {−1, 1}n → {−1, 1} satisfies ‖f>1‖2 = ε then
there exists a Boolean dictatorship D such that ‖f − D‖2 = O(ε), or equivalently, Pr[f 6= D] = O(ε).
For the proof, we will assume that ε is “small enough”, since otherwise the theorem becomes trivial.

Reduction to odd case The first step is to define an auxiliary function which has zero mean:

g(x0, x1, . . . , xn) = x0f(x0x1, . . . , x0, xn) =
∑
S⊆[n]
|S| even

f̂(S)χS∪{0} +
∑
S⊆[n]
|S| odd

f̂(S)χS .

This function clearly has zero mean, but is it Boolean? Let’s check:

g(1, x1, . . . , xn) =
∑
S⊆[n]

f̂(S)χS(x1, . . . , xn) = f(x1, . . . , xn),

g(−1, x1, . . . , xn) = −
∑
S⊆[n]

f̂(S)χS(−x1, . . . ,−xn) = −f(−x1, . . . ,−xn).

Also, clearly ‖g>1‖2 = ‖f>1‖2 = ε.

Proof for odd functions Let ` = g=1. We know that E[`2] = ‖g=1‖2 = 1 − ε, and the idea of the
proof is to show that `2 is concentrated around 1 − ε. Recall that we have shown that for all functions
φ of degree d,

Pr[|φ− E[φ]| ≥
√
V[φ]/2] ≥ 91−d

16
.

We apply this for the function φ = `2 which has degree 2, and deduce that

Pr[|`2 − (1− ε)| ≥
√
V[`2]/2] = Ω(1).

On the other hand, we know that

E[(|`| − 1)2] ≤ E[(`− g)2] = ε.

The idea now is that if `2 is far from 1− ε then |`| is far from 1. Indeed, suppose that |`2− (1− ε)| ≥
(C + 1)

√
ε. Then either `2 ≥ 1 + C

√
ε or `2 ≤ 1 − C

√
ε. For small ε (small as a function of C!), this

means that either ` ≥ 1+(C/3)
√
ε or ` ≤ 1− (C/3)

√
ε, and in both cases (|`|−1)2 = Ω(Cε). Altogether,

since this event happens with probability Ω(1), we deduce that E[(|`| − 1)2] = Ω(Cε), and so for an
appropriate choice of C, we can conclude that√

V[`2]/2 ≤ (C + 1)
√
ε =⇒ V[`2] = O(ε).

What is V[`2]? First, note that `2 has the Fourier expansion(
n∑
i=0

ĝ(i)χ{i}

)2

=

n∑
i=0

ĝ(i)2χ∅ +
∑
i<j

2ĝ(i)ĝ(j)χ{i,j},
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Therefore

V[`2] =
∑
i<j

4ĝ(i)2ĝ(j)2 = 2

(
n∑
i=0

ĝ(i)2

)2

− 2

n∑
i=0

ĝ(i)4 = 2(1− ε)2 − 2

n∑
i=0

ĝ(i)4.

Since V[`2] = O(ε), we see that

n∑
i=0

ĝ(i)4 ≥ (1− ε)2 −O(ε) = 1−O(ε).

On the other hand,
n∑
i=0

ĝ(i)4 ≤
n∑
i=0

ĝ(i)2 n
max
i=0

ĝ(i)2 = (1− ε) n
max
i=0

ĝ(i)2.

We conclude that ĝ(i)2 ≥ 1−O(ε) for some i, implying also that |ĝ(i)| ≥ 1−O(ε).
Let s = sgn ĝ(i). The dictatorship we’re after is D = sχ{i}. It satisfies

‖g −D‖2 =
∑
j 6=i

ĝ(j)2 + (ĝ(i)− s)2 ≤ O(ε) +O(ε2) = O(ε).

Only one thing is missing: we want to approximate f rather than g! If i 6= 0, then it is easy to check
that in fact ‖f − D‖2 = ‖g − D‖2. Similarly, when i = 0, we need to replace D with the function s,
obtaining ‖f − s‖2 = ‖g −D‖2.

More general statement It turns out that the Friedgut–Kalai–Naor theorem remains true under the
slightly weaker assumption that f is an affine function satisfying E[(|f | − 1)2] = ε. This is weaker since
if f is a Boolean function satisfying ‖f>1‖2 = ε then

E[(|f≤1| − 1)2] ≤ E[(f≤1 − f)2] = ε.

Let us suppose, then, that f is an affine function satisfying E[(|f | − 1)2] = ε, and define F = sgn f .
Note that

‖F>1‖2 = E[(F≤1 − F )2] ≤ E[(f − F )2] = E[(|f | − 1)2] = ε,

since F≤1 is the projection of F to the span of χ∅, χ{1}, . . . , χ{n}. Applying the Friedgut–Kalai–Naor
theorem to the function F , we obtain a Boolean function D such that ‖F −D‖2 = O(ε). The L2 triangle
inequality then shows that

‖f −D‖2 ≤ 2‖f − F‖2 + 2‖F −D‖2 = O(ε).

5.2 Kahn–Kalai–Linial

Suppose that f : {−1, 1}n → {−1, 1} is balanced. Can it be that all the individual influences of f are
small? A priori, all we know is that some coordinate satisfies Infi[f ] ≥ Inf[f ]/n, which could be as small
as O(1/n). Surprisingly, Kahn, Kalai and Linial [KKL88] showed that there is always a coordinate i
satisfying Infi[f ] = Ω( logn

n ). More generally,

max
i

Infi[f ] = Ω

(
V[f ]

log n

n

)
.

The proof is a straightforward but mysterious application of hypercontractivity. Recall that Infi[f ] =
‖fi‖2, where

fi =
∑
S3i

f̂(S)χS .

We can also define fi(x) = (f(x)− f(x⊕ ei))/2, and this shows that fi(x) ∈ {0, 1,−1}. The basic idea
is to apply hypercontractivity to the functions fi and use the fact that |fi| ∈ {0, 1}. Hypercontractivity
shows that ∑

S3i
f̂(S)23−|S| = ‖T1/

√
3fi‖

2
2 ≤ ‖fi‖24/3 = E[|fi|4/3]3/2 = E[|fi|2]3/2 = Infi[f ]3/2.
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Summing over all i, we obtain∑
S

|S|
3|S|

f̂(S)2 ≤
∑
i

Infi[f ]3/2 ≤
√

max
i

Infi[f ] Inf[f ].

What can we say about the left-hand side?∑
S

|S|
3|S|

f̂(S)2 ≥
∑
|S|≥1

3−|S|f̂(S)2 = V[f ]E[3−|S|],

where S is the spectral sample restricted to non-zero subsets (that is, Pr[S = S] = f̂(S)2/V[f ] for
S 6= ∅). Since 3−x is convex, E[3−|S|] ≥ 3−E[|S|]. What is E[|S|]? It is

E[|S|] =
1

V[f ]

∑
S 6=∅

f̂(S)2|S| = Inf[f ]

V[f ]
.

Therefore
V[f ]

Inf[f ]
3− Inf[f ]/V[f ] ≤

√
max
i

Infi[f ].

Let R = Inf[f ]/V[f ], and note that the left-hand side is a decreasing function of R. Fix a threshold α.
If R ≥ α then maxi Infi[f ] ≥ V[f ](α/n), and otherwise maxi Infi[f ] ≥ (1/R3R)2 ≥ 1/α29α. Choose α so
that both bounds are identical: V[f ]/n = 1/α39α; roughly speaking, α = Θ(log(n/V[f ])). Thus

max
i

Infi[f ] = Ω

(
V[f ]

n
log

n

V[f ]

)
.

Tight example Can this bound be achieved? Let’s concentrate on the most interesting case, E[f ] ≈ 0.
In this case, the bound logn

n is achieved by the so-called tribes function. There are n/m tribes x1, . . . , xn/m
of size m, and the function is given by

f =

n/m∨
i=1

m∧
j=1

xi,j .

(For convenience, we think of f as a function on {0, 1}n.) The probability that a tribe is all 1 is 2−m, and
so Pr[f = 0] = 1− (1−2−m)n/m. If we choose m so that n/m ≈ 2m then we get that Pr[f = 0] ≈ 1−1/e
(we can tweak that to Pr[f = 0] ≈ 1/2). Solving for m, we find that m ≈ log(n/ log n).

What are the influences of f? For a variable xi,j to be influential at a given point, the ith tribe must

be the only tribe which is all 1. This happens with probability 2−m(1− 2−m)n/m−1 ≈ 2−m ≈ logn
n .

Sharp thresholds Although we have proved KKL only for the probability measure µ1/2, the same
proof works for any fixed p. In particular, if pL ≤ p ≤ pH for some 0 < pL < pH < 1, then at every p

there exists an index i such that Inf
(p)
i [f ] = Ω(V[f ] logn

n ). Now suppose that f is monotone and transitive-
symmetric, that is, symmetric with respect to some transitive permutation group (for example, f could

be a monotone graph property). Then all its influences are the same, and so Inf(p)[f ] = Ω(V(p)[f ] log n).
Recall now the Russo–Margulis lemma:

d

dp
E
µp

[f ] =
Inf(p)[f ]

p(1− p)
.

This means that for p ∈ [pL, pH ], the derivative of F (p) = Eµp [f ] is Ω(V(p)[f ] log n). Since f is Boolean,

in fact V(p)[f ] = F (p)(1− F (p)), and so

F ′(p) = Ω(F (p)(1− F (p)) log n).

For all non-trivial f , we have F (0) = 0 and F (1) = 1. Define the critical probability of F by F (pc) = 1/2.
How fast does F approach 0 or 1 as we get away from the critical probability? Pretty fast! Indeed,
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suppose that F (pc + C/ log n) = 1− δ. Then for p ∈ [pc, pc + C/ log n], we have F ′(p) = Ω(δ log n), and
so 1/2− δ = Ω(δC), implying that δ = O(1/C). In other words,

F

(
pc +

C

log n

)
≥ 1−O

(
1

C

)
, F

(
pc −

C

log n

)
≤ O

(
1

C

)
.

Therefore F goes from 0 to 1 at an interval of width 1/ log n, assuming pc is bounded away from 0 and 1.
We call this kind of behavior sharp threshold. More careful analysis shows that the width of the interval
is proportional to pc log(1/pc)/ log n (assuming pc ≤ 1/2); the only change is that we take into account
the asymptotics of ρ in the hypercontractive inequality. This result is due to Friedgut and Kalai [FK96].

As an example, consider again the tribes function, with parameters chosen so that F (1/2) ≈ 1/2.
Since the tribes function is monotone and transitive-symmetric, this result implies that F (1/2−C/ log n)
is very close to 0, while F (1/2 + C/ log n) is very close to 1.

Other sharp threshold theorems The main problem with this result is that in many situations, we
are interested in functions for which the critical probability is subconstant. For example, the threshold
for k-colorability is Θ(1/n). We cannot expect a similar result in general: for example, the critical
probability for the OR function is Θ(1/n), but the function F (p) = 1− (1− p)n doesn’t exhibit a sharp
threshold since for p = Θ(1/n) we have F (p) ≈ 1− e−pn. How can we ensure that a function has a sharp
threshold, then?

Further symmetries One option is to assume that the function has more symmetries. Bourgain
and Kalai [BK97] proved a sharp threshold result of that sort. A special case of their result states that if f
is affine-invariant (f(x) = f(Ax+ b) for all invertible A) then log n can be strengthened to logn log log n.
While this might seem as a small difference, it has been very important in a recent result about Reed–
Muller codes, which shows that they achieve capacity on erasure channels (Kumar and Pfister [KP15]).
What is the connection? In very general terms, there is a function (the EXIT function) which measures
the probability that a certain bit is decoded correctly, as a function of the error probability. The sharp
threshold phenomenon ensures that if the error probability is slightly lower than the threshold, then the
probability that each bit is decoded correctly is very close to 1.

Friedgut’s sharp threshold theorem Another option is to show that if a function does not
exhibit a sharp threshold, then there must be an “explanation”. The most celebrated theorem of this
kind is due to Friedgut [Fri99], who showed that if a function corresponding to a graph property exhibits
a coarse threshold then near the threshold it can be approximated by a narrow DNF; other results in
that direction are due to Bourgain (in an appendix to Friedgut’s paper) and Hatami [Hat12]. Friedgut’s
theorem has been very influential in random graph theory.

Elementary argument Every non-trivial monotone property Pn has a threshold function θ(n) in the
following sense: if p(n) = o(θ(n)) then µp(Pn)→ 0, whereas if p(n) = ω(θ(n)) then µn(Pn)→ 1. Indeed,
one can choose θ(n) so that µθ(n)(Pn) = 1/2 (such a point exists since µp(Pn) is polynomial in p and so
continuous).

Here is why it works. For every integer C, generate a vector x ∈ {0, 1}n by taking x1, . . . , xC ∼ µθ(n)

and letting x = max(x1, . . . , xC) (coordinate-wise). Note that x ∼ µq(n) for q(n) = 1 − (1 − θ(n))C ≤
Cθ(n). Since Pn is monotone, the probability that x satisfies Pn is at least the probability that one of
x1, . . . , xC satisfies it, and so

µCθ(n)(Pn) ≥ µq(n)(P (n)) ≥ 1− 2−C .

This implies that if p(n) = ω(θ(n)) then µp(n)(Pn)→ 1. The other property is proved analogously.

5.3 Friedgut’s junta theorem

Suppose that f : {−1, 1}n → {−1, 1} depends on k variables. In particular, it has degree at most k, and
so total influence at most k. Conversely, what can we say if f has influence at most k? Friedgut’s junta
theorem [Fri98] implies such an approximate converse, though with some loss of parameters: f must be
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close to a Boolean K-junta, where K is exponential in k. The exponential loss is unavoidable: the tribes
function depends on all inputs but has total influence O(log n).

The first step in proving Friedgut’s junta theorem is to identify the coordinates in the junta. This is
easy: we just take all the influential coordinates. For some parameter τ to be determined, we define

J = {i ∈ [n] : Infi[f ] ≥ τ}.

Since the total influence of f is k, we immediately see that |J | ≤ k/τ , so as long as τ depends only on k
(but not on n), the size of the junta will be bounded. It is then natural to define the junta g by

g(xJ , xJ̄) = E
xJ̄

[f(xJ)] =
∑
S⊆J

f̂(S)χS .

The function g is not quite Boolean, and we will fix this later. But first, we show that f is close to g.
Parseval’s identity shows that

‖f − g‖2 =
∑
S*J

f̂(S)2.

In order to bound this, notice that Markov’s inequality immediately shows that∑
|S|≥k/ε

f̂(S)2 = Pr[|S| ≥ k/ε] ≤ E[|S|]
k/ε

= ε.

Here S is the spectral sample. This shows that

‖f − g‖2 ≤ ε+
∑
S*J
|S|<k/ε

f̂(S)2.

How do we bound the right hand side? We need to somehow use the fact that coordinates not in J have
small influence: ∑

S*J
|S|<k/ε

f̂(S)2 ≤
∑
i/∈J

∑
S3i
|S|<k/ε

f̂(S)2.

Each summand on the right looks pretty similar to Infi[f ], but we are only summing over small sets S.
This suggests the following line of thought:

Infi[f ]3/2 ≥
∑
S3i

f̂(S)23−|S| ≥ 3−k/ε
∑
S3i
|S|<k/ε

f̂(S)2,

using an inequality we have seen before. Combining the estimates, we get

‖f − g‖2 ≤ ε+ 3k/ε
∑
i/∈J

Infi[f ]3/2 ≤ ε+ 3k/εk
√
τ .

Choosing τ small enough, say 10−k/ε/(kε)2, we deduce ‖f − g‖2 = O(ε), with |J | ≤ (k3/ε2)10k/ε.
It remains to sort out the fact that g is not Boolean. The idea is to consider h = sgn g, which is also

a J-junta. Consider any point x, and suppose that f(x) = 1. If h(x) = 1 then certainly (f(x)−h(x))2 ≤
(f(x) − g(x))2. If h(x) = −1 then (f(x) − h(x))2 = 4 while g(x) ≤ 0 implies that (f(x) − g(x))2 ≥ 1.
Therefore (f(x)− h(x))2 ≤ 4(f(x)− g(x))2. We conclude that ‖f − h‖2 = O(‖f − g‖2) = O(ε).

5.4 Kindler’s proof of the Friedgut–Kalai–Naor theorem.

As a bonus, we give another proof of the Friedgut–Kalai–Naor theorem, taken from Guy Kindler’s
thesis [Kin02] (see also his paper with Muli Safra [KS04]). We prove the following strong version of the
theorem. Suppose that f(x1, . . . , xn) =

∑n
i=1 aixi satisfies E[(|f |−1)2] = ε. Then for some i,

∑
j 6=i a

2
j <

(1 +o(1))ε (here o(1) is a function tending to 0 as ε→ 0). Alternatively, ‖f − (a0 +aixi)‖2 < (1 +o(1))ε.
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In order to deduce the classical version of the Friedgut–Kalai–Naor theorem from this result, let F be a
balanced Boolean function satisfying ‖F>1‖2 = ε, and define f = F≤1. Kindler’s version of the theorem
shows that for some function g depending on at most one coordinate, ‖f − g‖2 < (1 + o(1))ε. Since
deg g ≤ 1, ‖F − g‖2 = ‖f − g‖2 + ‖f>1‖2 < (2 + o(1))ε. Let G = sgn g, another function depending on at
most one coordinate. As we have seen previously, ‖F−G‖2 < (8+o(1))ε, and so Pr[F 6= G] < (2+o(1))ε.
Using ranodmized rounding [O’D14, Exercise 3.34], this can be improved to (1 + o(1))ε/2.

For the proof, we arrange the indices so that |a1| ≥ |ai| for all 2 ≤ i ≤ n. Our goal is thus to show
that

∑n
i=2 a

2
i < (1+o(1))ε. We start with an easy observation: |ai| = O(

√
ε) for i ≥ 2. Indeed, otherwise

|a1|, |ai| = Ω(
√
ε), and an easy case analysis shows that with constant probability ||f | − 1| = Ω(

√
ε) and

so E[(|f | − 1)2] = Ω(ε), which for a proper choice of hidden constants contradicts the assumption on f .
The idea now is to prove by (backward) induction on m that

∑n
i=m a

2
i < (1 + o(1))ε. This clearly

holds for m = n+ 1. Now suppose it holds for m > 2. Since a2
m = O(ε) and by induction

∑n
i=m+1 a

2
i <

(1 + o(1))ε, we conclude that
∑n
i=m a

2
i = O(ε). The next step is to get rid of the variables x1, . . . , xm−1.

Indeed, we can always find some setting of these variables for which the restricted function φ satisfies
E[(|φ| − 1)2] ≤ ε. The restricted function is of the form φ(xm, . . . , xn) = C +

∑n
i=m aixi. Furthermore,

the triangle inequality shows that C must be close to ±1:

||C| − 1| = ‖|C| − 1‖ ≤ ‖|φ| − 1‖+ ‖|φ| − |C|‖ ≤
√
ε+ ‖φ− C‖ = O(

√
ε).

In other words, ||C| − 1| = O(
√
ε). We assume for simplicity that C is positive, and so C ≥ 1−O(

√
ε).

What we want to say now is that since
∑n
i=m a

2
i is small, it is unlikely for φ to dip below zero, and so

E[(φ− 1)2] ≈ E[(|φ| − 1)2] = ε. Indeed, an application of Chernoff’s bound shows that

Pr[φ < −t] = Pr

[
n∑

i=m

aixi < C + t

]
≤ exp

−(C + t)2

2
∑n
i=m a

2
i

.

We can assume that
∑n
i=m a

2
i ≥ ε (otherwise we have already proved what we wanted). Therefore

E[|φ|1φ<0] =

∫ ∞
t=0

Pr[φ < −t] dt ≤
∫ ∞
t=C

e−t
2/2ε dt.

The integral on the right equals

√
2πεPr[N(0, 1) > C/ε] ≤ e−(C/ε)2/2 = o(ε),

using C ≥ 1−O(
√
ε). Notice now that

E[(|φ| − 1)2] = E[(φ− 1)2] + 2E[φ− |φ|] = E[(φ− 1)2]− 4E[|φ|1φ<0].

Therefore E[(φ− 1)2] ≤ (1 + o(1))ε. Finally,

n∑
i=m

a2
i = V[φ] ≤ E[(φ− 1)2] = (1 + o(1))ε.

This completes the proof.
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6 Hardness of approximation of Vertex Cover (25 November
2015)

(Hardness of approximation: standard material. Vertex cover: [KR08])

6.1 Hardness of approximation

The classical theory of NP-completeness describes tasks which are (presumably) hard to accomplish
efficiently. In many cases, the problems we are interested in are optimization problems, and while they
may be hard to solve exactly, it might be that they are easy to approximate. For example, while vertex
cover is hard to solve exactly, it is easy to come up with 2-approximation algorithms. Hardness of
approximation attempts to find the inapproximability threshold, which is the number K such that for
every ε > 0 there is a (K + ε)-approximation algorithm, but it is NP-hard to (K − ε)-approximate the
problem.

PCP Surprisingly, hardness of approximation is connected to the problem of proof verification. A proof
verification procedure probes a proof at a small number of locations, and decides whether the proof is
valid or not. Its decision must be correct with high probability. More concretely, one common definition
is the classes PCP(r(n), q(n)) of probablistically checkable proofs. A language L is in PCP(r(n), q(n)) if
there exists a randomized polytime algorithm V which accepts an input x of size n and a proof w, uses
r(n) random bits to decide (non-adaptively) on q(n) locations, reads these locations from w and answers
YES or NO, and satisfying the following two properties, for some arbitrary constant δ > 0:

Completeness If x ∈ L then there exists a proof w which always convinces V .

Soundness If x /∈ L then for all w, the probability that V is convinced is at most 1− δ.

By trying all possible proofs (they can be assumed to be of size at most q(n)2r(n)), a non-deterministic
machine can decide each L ∈ PCP(r(n), q(n)) in time poly(n)q(n)2r(n). In particular, PCP(O(log n), O(1)) ⊆
NP. The PCP theorem [ALM+98, Din07] states a surprising converse: NP = PCP(O(log n), O(1)). This
means that every language L in NP has a proof system and an associated verifier which can make an
educated guess on whether x ∈ L by reading only a constant number of bits from the proof! A similar
(but much easier) theorem [BFL90] states that NEXP = PCP(poly(n), O(1)) = PCP(poly(n), poly(n)).

H̊astad showed that the constant O(1) can be chosen to be 3. We can represent the verifier as a set of
polynomially many tests φ1, . . . , φN (depending on the input x), each involving three bits of the witness:

φ1(wi1 , wj1 , wk1
), . . . , φN (wiN , wjN , wk,N ).

If x ∈ L then some truth assignment satisfies all these constraints, otherwise any truth assignment
satisfies at most a 1 − δ fraction of the constraints. Each constraint φt is equivalent to a conjunction
of at most 8 clauses, and by taking their conjuction, we obtain an instance of MAX-3SAT. If x ∈ L
then this instance is satisfiable, otherwise every assignment satisfies at most a 1 − δ/8-fraction of the
constraints. More explicitly, what this means is that for every L ∈ NP there is a polytime reduction f
(which is polytime since V is) such that f(x) is an instance of MAX-3SAT, and

Completeness If x ∈ L then f(x) is satisfiable.

Soundness If x /∈ L then at most a 1− δ/8-fraction of the clauses of f(x) can be satisfied.

This implies that we cannot approximate MAX-3SAT better than 1−δ/8 (unless P=NP), since otherwise
we could use such an approximation algorithm to solve every problem in NP!

Using analysis of Boolean functions, H̊astad [H̊as01] improved this and showed a threshold of 7/8 for
approximating MAX-3SAT. This approximation ratio is achieved by the random assignment algorithm
(which can be derandomized using the method of conditional expectations), so in this case, the trivial
algorithm cannot be improved upon!
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Two-prover games Another way to look at this result, which is useful for constructing reductions,
is via two-player games. Consider the verifier that we mentioned earlier. We can assume without loss
of generality that each test is actually of the form φ(x, y, z) = x ∨ y ∨ z, where x, y, z are literals rather
than variables. Earlier we discussed a one-player game, in which the prover chooses an assignment for
all variables, the verifier chooses a constraint φ, queries the values of the associated variables, and checks
whether the constraint is satisfied.

An alternative formulation has two different provers. One prover keeps an assignment for all variables.
The other prover keeps, for each clause φ, a satisfying assignment. The verifier chooses a clause φ and
a variable v ∈ φ at random, queries the first prover for v, the second prover for a satisfying assignment
of φ, and checks that they both match on v. If this is a YES instance, then the provers can decide on
a satisfying assignment, and then the verifier will always be convinced. Otherwise, the verifier can be
convinced with probability at most 1− δ/3.

Another way of presenting this formulation is as a LABEL COVER problem. We construct a bipartite
graph in which one bipartition corresponds to vertices, and the other to clauses. Whenever a variable
participates in a clause we draw an edge, and annotate it with the function mapping the clause label to
the variable label. We call these edges constraints, and a labeling of the vertices satisfies a constraint
if the clause label gets mapped to the variable label. If this is a YES instance, there is a labeling of
the vertices which satisfies all constraints. Otherwise, every labeling satisfies at most 1 − δ/3 of the
constraints.

Parallel repetition In many situations we would like to boost the soundness from 1 − δ/3 to an
arbitrarily small probability. A natural way to do this is to start with an instance of LABEL COVER
and compose it with itself. Thinking of this as a two-prover game, we now choose m clauses φ1, . . . , φm,
identify one variable vi in each, and then ask the two provers for the truth assignments of all marked
variables and all clauses, respectively. The verifier then accepts only if the assignments to all variables
match. Now it would seem that if the original game had success probability at most α, then the new
game has success probability at most αm, but this is surprisingly not true! Nevertheless, Ran Raz [Raz98]
showed that as m→∞, the success probability does tend to 0, exponentially fast. This is known as the
parallel repetition theorem.

Unique label cover Many hardness of approximation results can be proved using LABEL COVER,
but at some point research got stuck. Khot [Kho02] suggested assuming as a hypothesis that LABEL
COVER is still NP-hard even if the constraints are bijections. One must be careful here: if the constraints
are bijections and the instance is fully satisfiable, then it is easy to verify it by guessing one label per
connected component. We therefore have to forego perfect completness, and in the YES case only ask
that at least a 1− ε fraction of the constraints can be satisfied.

There is also a dependency on the alphabet size, which is the size of the set of labels. For classical
LABEL COVER, parallel repetition magnified the soundness at the expense of expanding the alphabet.
This led Khot to the following version of his conjecture. For each ε > 0 there exists an alphabet size
for which it is NP-hard to distinguish whether a UNIQUE LABEL COVER instance is at least (1− ε)-
satisfiable or at most ε-satisfiable. This is known as the Unique Games Conjecture.

Arora, Barak and Steurer constructed a sub-exponential time algorithm for solving this problem, and
this has led to some speculation whether the UGC is actually true or not. The jury is still out. While
most results concerning UGC are conditional on the conjecture, it has also yielded some unconditional
results such as the celebrated Khot–Vishnoi [KV15] refutation of the Goemans–Linial conjecture.

Sparse set expansion A related problem is Small Set Expansion. For a d-regular graph and a subset
of vertices, we define its expansion by φ(S) = |E(S, S)|/d|S|, a quantity which is always in [0, 1]. Small
Set Expansion is the following problem. Given a regular graph G = (V,E), distinguish the following two
cases:

YES case There is a set S of size γ|V | such that φ(S) ≤ ε.

NO case All sets S of size γ|V | satisfy φ(S) ≥ 1− ε.
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Raghavendra and Steurer [RS10] put forward the conjecture that for all ε > 0 there exists γ > 0 such
that Small Set Expansion with these parameters is NP-hard. They showed that this conjecture implies
the unique games conjecture. The reverse implications is not known.

6.2 Vertex cover

Given a graph G = (V,E), a subset S of the vertices is a vertex cover if every edge intersects S. VERTEX
COVER is the problem of finding a vertex cover of minimal size. The decision version is, given a graph
G and an integer k, to decide whether G has a vertex cover of size at most k. This formulation shows
that VERTEX COVER is in NP, and in fact it is NP-complete.

VERTEX COVER is related to another well-known problem, INDEPENDENT SET: a set S is a
vertex cover iff its complement is an independent set. In terms of approximability, however, the problems
are quite different: VERTEX COVER can be 2-approximated, while it is NP-hard to approximate
INDEPENDENT SET within n1−ε for any ε > 0!

It is also natural to consider the weighted version of VERTEX COVER, in which vertices have non-
negative weights, and the goal is to choose a vertex cover of minimal weight. By duplicating vertices, we
can reduce the weighted version to the original version with an arbitrarily small loss in accuracy.

There is a simple 2-approximation algorithm for VERTEX COVER, which goes as follows. Find a
maximal matching M in the graph (a maximal matching is one to which no edge can be added; even
though a maximum matching can also be found efficiently, a maximal matching suffices here). Every
vertex cover of G must contain at least one vertex out of each edge in M , and so has size at least |M |.
Conversely, since M is maximal, every edge touches M , and so the 2|M | vertices in M are a vertex cover.

Another simple 2-approximation algorithm is based on linear programming. For each vertex i we
have a variable xi ∈ [0, 1], and for each edge (i, j) we add the constraint xi + xj ≥ 1. The objective
function we want to minimize is

∑
i xi. Clearly, any vertex cover is a solution to this linear program.

Conversely, given a solution (x1, . . . , xn), let S = {i : xi ≥ 1/2}. For each edge (i, j), it cannot be that
i, j /∈ S since then xi + xj < 1. Hence S is a vertex cover. Also, |S| ≤ 2

∑
i xi, and so |S| is at most

twice as large as the optimal vertex cover.
A third simple 2-approximation algorithm, due to Bar-Yehuda and Even, goes as follows. Go over all

edges, and for each edge (x, y), reduce both weights by min(w(x), w(y)). After going over all edges, pick
the vertices whose weight is zero. This is clearly a vertex cover, since the operation of reducing weights
always reduces at least one of the weights to zero. Consider now each step of the algorithm. Reducing
the weights by ω = ω(x, y) = min(w(x), w(y)) reduces the weight of the optimal solution by at least ω,
and the weight of the solution chosen by the algorithm by at most 2ω. The weight of the final solution
is zero in terms of the new weights, and at most 2

∑
ω(x, y) in terms of the original weights, whereas

the weight of the optimal solution is at least
∑
ω(x, y), showing that this is a 2-approximation.

A fourth simple 2-approximation algorithm, due to Savage, proceeds as follows. Run DFS from
one of the nodes, and take all non-leaf vertices. This is a vertex cover since all edges from leaves of
the DFS tree point to non-leaves. To see that this is a 2-approximation, it is enough to show that
if a tree has t non-leaves then it admits a t/2-matching. We prove this by induction on the size of
the tree. The claim is trivial for a single vertex. Given a tree T in which the root’s children are
T1, . . . , Tn and T1’s children are S1, . . . , Sm, we construct a matching by taking the edge (T, T1) and
inductively constructed matchings of S1, . . . , Sm, T2, . . . , Tn. In total, this gives a matching having at
least 1 +

∑
i t(Si)/2 +

∑
j>1 t(Tj)/2 = t(T )/2 edges.

The best hardness of approximation result based on NP-hardness is due to Dinur and Safra [DS05],
who showed that it is NP-hard to approximate VERTEX COVER better than 10

√
5 − 21 ≈ 1.36.

Assuming the unique games conjecture, one can prove more: Khot and Regev [KR08] showed that it is
UGC-hard to approximate VERTEX COVER better than 2. So the trivial algorithms are optimal!

6.3 The reduction

In order to show UGC-hardness, we use the following version of unique label cover. For every δ > 0
and t there exists an alphabet R such that the following problem is UGC-hard. Given a multigraph
G = (X,E) along with a constraint ψe ∈ SR (the symmetric group on R) for every edge e ∈ E,
distinguish the following two options:
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YES case Some labeling satisfies all constraints for a (1− δ)-fraction of the vertices.

NO case No t-labeling satisfies all constraints for any δ-fraction of the vertices.

(In both cases we are only interested in constraints involving two satisfied vertices.)
Here a t-labeling gives t possible labels for each vertex, and a constraint ψ(x,y) is satisfied by a labeling

L if ψ(x,y)(a) = b for some a ∈ L(x) and b ∈ L(y).
For any ε > 0, we will show that it is UGC-hard to distinguish the case in which there is an

independent set of weight 1/2− ε0 from the case in which there is no independent set of weight ε1, where
ε0, ε1 → 0. In terms of vertex covers, in the first case there is a vertex cover of weight 1/2 + ε0 and in
the second every vertex cover has weight at least 1− ε1, leading to an inapproximability threshold of 2.

Let p = 1/2 − ε. We choose the parameters δ and t to ensure that ε0, ε1 → 0. Given an instance
G = (R,X,Ψ) of unique label cover, we construct a weighted graph G = (V,E,w) as follows:

Vertices For each x ∈ X and F ⊆ R there is a vertex (x, F ) of weight µp(F )/|X|; note that w(V ) = 1.

Edges For every constraint ψxy ∈ Ψ we add an edge (x, F ), (y,G) whenever no a ∈ F, b ∈ G satisfies
ψxy(a) = b.

To understand this construction better, let us see what happens in the YES case. Suppose L is a
labeling that satisfies all constraints in a set X0 of size (1− δ)|X|. Define

I = {(x, F ) : x ∈ X0, L(x) ∈ F}.

Clearly w(I) = 1/2− δ/2. Why is I an independent set? Consider any pair of vertices (x, F ), (y,G) ∈ I.
Since L(x) ∈ F and L(y) ∈ G satisfy ψxy(L(x)) = L(y), we see that (x, F ), (y,G) cannot be an edge.

The independent set I encodes the labeling L using what is known as the (biased) long code. In the
set I, the assignment L(x) = a is encoded as a dictatorship: the function F 7→ (x, F ) ∈ I depends only
on the coordinate F (a). The difficult part of the proof shows how to decode a meaningful assignment
from any independent set I which is not too small.

6.4 Soundness

Let I be an independent set of weight γ, where γ is some constant which will only depend on ε. For
x ∈ X, let Ix = {F : (x, F ) ∈ I}, so that Ex[w(Ix)] = γ. This shows that a γ/2-fraction of xs satisfies
w(Ix) ≥ γ/2, since otherwise

E
x

[w(Ix)] < (γ/2) · 1 + (1− γ/2) · (γ/2) < γ.

Let X0 = {x : w(Ix) ≥ γ/2}, so that |X0| ≥ (γ/2)|X|. We will show how to associate with each x ∈ X0

a set of vertices L(x) of constant size (depending only on ε; this will be our t) such that L satisfies all
constraints in X0. Before doing this, we mention that we can assume that Ix is monotone: indeed, if we
replace each Ix with its upset, then it remains an independent set, while its weight can only increase.
To see why, note that I is independent if for every constraint ψxy and every F ∈ Ix, G ∈ Iy there are
a ∈ F, b ∈ G such that ψxy(a) = b.

We define L(x) in two stages. First, recalling that p = 1/2 − ε, note that µ1/2−ε(Ix) ≥ 0 while
µ1/2−ε/2(Ix) ≤ 1. Hence there must exist px ∈ [p, 1/2 − ε/2] at which the derivative of µpx(Ix) is at

most 2/ε. According to the Russo–Margulis lemma, this means that Inf(px)[Ix] ≤ 2/ε, and so Friedgut’s
theorem shows that Ix is η-close to an Oη(1)-junta (we will choose η later on). Note that the size of the
junta depends on px, but we can bound it in terms of p alone. We define C(x) to consist of this junta.

If Ix actually depended only on the variables in C(x), then we could take L(x) = C(x). Why is that?
Consider any constraint ψxy such that x, y ∈ X0. Since I is an independent set, any F ∈ Ix and G ∈ Iy
satisfy ψxy(a) = b for some a ∈ F, b ∈ G. In particular, we could take F = C(x) ∈ Ix and G = C(y) ∈ Iy
(here we are using monotonicity), and the proof will be complete. Unfortunately, this argument doesn’t
quite work since we only know that Ix is close to a C(x)-junta. This necessitates including in L(x)
additionally all variables with influence at least η′ (we will choose η′ later on) with respect to µpx :

L(x) = C(x) ∪ {i : Inf
(px)
i [Ix] ≥ η′}.
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Since the total influence of Ix at µpx is at most 2/ε, the size of L(x) is bounded as a function of ε, η, η′

alone.
In the remainder, we show that for an appropriate choice of η, η′, the resulting multi-assignment L(x)

satisfies all constraints involving X0. In order to do that, we will consider some specific constraint ψxy,
which for simplicity we assume is the identity permutation. Thus we have to show that L(x) intersects
L(y).

Suppose that L(x) and L(y) are disjoint. Our plan is to come up with sets A ∈ Ix, B ∈ Iy which are
disjoint, which contradicts the fact that I is an independent set, since there is an edge connecting (x,A)
and (y,B). How are we going to accomplish that? Our plan is to find A0 ⊆ C(x) and B0 ⊆ C(y) such

that Ix contains most of A0 × 2C(x)∪C(y) and Iy contains most of B0 × 2C(x)∪C(y). Quantitatively, we
will show that

µpx({F ⊆ C(x) ∪ C(y) : A0 ∪ F ∈ Ix}) ≥ 1−O(η/γ),

µpy ({F ⊆ C(x) ∪ C(y) : B0 ∪ F ∈ Iy}) ≥ 1−O(η/γ).

Since px, py ≤ 1/2 − ε/2 =: q and Ix, Iy are monotone, the same estimates hold also for µq. If Ix, Iy
contained all of these fibers, then A0 ∈ Ix and B0 ∈ Iy would be disjoint. Here, by taking η/γ small
enough, we can force

µq({F ⊆ C(x) ∪ C(y) : A0 ∪ F ∈ Ix, B0 ∪ F ∈ Iy}) > q,

and since q < 1/2, the Erdős–Ko–Rado theorem implies that {F ⊆ C(x) ∪ C(y) : A0 ∪ F ∈ Ix, B0 ∪ F ∈
Iy} is too big to be intersecting. This family therefore contains two disjoint sets A1, B1, and then
A0 ∪A1 ∈ Ix and B0 ∪B1 ∈ Iy are disjoint, completing the proof1.

It remains to show that for some A0 ⊆ C(x),

µpx({F ⊆ C(x) ∪ C(y) : A0 ∪ F ∈ Ix}) ≥ 1−O(η/γ).

(The same statement for y follows in the same way.) Here we will use the fact that all variables in C(y)
have low influence on Ix (since C(y) is disjoint from L(x) by assumption).

Suppose first that Ix were completely independent of C(y). Recall that Ix is η-close to a junta Jx
depending only on the coordinates C(x). Assuming η ≤ γ/4, since Ix is monotone we have µpx(Ix) ≥
µp(Ix) ≥ γ/2, and so µpx(Jx) ≥ γ/2− η ≥ γ/4. For every A ⊆ C(x), define

m(A) = µ[C(x)∪C(y)]
px ({F ⊆ C(x) ∪ C(y) : F ∪A ∈ Ix}).

(The square brackets signify that the measure is taken with respect to the given universe.) We know
that ∑

A∈Jx∩C(x)

µ[C(x)∪C(y)]
px (A)(1−m(A)) = µpx(Jx \ Ix) ≤ η

while ∑
A∈Jx∩C(x)

µ[C(x)∪C(y)]
px (A) = µpx(Jx) ≥ γ/4.

This implies that some A0 ∈ Jx ∩ C(x) must satisfy 1−m(A0) ≤ η/(γ/4), or m(A0) ≥ 1− 4η/γ.
While in general Ix does depend on C(y), the dependence is very slight, since all variables in C(y)

have low influence. It is natural to define another set Kx which doesn’t depend on C(y) by:

Kx = {Z ⊆ C(y) : Z × 2C(y) ⊆ Ix} × 2C(y).

In words, for every Z ⊆ C(y), we look at the fiber Z × 2C(y). If Ix contains all of this fiber, then we
include it in Kx. Otherwise we don’t. This makes it clear that Kx ⊆ Ix. On the other hand, we can
show that Ix is not much larger than Kx.

1This argument looks a bit odd, and indeed the “correct” argument uses the cross-intersecting Erdős–Ko–Rado theorem:
the two sets FA = {F ⊆ C(x) ∪ C(y) : A0∪F ∈ Ix} and FB = {F ⊆ C(x) ∪ C(y) : B0∪F ∈ Iy} satisfy

√
µq(FA)µq(FB) >

q, and so they cannot be cross-intersecting, that is, there must be a set in FA which is disjoint from some set in FB .
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Indeed, suppose that Z × 2C(y) is some fiber which intersects Ix but is absent from Kx. Since Ix is
monotone, there must be some maximal set W ⊆ C(y) such that Z ∪W /∈ Ix but Z ∪W ∪ {i} ∈ Ix
for all i ∈ C(y) \W . We assign each such fiber to some i ∈ C(y), and call it an i-fiber. Each i-fiber

Z×2C(y) contributes at most µ
[C(y)]
px (Z) to µpx(Ix \Kx). It also contributes at least µ

[C(y)]
px (Z)µ

[C(y)]
px (W )

to [px(1 − px)]−1 Infi[Ix]. Since µ
[C(y)]
px (W ) ≥ p

|C(y)|
x ≥ p

2/ε
x , we see that the contribution of all i-fibers

to µpx(Ix \Kx) is at most
Infi[Ix]

px(1− px)p
2/ε
x

≤ η′

px(1− px)p
2/ε
x

.

The size of C(y) itself is also bounded (in terms of η alone), and so by choosing η′ small enough, we can
ensure that

µpx(Ix \Kx) ≤ η.

Now we are in good shape. The triangle inequality shows that µpx(Jx \Kx) ≤ 2η, and so there exists
some A0 ∈ Jx ∩ C(x) satisfying mK(A0) ≥ 1 − 8η/γ, where mK is the same as m but with Kx instead
of Ix. Since Kx ⊆ Ix, this implies that m(A0) ≥ 1− 8η/γ, completing the proof.

6.5 Review of the whole argument

Let us recap the entire argument. Given an instance (R,X,E,Ψ) of unique label cover, we construct
a graph whose vertex set is X × 2R, and there is an edge connecting (x,A), (y,B) if (x, y) ∈ E and
ψ(x,y)(a) 6= b for all a ∈ A, b ∈ B. The weight of a vertex (x,A) is µp(A)/|X|, where p = 1/2 − ε.
An independent set in this graph is a set I =

⋃
x∈X{x} × Ix such that for all edges (x, y) ∈ E and all

A ∈ Ix, B ∈ Iy there exist a ∈ A, b ∈ B such that ψ(x,y)(a) = b.
If the instance is a YES instance, with the assignment L satisfying all constraints for a (1 − δ)-

fraction of the vertices, then we can take Ix = {A ⊆ 2R : L(x) ∈ A} for all satisfied vertices x. This is
an independent set since for all edges (x, y) such that both x, y are satisfied and all A ∈ Ix, B ∈ Iy we
have L(x) ∈ A,L(y) ∈ B and ψ(x,y)(a) = b. This independent set has measure (1− δ)p ≈ 1/2.

Now suppose that there is an independent set of measure γ. Our goal is to construct a t-labeling
satisfying a δ-fraction of the vertices, for some constants t, δ of our choice, showing that the instance
cannot be a NO instance. This will finish the proof since in the YES case we get a vertex cover of
measure roughly 1/2, whereas in the NO case we get that the minimum vertex cover has measure at
least 1− γ ≈ 1.

Good vertices A calculation shows that at least a γ/2 fraction of the vertices satisfy µp(Ix) ≥ γ/2.
We focus only on these vertices. For simplicity, we assume that all constraints linking them are identity
constraints. We are thus given that for any two good vertices x, y, the families Ix, Iy are cross-intersecting.
We can also assume that Ix, Iy are monotone.

Applying the junta theorem The Russo–Margulis lemma shows that for every good x there exists
px ∈ [p, q] (where q = 1/2 − ε/2) such that the total influence of Ix at px is at most 2/ε. Friedgut’s
theorem then shows that with respect to µpx , the family Ix is η-close to a junta Jx depending on the set
constant-size set C(x). We will choose η later.

Decoding If η = 0 then we could use the labeling L(x) = C(x) since for any good x, y, C(x) ∈
Jx, C(y) ∈ Jy and Ix = Jx, Iy = Jy are cross-intersecting. Since η > 0, we need a more delicate

argument. We let L(x) = C(x) ∪ {i : Inf
(px)
i [Ix] ≥ η′} for some η′. We want to show that L(x), L(y)

intersect, so we will assume that they are disjoint and will reach a contradiction by showing that Ix, Iy
are not cross-intersecting.

We will show that for some assignments A0 ⊆ C(x) and B0 ⊆ C(y),

µpx(Ix|(C(x),C(y))=(A0,∅)) ≥ 1−O(γ/η), µpy (Iy|(C(x),C(y))=(∅,B0)) ≥ 1−O(γ/η).

The same is true for the µq measures since Ix, Iy are monotone. The cross-intersecting Erdős–Ko–Rado
theorem shows that the restrictions cannot be cross-intersecting if 1−O(γ/η) > q (which we can arrange),
and it follows that Ix, Iy are not cross-intersecting.
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Proving the technical lemma Since we assumed L(x), L(y) are disjoint, in particular all variables
in C(y) have low influence in Fx. Suppose that Ix were actually independent of C(y). In that case, a
simple averaging argument proves the existence of such a set A0: on the one hand the measure of Jx is
at least γ/2− η ≥ γ/4 (say), and on the other hand the measure of Jx \ Ix is at most η.

To handle the general case, define a family Kx ⊆ Ix which is independent of C(y) in the most
economical way: Kx = (Ix ∩ C(y)) × C(y). The fact that the influences of variables in C(y) on Ix are
small allows us to bound the measure of Ix \Kx, say by η, and then the measure of Jx \Kx is at most
2η, and we can run the same argument as before.
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7 Gaussian space (2 December 2015)

([O’D14, Sections 11.1–11.3], [DMN13])
Suppose we want to understand a binomial random variable Bin(n, p) for constant p and large n.

Many aspects of this random variable are captured by the central limit theorem, which states that its
distribution approaches that of a normal random variable N(np, np(1 − p)). The invariance principle
states something similar for much more general situations. This prompts us to study Gaussian space,
which is Rn subject to the standard Gaussian measure.

7.1 Basic definitions

The n-dimensional Gaussian space is the measure space consisting of Rn and the product Gaussian
measure N(0, 1)⊗n. We say that a function f : Rn → R is in Lp if E[|f |p] < ∞. We will mostly be
interested in functions which are L2.

Every function on the Boolean cube has a unique expansion as a multilinear polynomial. This is
clearly not the case in Gaussian space: the function x2

1, for example, has no such expansion. We need to
expand the Fourier basis to a more expressive basis known as the Hermite basis. Consider first the case
n = 1. The Fourier basis in this case consists of the two functions 1, x. The most important property of
the Fourier basis is that it is orthonormal. What quadratic polynomial can we add to this list so that it
continues to be orthonormal? If we take ax2 + bx+ c then we have

〈ax2 + bx+ c, 1〉 = E[ax2 + bx+ c] = a+ c,

and so a = −c. Similarly,
〈ax2 + bx+ c, x〉 = E[ax3 + bx2 + cx] = b,

and so b = 0. We conclude that the polynomial must be a multiple of x2 − 1. The norm of x2 − 1 is

‖x2 − 1‖2 = E[x4 − 2x2 + 1] = 3− 2 + 1 = 2,

and so (x2 − 1)/
√

2 is the polynomial we are after. We can continue this way and construct an infinite
orthonormal sequence hi(x) of univariate polynomials, where deg hi = i. They are given explicitly by
the formula

hi(x) =
(−1)i√
i!e−x2/2

di

dxi
e−x

2/2.

It turns out that the Hermite polynomials form a complete basis for L2, that is, every function in L2(R)
can be expanded as an infinite linear combination of Hermite polynomials. Indeed, for any function
f , let p(f) be its projection to the span of the Hermite polynomials. Since the Hermite polynomials
are orthogonal, φ = f − p(f) is orthogonal to all Hermite polynomials, and so to all polynomials. In

particular, 〈φ, e−itx〉 = 0. This expression is just the Fourier transform of φ(x) 1√
2π
e−x

2/2. Since the

Fourier transform is invertible, φ = 0 and so f = p(f).
How did we get this formula, and how do we know that these polynomials are orthogonal? The

starting point is the following Taylor expansion:

etx−t
2/2 = ex

2/2−(t−x)2/2

= ex
2/2

∞∑
i=0

di

dti
e−(t−x)2/2

∣∣∣∣
t=0

ti

i!

t=x−s
= ex

2/2
∞∑
i=0

(−1)i
di

dsi
e−s

2/2

∣∣∣∣
s=x

ti

i!

=

∞∑
i=0

hi(x)
ti√
i!
.

Multiplying two copies and taking expectations over x ∼ N(0, 1), we obtain

E[etx−t
2/2esx−s

2/2] =

∞∑
i,j=0

E[hi(x)hj(x)]
tisj√
i!j!

.
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On the other hand, a classical calculation shows that

E[e(t+s)x] =
1√
2π

∫ ∞
−∞

e(t+s)x−x2/2 dx =
1√
2π

∫ ∞
−∞

e−(x−t−s)2/2+(t+s)2/2 dx = e(t+s)2/2.

Therefore

E[etx−t
2/2esx−s

2/2] = e(t+s)2/2−t2/2−s2/2 = ets =

∞∑
i=0

tisi

i!
.

Comparing coefficients, we see that the Hermite polynomials indeed form an orthonormal basis. (The
signs are there only to keep the leading coefficient positive.)

What about n-dimensional Gaussian space? To obtain a complete basis, all we need to do is to take the
nth tensor power of the Hermite basis for R. Each basis function is of the form hi1(x1) · · ·hin(xn), and this
collection forms a complete basis for L2(Rn). It is natural to grade this basis by putting hi1(x1) · · ·hin(xn)
at level i1 + · · ·+ in. Every function f ∈ L2 can then be decomposed into its homogeneous components:
f =

∑
i≥0 f

=i. This decomposition behaves nicely with respect to the Gaussian noise operator, which
we turn to next.

7.2 Noise operator

Analogous to the noise operator on the cube, we have the Ornstein–Uhlenbeck noise operator Uρ in
Gaussian space. There are several equivalent ways of defining it. One way is:

Uρf(x) = E
y∼N(0,1)

[f(ρx+
√

1− ρ2y)].

The strange coefficient ensures that if x ∼ N(0, 1) that so is the input to f , and this shows that

〈f, Uρg〉 = E
(x,y)∼N(0,

(
1 ρ
ρ 1

)
)

[f(x)g(y)].

It can also be defined via Brownian motion.
What is the effect of the noise operator on the Hermite basis? Consider first the case n = 1. The

following calculations are all easy:

Uρh0(x) = E
y
[1] = 1 = h0(x),

Uρh1(x) = E
y
[ρx+

√
1− ρ2y] = ρx = ρh1(x),

Uρh2(x) =
1√
2
E
y
[(ρx+

√
1− ρ2y)2 − 1] =

1√
2

(ρ2x2 + 1− ρ2 − 1) =
ρ2(x2 − 1)√

2
= ρ2h2(x).

The pattern persists, and Uρhd(x) = ρdhd(x). This quickly implies that in the general case,

Uρf =

∞∑
d=0

ρdf=d.

(This is why we defined the grading in this particular way.)
In more detail, consider the following way of generating ρ-correlated normal random variables: choose

two unit vectors a, b in Euclidean space whose inner product is ρ, and let z be a random multivariate
Gaussian in the same space. It is not hard to check that x = 〈a, z〉 and y = 〈b, z〉 are standard Gaussians,
and furthermore E[〈a, z〉〈b, z〉] = 〈a, b〉 = ρ. So x, y are ρ-correlated Gaussians. Now

E[esx+ty] = E[e
∑
i(sai+tbi)zi ] = e

∑
i(sai+tbi)

2/2 = es
2/2+t2/2+ρst.

Therefore

E[esx−s
2/2ety−t

2/2] = eρst =

∞∑
i=0

ρi
siti

i!
.

On the other hand,

E[esx−s
2/2ety−t

2/2] =

∞∑
i,j=0

E[hi(x)hj(y)]
sitj√
i!j!

.

Comparing coefficients, we see that 〈Uρhi, hi〉 = ρi.
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7.3 Laplacian and noise stability

Recall the Laplacian operator Lf = 1
2

∑
i[f − f⊕i] =

∑
S |S|f̂(S)χS which we defined on the cube

(actually without the normalization!) and satisfies Inf[f ] = 〈Lf, f〉. Another way to derive the same
operator is by taking the derivative of the noise operator, in the following sense:

d

dρ
〈Tρf, g〉 =

d

dρ

∑
S

ρ|S|f̂(S)ĝ(S) =
∑
S

|S|ρ|S|−1f̂(S)ĝ(S) = ρ−1〈LTρf, g〉.

Another parameterization is even more illuminating:

d

dt
〈Te−tf, g〉 =

d

dt

∑
S

e−t|S|f̂(S)ĝ(S) = −
∑
S

|S|e−t|S|f̂(S)ĝ(S) = −〈LTe−tf, g〉.

We can thus write Tρ = ρL and Te−t = e−tL.
When doing the same in Gaussian space, we obtain the following expression for the Laplacian:

Lf(x) = 〈x,∇f(x)〉 −
n∑
i=1

∂2f

∂x2
i

(x).

The proof is via a simple Taylor expansion: for a univariate f and z ∼ N(0, 1),

Uρf(x)− f(x) = E[f(ρx+
√

1− ρ2z)]− f(x)

= f(ρx)− f(x) +
√

1− ρ2 E[z]f ′(ρx) +
1

2
(1− ρ2)E[z2]f ′′(ρx) +O((1− ρ2)3/2 E[z3])

= f(ρx)− f(x) +
1

2
(1− ρ2)f ′′(ρx) + o(1− ρ2).

Dividing by ρ− 1 and taking the limit ρ→ 1, we obtain

Lf(x) = lim
ρ→1

f(ρx)− f(x)

ρ− 1
− f ′′(x) =

d

dρ
f(ρx)

∣∣∣∣
ρ=1

− f ′′(x) = xf ′(ρx)|ρ=1 − f
′′(x) = xf ′(x)− f ′′(x).

As in the case of the cube, we also have a spectral expression:

Lf =

∞∑
d=0

df=d.

Furthermore, we have the nice formula

〈Lf, g〉 = 〈∇f,∇g〉.

This formula follows from integration by parts, and the fact that the normal density ϕ satisfies the
differential equation ϕ′(x) = −xϕ(x): in the one-dimensional case,

〈Lf, g〉 =

∫ ∞
−∞

(xf ′(x)− f ′′(x))g(x)ϕ(x) dx =

∫ ∞
−∞

xf ′(x)g(x)ϕ(x) dx+

∫ ∞
−∞

f ′(x)(gϕ)′(x) dx =∫ ∞
−∞

xf ′(x)g(x)ϕ(x) dx+

∫ ∞
−∞

f ′(x)(g′(x)ϕ(x)− xg(x)ϕ(x)) dx =

∫ ∞
−∞

f ′(x)g′(x)ϕ(x) dx.

7.4 Hypercontractivity

The Gaussian noise operator is contractive in L2 due to the explicit formula we gave above. But more
generally, for every p ≥ 1 we have

‖Uρf‖pp = E
x

[|Uρf(x)|p] = E
x

[|E
y
f(ρx+

√
1− ρ2y)|p].
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Applying Jensen’s inequality (using the convexity of |t|p), we see that

‖Uρf‖pp ≤ E
x,y

[|f(ρx+
√

1− ρ2y)|p] = ‖f‖pp.

Hypercontractivity remains true even in Gaussian space, and we can prove this using the central limit
theorem. Here is the basic idea. Consider for simplicity the case n = 1. The central limit theorem tells
us that if x1, . . . , xm are Bernoulli random variables then the distribution of σm = x1+···+xm√

m
approaches

that of a standard Gaussian. Moreover, if (x1, . . . , xm) and (y1, . . . , ym) are ρ-correlated (E[xiyi] = ρ)
and we define τm = y1+···+ym√

m
then E[σmτm] = ρ, and so the joint distribution of (σm, τm) tends to

N(0,
( 1 ρ
ρ 1

)
).

Recall that our hypercontractive estimates ultimately follow from inequalities of the type

〈Tρf, g〉 ≤ ‖f‖q‖g‖q/(q−1).

Suppose we know such an estimate for some ρ, q. We lift it to Gaussian space by considering, for each
f, g ∈ L2 and m, the functions fm, gm on the m-dimensional cube (we are still assuming that n = 1!)
given by fm(x1, . . . , xm) = f(σm), gm(y1, . . . , ym) = g(τm). The central limit theorem shows that
‖fm‖q → ‖f‖q (the first norm on the cube, the second in Gaussian space), and similarly ‖gm‖q/(q−1) →
‖g‖q. Moreover, since

〈Tρfm, gm〉 = E
x,y ρ-correlated

[fm(x)gm(y)],

the multidimensional central limit theorem also shows that 〈Tρfm, gm〉 → 〈Uρf, g〉. Taking the limit
m→∞, we recover the same inequality for Gaussian space.

Differentiating the optimal hypercontractivity estimate yields the Gaussian log Sobolev inequality:

E[f2 log(f2)]− E[f2] logE[f2] ≤ 2E[‖∇f‖2].

7.5 Isoperimetry

Our future application for Majority is Stablest requires an isoperimetric theorem due to Borell. It states
that among all functions f : Rn → [0, 1] with given mean, the one minimizing 〈f, Uρf〉, for any ρ ∈ [0, 1],
is the indicator of a hyperplane (say x1 ≤ t for an appropriate t). We can rotate the hyperplane so that
this function is the indicator of an event of the form x1 + · · · + xn ≤ t, which is the Gaussian analog
of majority. Using the invariance principle, we will deduce a corresponding statement for the Boolean
cube. (The statement can also be proved directly, but for didactic purposes we don’t do that.)

There are several known proofs of Borell’s theorem [Bor75]. Apart from Borell’s proof which used
Erhard symmetrization, there is an elementary proof due to De, Mossel and Neeman using convex-
ity [DMN13], another proof due to Mossel and Neeman [MN14] using the semigroup method, and a
proof of Eldan [Eld14] using Brownian motion. We present some ideas from the proof of De, Mossel
and Neeman. They actually prove a two-function version of Borell’s theorem. For all ρ ∈ (0, 1) and
α, β ∈ [0, 1], define

Λρ(α, β) = Pr
(x,y)∼Nρ

[Φ(x) ≤ α,Φ(y) ≤ β].

Here Φ is the CDF of the standard Gaussian, and Nρ = N(0,
( 1 ρ
ρ 1

)
). We will also use φ for its density.

What Mossel and Neeman show is that every two functions f, g ∈ L2(Rn) bounded by [0, 1] satisfy

E
(x,y)∼Nnρ

[Λρ(f(x), g(y))] ≤ Λρ(E[f ],E[g]).

In order to deduce Borell’s theorem, take g = f , and suppose first that f is Boolean. In this case it
is not hard to check that Λρ(f(x), f(y)) = f(x)f(y), and so the left-hand side is just 〈f, Uρf〉. On the
right-hand side we have Λρ(E[f ],E[f ]), which is the noise stability of a hyperplane.

When f is not Boolean, we can express it as an infinite convex combination
∑
i αifi of Boolean

functions with the same mean. Now√
〈f, Uρf〉 = ‖U√ρf‖ ≤

∑
i

αi‖U√ρfi‖ ≤
∑
i

αi

√
Λρ(E[f ],E[f ]) =

√
Λρ(E[f ],E[f ]).
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We can also go the other way, deducing the functional version in n dimensions from the set version
in n + 1 dimensions. Define sets F and G by (x, z) ∈ F if Φ(z) ≤ f(x), and (y, z) ∈ G if Φ(z) ≤ g(y).
Notice that

E[F ] = E
x

[Pr
z

[Φ(z) ≤ f(x)]] = E
x

[f(x)] = E[f ],

and similarly E[G] = E[g]. For all x, y we have

E
(z,w)∼Nρ

[Λρ(F (x, z), G(y, w))] = E
(z,w)∼Nρ

[F (x, z)G(y, w)] = E
(z,w)∼Nρ

[Pr[Φ(z) ≤ f(x),Φ(w) ≤ g(y)]] = Λρ(f(x), g(y)).

Therefore
E

(x,y)∼Nnρ
E

(z,w)∼Nρ
[Λρ(F (x, z), G(y, w))] = E

(x,y)∼Nnρ
[Λρ(f(x), g(y))].

We can thus deduce the inequality for f, g from the inequality for F,G.
We will actually prove this inequality only for n = 1. The result for general n follows by a simple

induction. Suppose that we know the result for some n, and that f, g ∈ L2(Rn+1). For each a, b, by
restricting the last coordinate we obtain functions fa, gb ∈ L2(Rn). Then

E
(x,y)∼Nn+1

ρ

[Λρ(f(x), g(y))] = E
(a,b)∼Nρ

E
(x,y)∼Nnρ

[Λρ(fa(x), gb(y))]

≤ E
(a,b)∼Nρ

[Λρ(E[fa],E[gb])]

≤ Λρ(E
a
E[fa],E

b
E[gb]) = Λρ(E[f ],E[g]).

Calculation shows that the following modified Hessian matrix is negative semidefinite at any point
x, y, for any σ ∈ [0, ρ]:

Mσ(x, y) =

(
∂2Λρ(x,y)

∂x2 σ
∂2Λρ(x,y)
∂x∂y

σ
∂2Λρ(x,y)
∂x∂y

∂2Λρ(x,y)
∂y2

)
.

This can be summarized by saying that Λρ is ρ-concave. A Taylor expansion shows that

Λρ(E[f ]+a,E[g]+b) = Λρ(E[f ],E[g])+a
∂Λρ
∂x

(E[f ])+b
∂Λρ
∂y

(E[g])+
1

2

(
a b

)(∂2Λρ(E[f ],E[g])
∂x2

∂2Λρ(E[f ],E[g])
∂x∂y

∂2Λρ(E[f ],E[g])
∂x∂y

∂2Λρ(E[f ],E[g])
∂y2

)(
a
b

)
+ε(a, b),

where ε consists of third-order terms. Therefore

E
(x,y)∼Nρ

[Λρ(f(x), g(y))] = Λρ(E[f ],E[g]) + E[f − E[f ]]
∂Λρ
∂x

(E[f ]) + E[g − E[g]]
∂Λρ
∂y

(E[g])+

1

2
E

(x,y)∼Nρ

(
f(x)− E[f ] g(y)− E[g]

)(∂2Λρ(E[f ],E[g])
∂x2

∂2Λρ(E[f ],E[g])
∂x∂y

∂2Λρ(E[f ],E[g])
∂x∂y

∂2Λρ(E[f ],E[g])
∂y2

)(
f(x)− E[f ]
g(y)− E[g]

)
+ E[ε(f, g)].

Since E[f−E[f ]] = E[g−E[g]] = 0, the linear terms cancel. If we expand f−E[f ], g−E[g] in the Hermite
expansion, then we find that

E
(x,y)∼Nρ

[(f(x)− E[f ])(g(y)− E[g])] =

∞∑
i=1

ρif̂(i)ĝ(i) ≤ ρ

√√√√ ∞∑
i=1

f̂(i)2

√√√√ ∞∑
i=1

ĝ(i)2 = ρ
√
V[f ]V[g],

using Cauchy–Schwartz. If we put σf =
√
V[f ], σg =

√
V[g], and σ = E[(f −E[f ])(g−E[g])]/σxσy ≤ ρ,

then the quadratic term is

1

2

(
σf σg

)( ∂2Λρ(E[f ],E[g])
∂x2 σ

∂2Λρ(E[f ],E[g])
∂x∂y

σ
∂2Λρ(E[f ],E[g])

∂x∂y
∂2Λρ(E[f ],E[g])

∂y2

)(
σf
σg

)
≤ 0,

and so
E

(x,y)∼Nρ
[Λρ(f(x), g(y))] ≤ Λρ(E[f ],E[g]) + E[ε(f, g)].
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This is almost what we want, the only problem being the third-order error term! There are two ways
of getting rid of it. The first, used by Mossel and Neeman, is to use the semigroup method instead,
interpolating smoothly between the left-hand side and the right-hand side; the same ρ-concavity property
has to be used. De, Mossel and Neeman instead estimate the error term, showing that it tends to zero
if f, g have low influences (we will see similar phenomena when we discuss Majority is Stablest). An
application of the central limit theorem then completes the proof.

Balanced functions We now derive an explict formula for the bound in Borell’s theorem when
E[f ] = 1/2. It is more natural to consider ±1-valued functions rather than {0, 1}-valued functions, since
now the condition is E[f ] = 0. The optimal function is still a hyperplane; for definiteness, we can choose
f to simply be the sign function. Its noise stability is

Pr
(x,y)∼Nρ

[x, y ≤ 0 or x, y ≥ 0]− Pr
(x,y)∼Nρ

[x ≤ 0 ≤ y or y ≤ 0 ≤ x] = 1−2 Pr
(x,y)∼Nρ

[x ≤ 0 ≤ y or y ≤ 0 ≤ x].

We will calculate the probability that x, y have different signs. Let ρ = cos θ. One way to generate
such correlated x, y is to choose two unit norm 2-dimensional vectors u, v at an angle of θ, and taking
x = 〈u, g〉, y = 〈v, g〉, where g is a 2-dimensional standard Gaussian. Indeed, clearly E[x] = E[y] = 0,
E[x2] = E[y2] = 1, and E[xy] = 〈u, v〉 = cos θ = ρ. We can assume that u is the vector at angle 0, and
v is the vector at angle θ. If the angle of g is γ then 〈u, g〉 ≥ 0 if γ ∈ [−π/2, π/2], and 〈v, g〉 ≥ 0 if
γ ∈ [θ − π/2, θ + π/2]. Therefore x, y have different signs with probability θ/π. We conclude that the
noise stability is

1− 2 cos−1 ρ

π
.
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8 Invariance principle (16 December 2015)

([O’D14, Sections 11.5–11.7])

8.1 Berry–Esseen

The central limit theorem states that if X1, X2, . . . is an infinite collection of independent “reasonable”
random variables then the random variable∑n

i=1(Xi − E[Xi])√∑n
i=1 V[Xi]

converges in distribution to a Gaussian N(0, 1). The Berry–Esseen theorem is a quantitative version of
the central limit theorem, bounding the speed of convergence.

Let X1, . . . , Xn be an infinite collection of independent random variables with zero mean and unit
norm. Our object of study will be the random variable

X =
∑
i

ciXi.

We would like to say that the distribution of X is similar to the distribution of the corresponding normal
random variable N(0,

∑
i c

2
i ), but this is not always the case. Suppose for example that c1 = 1 while

c2 = · · · = cn = 0. In this case we cannot really say much, since X = X1. The Berry–Esseen theorem
states, qualitatively, then if none of the ci is too large compared to the others, then X is indeed close to
the corresponding normal.

The idea of the proof is to replace the random variables Xi one by one by independent standard
Gaussians G1, . . . , Gn. This will show that

X ≈
∑
i

ciGi,

and the latter random variable has the required distribution. Although the measure of approximation
we’re eventually after is CDF distance, the proof becomes much easier by considering test functions,
which are functions satisfying certain properties, in this case having a bounded third derivative. We will
show that for each test function ψ satisfying ‖ψ′′′‖∞ ≤ B,

E[ψ(c1X1 + · · ·+ cnXn)] ≈ E[ψ(c1G1 + · · ·+ cnGn)].

In order to understand the dependence of X on X1, we use a Taylor expansion. Let Y ∼ c2X2 + · · ·+
cnXn. Then

E[ψ(X)] = E
Y,X1

[ψ(Y + c1X1)] = E
Y

[ψ(Y ) + c1X1ψ
′(Y ) + 1

2c
2
1X

2
1ψ
′′(Y ) + 1

6c
3
1X

3
1ψ
′′′(Z)],

where Z is some point in the interval connecting Y and Y + c1X1. Using the bound on the third
derivative, we obtain

E[ψ(X)] = E
Y

[ψ(Y )] +
1

2
c21 E

Y
[ψ′′(Y )]± 1

6
c31 E[|X1|3]B.

We get a very similar estimate if we replace X1 by G1:

E[ψ(c1G1 + Y )] = E
Y

[ψ(Y )] +
1

2
c21 E

Y
[ψ′′(Y )]± 1

6
c31 E[|G1|3]B.

Therefore, using E[|G1|3] = γ3,

|E[ψ(c1X1 + Y )]− E[ψ(c1G1 + Y )]| ≤ B

6
c31(E[|X1|3] + γ3).

Continuing this way, replacing all of X1, . . . , Xn, we deduce

|E[ψ(c1X1 + · · ·+ cnXn)]− E[ψ(c1G1 + · · ·+ cnGn)]| ≤ B

6

n∑
i=1

c3i (E[|X1|3] + γ3).

Note that since E[|Xi|3] = ‖Xi‖33 ≥ ‖Xi‖32 = 1, E[|Xi|3] + γ3 ≤ (1 + γ3)E[|Xi|3]. When is the right-hand
side small? It is natural to normalize by requiring

∑
i c

2
i = 1, and then we would like

∑n
i=1 c

3
i to be

small. Since
∑n
i=1 c

3
i ≤ maxi |ci|, it suffices to assume that all of the individual coefficients are small.
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CDF distance What we are really interested in is CDF distance, and to that end we would like the
function ψ to be ψ(x) = 1x<t. However, this function isn’t smooth. Instead, we use a function ψ = ψt,η
with the following properties:

• ψ(x) = 0 for x ≤ t.

• 0 ≤ ψ(x) ≤ 1 for t ≤ x ≤ t+ η.

• ψ(x) = 1 for x ≥ t+ η.

• ‖ψ′′′‖∞ = O(1/η3).

Here η is a parameter that we can choose. Constructing ψ is a technical exercise which we happily skip.
What does this give us? Let K =

∑n
i=1 c

3
i E[|Xi|3] and G =

∑
i ciGi = N(0,

∑
i c

2
i ). For simplicity,

assume that in fact
∑
i c

2
i = 1. For every η > 0,

|E[ψt,η(X)]− E[ψt,η(G)]| = O(K/η3).

For any random variable R,

Pr[R ≤ t] ≤ E[ψt,η(R)] ≤ Pr[R ≤ t+ η].

This allows us to get the estimate

Pr[X ≤ t] ≤ E[ψt,η(X)] ≤ E[ψt,η(G)] +O(K/η3) ≤ Pr[G ≤ t+ η] +O(K/η3).

Similarly, by considering ψt−η,η instead, we can show that

Pr[X ≤ t] ≥ Pr[G ≤ t− η]−O(K/η3).

Choosing η = K1/4, we see that the Lévy distance between X and G is at most O(K1/4).
This is almost what we wanted. To get what we actually wanted, we need to use the anticoncentration

of Gaussians:
Pr[t ≤ G ≤ t+ η] ≤ η√

2π
= O(η),

a property which follows from the fact that the density of G is pointwise at most 1/
√

2π. How does this
help? As we have seen,

Pr[X ≤ t] ≤ Pr[G ≤ t+ η] +O(K/η3) ≤ Pr[G ≤ t] +O(η +K/η3).

Choosing η = K1/4, we get that Pr[X ≤ t] ≤ Pr[G ≤ t] + O(K1/4). The other inequality is proved in
the same way, and so

|Pr[X ≤ t]− Pr[G ≤ t]| = O(K1/4).

The actual Berry–Esseen theorem is even stronger: it gives an upper bound of the form O(K). The
advantage of our particular proof is that it generalizes to low-degree polynomials.

8.2 Invariance principle

The celebrated non-linear invariance principle of Mossel, O’Donnell and Oleszkiewicz [MOO10] is a
generalization of the Berry–Esseen theorem to low-degree polynomials. The condition that all ci be small
is replaced by the condition that all variables have low influence; otherwise the proof is very similar. For
concreteness, we will treat the case in which Xi are balanced Bernoulli random variables. In this case we
can improve on the argument above by taking a fourth-order Fourier expansion instead of a third-order
one. Therefore our test functions will need to have a bounded fourth derivative: B = ‖ψ′′′′‖∞.

Consider some multilinear polynomial f(X1, . . . , Xn) of degree d. Let us try to mimic the same proof
as above. Write f(x1, . . . , xn) = g(x2, . . . , xn) + x1h(x2, . . . , xn). Then

E[ψ(f(X1, . . . , Xn))] = E
X2,...,Xn

E
X1

[ψ(X1g(X2, . . . , Xn) + h(X2, . . . , Xn))].
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Figure 1: Noise stability of dictator (blue) and majority (red)

We now take a Taylor expansion, and working as before conclude that

E[ψ(f(X1, . . . , Xn))] = E
X2,...,Xn

[h+ 1
2g

2]±O(B E
X2,...,Xn

[g4]).

A similar expression holds for Gaussians, and so

|E[ψ(f(X1, X2, . . . , Xn))− ψ(f(G1, X2, . . . , Xn))]| = O(B E
X2,...,Xn

[g4]).

What can we say about the error term? Note that g is nothing else then the discrete derivative of f ,
and so E[g2] = Inf1[f ]. Hypercontractivity thus allows us to bound

E[g4] ≤ O(1)d E[g2]2 = Cd Inf1[f ]2,

for some constant C. Continuing this way (using the fact that both Bernoullis and Gaussians are
hypercontractive), we see that

|E[ψ(f(X1, . . . , Xn))]−E[ψ(f(G1, . . . , Gn))]| = O(BCd
∑
i

Infi[f ]2) ≤ O(BCdd‖f‖2τ), where τ = max
i

Infi[f ].

Here we used
∑
i Infi[f ] ≤ dV[f ] ≤ d‖f‖2. We see that what controls the quality of the approximation

is the parameter τ . Also, this time f(G1, . . . , Gn) need not be a Gaussian, but rather it is generally some
arbitrary function in Gaussian space.

Corollaries As before, we can deduce as corollaries bounds on the Lévy and CDF distances. The
bound on the Lévy distance is proved in much the same way, the resulting bound being of the form
O(Cd1 τ

1/4). In order to bound the CDF distance, we need to use an anticoncentration result for Gaussian
polynomials due to Carbery and Wright [CW01]. The result states that a degree d Gaussian polynomial
of unit norm can lie in an interval of length ε with probability at most O(dε1/d). This leads to a bound
on the CDF distance of the form O(Cd2 τ

1/O(d)).

8.3 Majority is Stablest

Borell’s theorem states that among all Boolean functions in Gaussian space with mean 1/2, the most noise
stable is a hyperplane. What happens for functions on the Boolean cube? The analog of a hyperplane
is the majority function, which the central limit theorem shows has roughly the same noise stability as a
hyperplane, and so (for a 0/1-valued function) roughly 1/2−cos−1 ρ/2π. Are there any better functions?
Certainly: the function f(x) = x1 is balanced, and has noise stability (1 + ρ)/4, which is much larger
than that of majority (see Figure 1, which plots the noise stabilities of the corresponding ±1-valued
functions). However, it turns out that if we bound the maximal influence of f , then we get a bound
approaching 1/2− cos−1 ρ/2π. This is the Majority is Stablest conjecture (now theorem).

What prompted the authors to prove the invariance principle was the Majority is Stablest conjecture.
Unfortunately, deducing it from Borell’s theorem via the invariance principle is slightly messy. One major
problem is that an arbitrary Boolean function doesn’t have low degree! Fortunately, this can be fixed
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by applying a little noise. Let f be a Boolean function with mean α and maximal influence τ . For some
small δ, let g = T1−δf . Also, let ψ be any C-Lipschitz function (this condition is somewhat more useful
than the condition on bounded fourth derivative). For any d we can write

|E[ψ(g(X))]− E[ψ(g(G))]| ≤ |E[ψ(g≤d(X))]− E[ψ(g≤d(G))]|+O(C‖g>d(X)‖1) +O(C‖g>d(G)‖1).

We can bound ‖g>d‖1 ≤ ‖g>d‖2 ≤ (1− δ)d‖f‖2 ≤ (1− δ)d ≤ e−dδ. In order to bound the first term, we
would like to use the invariance principle. To that end, we construct some smooth approimation to ψ.
It turns out that such smooth approximations ψη exist, with the following properties:

• ‖ψ′′′′η ‖∞ = O(1/η3).

• ‖ψ − ψη‖∞ ≤ η.

Applying the invariance principle to ψη allows us to bound the first term above by O((Cd/η3)τ + η).
Choosing η = Cd/4τ1/4, we conclude that

|E[ψ(g(X))]− E[ψ(g(G))]| = O(Cdτ1/4 + e−dδ).

A good choice for d is logC(1/τ1/8), and this gives an overall bound of O(τ1/8 + τ−O(δ)).
Why is it kosher to apply T1−δ? Since 〈f, Tρf〉 = 〈g, Tρ′g〉, where ρ = ρ′(1 − δ)2. Consider the

function S given by

S(x) =


0 x ≤ 0,

x2 0 ≤ x ≤ 1,

1 1 ≤ x.

Since g is bounded by [0, 1], over the cube 〈g, Tρ′g〉 = E[(T√ρ′g)2] = E[S(T√ρ′g)]. Applying the invariance
principle, we see that

E[S(U√ρ′g)] = 〈g, Tρ′g〉 ±O(τ1/8 + τ−O(δ)).

The idea now is to apply Borell’s theorem to the function g. Unfortunately, while on the Boolean cube g
is certainly bounded by [0, 1], this is not necessarily the case in Gaussian space. However, the invariance
principle shows that it is almost the case. To that end, define the truncation of g by h = min(1,max(0, g)).
This is a function to which Borell’s theorem does apply, and using the invariance principle, we can show
that it is quite close to g. Indeed, the function dist[0,1], the distance to the interval [0, 1], is 1-Lipschitz,
and on the Boolean cube E[dist[0,1](g)] = 0. Therefore

E[dist[0,1](g(G))] = O(τ1/8 + τ−O(δ)).

This quantity bounds ‖g − h‖1 and so |E[g] − E[h]|. Since Λρ(α, α) is itself Lipschitz, Borell’s theorem
shows that

E[S(U√ρ′h)] = E[(U√ρ′h)2] = 〈h, Uρ′h〉 ≤
1

2
− cos−1 ρ′

2π
+O(τ1/8 + τ−O(δ)).

Note that we find here ρ′ instead of ρ, but luckily ρ′ = ρ/(1 − δ)2 is close to ρ, and so assuming δ is
small enough, | cos−1 ρ′ − cos−1 ρ| = O(|ρ− ρ′|) = O(δ). Since S is Lipschitz,

E[S(U√ρ′g)] ≤ E[S(U√ρ′h)] +O(τ1/8 + τ−O(δ)) ≤ 1

2
− cos−1 ρ

2π
+O(τ1/8 + τ−O(δ) + δ).

Putting everything together, we deduce that

〈f, Tρf〉 = 〈g, Tρ′g〉 ≤
1

2
− cos−1 ρ

2π
+O(τ1/8 + τ−O(δ) + δ).

For any fixed δ, as τ → 0, the error term tends to 0. By choosing δ appropriately, this shows that as
τ → 0, the error term tends to 0, completing the proof of Majority is Stablest.

If f is {−1, 1}-valued with E[f ] = 0 then F = (f + 1)/2 is {0, 1}-valued with E[F ] = 1/2, and

〈F, TρF 〉 =
1

4
〈f + 1, Tρf + 1〉 =

1

4
(〈f, Tρf〉+ E[f ] + E[Tρf ] + 1) =

1

4
(〈f, Tρf〉+ 1).

Therefore

〈f, Tρf〉 = 4〈F, TρF 〉 − 1 ≤ 1− 2

π
cos−1 ρ+O(τ1/8 + τ−O(δ) + δ).
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9 Max Cut (28 December 2015)

([O’D14, Section 11.7], [KKMO07], [GO08])
MAX CUT is the following optimization problem. Given an edge-weighted graph G = (V,E), find

a partition V = S ∪ T that maximizes the total weight of edges crossing the partition. This problem is
NP-hard. How well can we approximate it? In a paper describing semidefinite programming, Goemans
and Williamson [GW95] suggested the following semidefinite relaxation. Each vertex i is associated with
a unit vector vi. If we could force the vi to be one-dimensional then vi ∈ {−1, 1}, and then the indicator
of vi 6= vj (i.e., an edge is cut) is simply 1

2 −
1
2vivj . This suggests maximizing the following objective

function: ∑
(i,j)∈E

w(e)

2
[1− 〈vi, vj〉] ,

under the constraints ‖vi‖ = 1. Alternatively, we can write this as follows:

max
∑

(i,j)∈E

w(e)

2
[1−Aij ]

s.t. Aii = 1 for all i

A � 0

Here A � 0 means that A is a symmetric positive semidefinite matrix. Given a solution A, we can recover
vectors vi using Cholesky decomposition.

Suppose that we solve this semidefinite program, obtaining unit vectors v1, . . . , vn. How do we come
up with a partition? Goemans and Williamson suggest picking a random direction g, and putting a
vertex x in S if 〈vx, g〉 ≥ 0. How good is this solution? Suppose that 〈vi, vj〉 = cos θ. As we have seen
before (when calculating the noise stability of hyperplanes), the probability that this edge is cut is θ/π.
This shows that the approximation ratio of the algorithm is

min
θ

θ/π

(1− cos θ)/2
= min

θ

2

π

θ

1− cos θ
.

It turns out that this minimum is roughly 0.8786, achieved at some angle θ ≈ 0.74π.
Amazingly, assuming the Unique Games Conjecture, this is optimal! This was shown by Khot,

Kindler, Mossel and O’Donnell [KKMO07] conditional on the Majority is Stablest conjecture, and it was
this application that provided the impetus for the machinery of the invariance principle.

9.1 Integrality gap

There are two natural questions that one could ask. First, is the analysis of the Goemans–Williamson
algorithm tight? Second, is there a better rounding scheme? Even though the first question is more
relevant for us, we start with the second one, which was answered by Feige and Schechtman [FS02].
They constructed an infinite graph G such that the gap between the maximum cut and the optimal
solution of the SDP is exactly 0.8786.

Here is their infinite graph; corresponding finite examples can be obtained through discretization.
The vertices are all vectors of unit norm in Rn. The edges are given by the following random experiment:
two random unit vectors x, y are chosen subject to the restriction 〈x, y〉 ≤ ρ := cos θ; most of them satisfy
〈x, y〉 ≈ cos θ. It is easy to see that the SDP has a feasible solution of value

E
x,y

1− 〈x, y〉
2

≈ 1− cos θ

2
.

On the other hand, Feige and Schechtman use the method of symmetrization to show that the optimal
cut is a hemisphere consisting, say, of all vectors x such that x1 ≥ 0. How many edges does a hemisphere
cut? Given two random unit vectors x, y whose angle is roughly θ, the probability that x1 ≥ 0 ≥ y1 is
roughly θ/π (consider their projection into two dimensions). The resulting gap matches the promise of
the algorithm as n→∞.

While this shows that the gap 0.8786 is optimal, the integrality gap instance itself is actually solved
optimally by the algorithm. This prompts the following question: does the algorithm ever produce a bad
approximation?
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9.2 Algorithmic gap

More relevant to us is an example due to Karloff [Kar00] in which the Goemans–Williamson algorithm is
off by a factor of 0.8786. This time we present the discretized version of the construction. Our vertices are
all points in {±1/

√
n}n (all unit vectors). Edge weights are again determined by a random experiment,

this time as follows: choose a vertex x at random, then choose y ∼ Nρ(x), and add the edge (x, y).
As before, the graph comes with an embedding whose objective value is

E
x,y

1− 〈x, y〉
2

=
1− ρ

2
.

How did we get E[〈x, y〉] = ρ? If we identify vertices with ±1 vectors, then the inner product of two
vertices x, y (without normalization) corresponds to the usual inner product of the corresponding ±1
vectors (with normalization), and we know that

E
x

E
y∼Nρ(x)

[〈x, y〉] = E
x

1

n

n∑
i=1

E[xiyi] = ρ.

This is in fact an optimal embedding, as we show below. Moreover, the central limit theorem shows
that for most edges (x, y), 〈x, y〉 ≈ ρ. Therefore random hyperplane rounding results in a solution whose
expected value is only roughly θ/π (per our earlier analysis, since most angles are very close to θ). In
contrast, the cut given by x1 = 1/

√
n separates two vectors with probability (1 − ρ)/2 (the probability

that xi 6= yi), and so the resulting approximation ratio is only 0.8786.
It remains to show that the embedding we gave is optimal. Any embedding is given by n functions

F1, . . . , Fn : {±1/
√
n}n → R such that

∑n
i=1 Fi(x)2 = 1 for all vertices x. For each coordinate i,

E[Fi(x)Fi(y)] =
∑
S

ρ|S|F̂i(S)2 ≥ ρ
∑
S

F̂i(S)2 = ρE[F 2
i ],

since ρ < 0. Therefore denoting the complete embedding by F , we have

E[〈F (x), F (y)〉] =

n∑
i=1

E[Fi(x)Fi(y)] ≥ ρ
n∑
i=1

E[F 2
i ] = ρ.

This shows that the embedding is indeed optimal.
Where does the suboptimality stem from? Another optimal solution embeds x at the point (sgnx1, 0, . . . , 0).

This embedding has objective value

E
x,y

1− x1y1

2
=

1− ρ
2

.

If we use random hyperplane rounding on this embedding, then we obtain the optimal solution: if the
random hyperplane is w, then x gets into part sgn(w1 sgnx1) = sgnw1 sgnx1. The semidefinite program
cannot distinguish between these two embeddings, and so it could choose the one that loses a factor of
0.8786 during rounding. Moreover, even if the semidefinite program finds the correct semidefinite matrix,
when the algorithm uses the Cholesky decomposition to find an embedding, it encounters a degree of
freedom which corresponds to a random rotation (since FFT = FQQTFT for all orthogonal Q). This
makes it even harder to find a good embedding.

9.3 Hardness of approximation result

We will use a different version of Unique Label Cover this time. For every δ > 0, there is an alphabet
R such that the following problem is UGC-hard. Given a left-regular bipartite graph (V,W,E) and
permutations ψe labeling the edges, distinguish the following two cases:

YES instance There is a labeling satisfying a 1− δ fraction of the edges.

NO instance Every labeling satisfies at most a δ fraction of the edges.

We construct an instance of Max Cut as follows, where ρ is some parameter:
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Vertices For each w ∈ W and F ⊆ R there is a vertex (w,F ). We identify F with a function R →
{−1, 1}.

Edges Instead of describing a set of edges and weights, we show how to sample an edge. We pick a
vertex v ∈ V and two of its neighbors w,w′ ∈ W at random. We then pick x ∈ {−1, 1}R at
random, y ∼ Nρ(x), and generate the edge (w,ψ−1

vw(x)), (w′, ψ−1
vw′(y)).

As usual, it is easier to understand the construction by considering what happens on a YES instance.
Given a good labeling L, we generate a cut by taking the function f(w,F ) = F (L(w)). A random edge
is satisfied by L with probability at least 1 − δ, and so by the union bound, both edges (v, w), (v, w′)
are satisfied with probability at least 1− 2δ (each one is a random edge since the Label Cover graph is
left-regular). In that case,

f(w,ψ−1
vw(x)) = ψ−1

vw(x)(L(w)) = x(L(v)),

f(w′, ψ−1
vw′(y)) = ψ−1

vw′(y)(L(w′)) = y(L(v)).

Therefore the edge is cut with probability 1−ρ
2 . Overall, the value of the maximum cut is at least

(1 − 2δ) 1−ρ
2 . This suggests choosing ρ = cos(0.74π) < 0. It might be alarming that ρ is negative, but

later we will see that this is not so bad.
If we want to prove that the Goemans–Williamson algorithm is optimal, then we need to consider

instances having a maximum cut of value at least cos−1 ρ/π + ε, for some small ε. Our aim is to show
that these cannot be NO instances. Our starting point is finding a formula for the weight of edges cut
by some function f :

w(f) = E
[

1

2
− 1

2
f(w,ψ−1

vw(x))f(w′, ψ−1
vw′(y))

]
=

1

2
− 1

2
E

v,x,y

(
E[f(w,ψ−1

vw(x))]E[f(w′, ψ−1
vw′(y)]

)
,

since w,w′ are chosen independently. Define gv(x) = Ew[f(w,ψ−1
vw(x))], where the expectation is over

neighbors of v. Using this notation,

w(f) =
1

2
− 1

2
E

v,x,y
[gv(x)gv(y)] =

1

2
− 1

2
E
v
[〈gv, Tρgv〉].

Since w(f) ≥ cos−1 ρ/π + ε, we deduce that

E
v
[〈gv, Tρgv〉] = 1− 2w(f) ≤ 1− 2

π
cos−1 ρ− 2ε.

It follows that an ε-fraction of the vertices satisfies 〈gv, Tρgv〉 ≤ 1− (2/π) cos−1 ρ− ε, since otherwise

E
v
[〈gv, Tρgv〉] > (1− ε)(1− (2/π) cos−1 ρ− ε) ≥ 1− (2/π) cos−1 ρ− 2ε.

Call such a vertex good. We would like to apply the Majority is Stablest theorem (for {−1, 1}-valued
functions), but there is a slight problem, since ρ < 0; and moreover, we don’t know anything about E[gv].

To fix this, let h be the odd part of gv, that is h(x) = (gv(x) − gv(−x))/2. Note that E[h] = 0 and
Infi[h] ≤ Infi[gv] (by considering, for example, the spectral formula). Moreover,

〈gv, Tρgv〉 =
∑
S

ρ|S|ĝv(S)2 ≥
∑
|S| odd

ρ|S|ĝv(S)2 = 〈h, Tρh〉 = −〈h, T−ρh〉.

Majority is Stablest states that if all influences of h are small, then 〈h, T−ρh〉 . 1− 2
π cos−1(−ρ) (this is

the version for {−1, 1}-valued functions). Since cos−1(−ρ) = π − cos−1(ρ), altogether we get that if all
influences of h are small then

〈gv, Tρgv〉 & −(1− 2
π (π − cos−1 ρ)) = 1− 2

π
cos−1 ρ.
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We conclude that if v is good then gv must have an influential variable i. In fact we need a bit
more: that Infi[g

≤k
v ] ≥ τ for some constant k, τ (depending on ε, ρ). If we carefully go over our proof of

Majority is Stablest, we see that because we applied a bit of noise in the beginning, we actually get this
slightly stronger promise (this is essentially because the operator T1−δ cuts g>kv very sharply). Let us
label v with this i = L(v). Since Infi[g

≤k
v ] ≥ τ , we have

τ ≤
∑
S3i
|S|≤k

ĝv(S)2 =
∑
S3i
|S|≤k

E
w

[f̂w(ψ−1
vw(S))]2,

where fw(x) = f(w, x). Convexity of t2 implies that

τ ≤
∑
S3i
|S|≤k

E
w

[f̂w(ψ−1
vw(S))2] = E

w
[Infψ−1

vw(i)[f
≤k
w ]].

Therefore at least a τ/2-fraction of w satisfy Infψ−1
vw(i)[f

≤k
w ] ≥ τ/2; call such a w good with repsect to v.

The reason we had to insist that Infi[g
≤k
v ] ≥ τ rather than just Infi[gv] ≥ τ is that for every w, there

are at most 2k/τ elements satisfying Infj [f
≤k
w ] ≥ τ/2. Let us put all of them in a set C(w). We have

shown above that a τ/2 fraction of w satisfy ψ−1
vw(i) ∈ C(w). Therefore the multi-labeling L(v), C(w)

satisfies an ε(τ/2)-fraction of the constraints: if v is good and w is good (which happens with probability
ε(τ/2)2) then L(v) ∈ ψvw(C(w)). In order to construct an actual labeling, choose a label for w at
random from C(w). Such a labeling satisfies a fraction ε(τ/2)(τ/2k) of the constraints in expectation.
By choosing the parameters carefully, we can make this quantity larger than δ, completing the proof.

9.4 Extensions

Raghavendra’s theorem Raghavendra [Rag09] proved a far-reaching generalization of this result.
Max Cut is a particular constraint satisfaction problem (CSP). A general CSP is given by a list of
allowable constraints. In the case of Max Cut, there is only one constraint, x 6= y. In the case of MAX-
3SAT, there are eight constraints, corresponding to the functions x∨y∨z, x∨y∨ z̄, and so on. How well
can we approximate a CSP? Raghavendra constructed a canonical semidefinite relaxation and showed
how to round it, and proved that the resulting approximation ratio is optimal assuming the unique games
conjecture. His main idea was to convert any integrality gap (an instance in which the SDP produces a
fractional solution much better than the integral optimum) to a PCP reduction.

Approximation resistance A particularly intriguing question here is for which predicates we can
beat the random assignment algorithm. H̊astad [H̊as01] showed that it is NP-hard to approximate
3SAT better than 7/8 and 3LIN (in which disjunctions are replaced by XORs of triplets of variables)
better than 1/2; and these approximations can be produced by choosing a random assignment (if you’re
averse to randomized algorithms, the method of conditional expectations can be used to derandomize
these algorithms). A predicate for which this is true is called approximation resistant. Khot, Tulsiani
and Worah [KTW14] characterize approximation resistant binary predicates assuming the unique games
conjecture, though the characterization is not simple, and perhaps not even decidable.

48



10 Analysis on Znr
(Parts of [O’D14, Chapter 8] and [ADFS04].)

So far the functions we have been considering were on either the Boolean cube or on Gaussian space.
Another common domain is a generalization of the Boolean cube, Znr . It will be convenient to think of
Zr as the set Ωr of rth root of unity. We start by describing the Fourier expansion of functions Ωnr → C,
in a way completely analogous to our description of the case r = 2.

We start by showing, in two ways, that every function Ωnr → C has a unique representation as a
polynomial in which the degree of each variable is at most r − 1; we say that such a polynomial has
individual degree at most r − 1. As before, we will give two proofs: spatial and spectral. We start
with the spatial proof. We first show that every function has some representation as a polynomial of
individual degree at most r − 1, and then that this representation is unique.

The proof of the existence part is by induction on n. The case n = 0 is obvious. Suppose now that
the result holds for some n, and consider a function f : Ωn+1

r → C. For ω ∈ Ωr let fω(x1, . . . , xn) =
f(x1, . . . , xn, ω). By induction, we can write each fi as a polynomial Pi of individual degree at most
r − 1. Define

P =
1

r

r−1∑
i=0

xin+1

∑
ω∈Ω

ω−iPω(x1, . . . , xn).

For τ ∈ Ω we have

P (x1, . . . , xn, τ) =
1

r

r−1∑
i=0

∑
ω∈Ω

(τ/ω)if(x1, . . . , xn, ω).

Since (τ/ω)r = τ r/ωr = 1, τ/ω is also an rth root of unity. Therefore if τ 6= ω we have

r−1∑
i=0

(τ/ω)i =
(τ/ω)r − 1

τ/ω − 1
= 0.

Conversely, when τ = ω, the same sum equals r. We conclude that P indeed represents f .
For uniqueness, as before it suffices to prove that the zero function has a unique representation has

a polynomial of individual degree at most r− 1. The proof is by induction on n. The base case n = 0 is
obvious. Suppose that the result holds for some n, and consider some polynomial P over x1, . . . , xn+1

having individual degree at most r − 1 which represents zero. We can write P =
∑r−1
i=0 x

i
n+1Pi, where

each Pi depends only on x1, . . . , xn. For fixed 0 ≤ j ≤ r − 1 we have

1

r

∑
ω∈Ω

ω−jP (x1, . . . , xn, ω) =
1

r

r−1∑
i=0

∑
ω∈Ω

ωi−jPi(x1, . . . , xn).

If i 6= j then
∑
ω∈Ω ω

i−j = 0 (why? one way to see that is by considering that Ω consists of all powers
of some primitive root of unity), and otherwise the sum equals r. We conclude that

1

r

∑
ω∈Ω

ω−jP (·, ω) = Pi.

Since P represents the zero function, the left-hand side is always zero, and so by induction, Pi is the zero
polynomial. We conclude that P is the zero polynomial.

Fourier basis The more standard proof of this expansion is spectral. We define an inner product on
Ωnr by 〈f, g〉 = E[f̄g], where f̄ is complex conjugation. With each function σ : [n] → {0, . . . , r − 1} we

associate a monomial χσ =
∏n
i=1 x

σ(i)
i . We claim that these monomials are orthogonal and have unit

norm. Indeed, since ω̄ = ω−1 for ω ∈ Ω, this follows from the calculation

〈χσ, χτ 〉 = E

[
n∏
i=1

x
τ(i)−σ(i)
i

]
=

n∏
i=1

1

r

∑
ω∈Ω

ωτ(i)−σ(i).
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There are rn monomials and the dimension of C[Ωnr ] is rn, so the Fourier characters χσ must form an
orthonormal basis. The corresponding Fourier expansion is

f =
∑
σ

f̂(σ)χσ.

Orthonormality implies that 〈f, χσ〉 = f̂(σ). Parseval’s identity now reads

E[f2] =
∑
σ

|f̂(σ)|2.

Notice the absolute value.

Greenwell–Lovász As an application of this Fourier expansion, we prove a result of Greenwell and
Lovász [GL74], follows the method of [ADFS04]. Suppose that we have a traffic light with r possible
lights, which is controlled by n many r-way switches. We are given that whenever all switches change
position, the light always changes. Greenwell and Lovász proved that the traffic light is actually controlled
by a single switch! This is in fact a form of the Erdős–Ko–Rado theorem.

Let f be the indicator function for the set of switch settings giving rise to some specific color. We
know that f is the indicator of an independent set in the graph Kn

r in which two vertices are connected if
they agree on some coordinate. Let A be the adjacency matrix of the graph. Then 〈f,Af〉 = f∗Af = 0.
What is the effect of the operator A on the Fourier expansion? Consider some basis vector χσ. We have

(Aχσ)(x1, . . . , xn) =
∑
y1 6=x1

· · ·
∑
yn 6=xn

χσ(y1, . . . , yn)

=
∑
y1 6=x1

y
σ(1)
1 · · ·

∑
yn 6=xn

yσ(n)
n

=
∏

σ(i)=0

(r − 1)×
∏

σ(i)6=0

(−xσii )

= (r − 1)n−|σ|(−1)|σ|χσ,

where |σ| is the Hamming weight of σ, that is, the number of entries different from zero. Substituting
this in the identity 〈f,Af〉 = 0, we obtain∑

σ

|f̂(σ)|2(r − 1)n−|σ|(−1)|σ| = 0.

We also know that
∑
σ |f̂(σ)|2 = ‖f‖2 = E[f ] and that f̂(0) = 〈f, 1〉 = E[f ]. Therefore

0 = (r − 1)n E[f ]2 +
∑
σ 6=0

|f̂(σ)|2(r − 1)n−|σ|(−1)|σ|

≥ (r − 1)n E[f ]2 − (r − 1)n−1
∑
σ 6=0

|f̂(σ)|2

≥ (r − 1)n E[f ]2 − (r − 1)n−1(E[f ]− E[f ]2).

We conclude that 1− E[f ] ≥ (r − 1)E[f ] or E[f ] ≤ 1/r.
Considering the indicator functions fω for all possible colors ω ∈ Ω, the upper bound E[fω] ≤ 1/r

implies that E[fω] = 1/r for all ω ∈ Ω. Equality is only possible if the only non-zero Fourier coefficients
are those whose support has size at most 1. We thus deduce that

fω(x1, . . . , xn) =

n∑
i=1

fω,i(xi).

(This representation isn’t unique.) The fact that fω is Boolean forces at most one fω,i to be non-constant.
In other words, fω depends on a single coordinate iω. Since E[fω] = 1/r, there is some τω such that
fω(x) = [xiω = τω]. It is not hard to check that since the traffic light can have at most one light at a
time, the indices iω must be the same for all ω ∈ Ω. This completes the proof.
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Influence We can define influence and noise in this case as well (though we don’t present any appli-
cations). We start with influence.

Let Lif(x1, . . . , xn) = f(x1, . . . , xn)− 1
r

∑
yi
f(. . . , yi, . . .). In order to understand the effect of Li on

the Fourier expansion, we compute Lix
d
i when d 6= 0 (clearly Li1 = 0):

Lix
d
i = xdi −

1

r

∑
yi

ydi = xdi .

This shows that
Lif =

∑
σ(i) 6=0

f̂(σ)χσ.

This prompts the definition

Infi[f ] = ‖Lif‖2 =
∑
σ(i)6=0

|f̂(σ)|2.

The corresponding spatial definition is

Infi[f ] = E[(f(x)− f(y))2],

where x is a random point and y is a random neighbor, where x is considered a neighbor of itself.
Alternatively,

Infi[f ] = E
x1,...,xi−1,xi+1,...,xn

E
xi

[(f(. . . , xi, . . .)− E
yi
f(. . . , yi, . . .))

2] = E
x1,...,xi−1,xi+1,...,xn

V
xi

[f ].

When f is 0/1-valued, Infi[f ] is the probability that f changes when we randomize its ith coordinate.
We can define the total influence as before Inf[f ] =

∑
i Infi[f ], and we get the nice formula

Inf[f ] =
∑
σ

|σ||f̂(σ)|2.

This prompts us define the degree-d part of f by

f=d =
∑
|σ|=d

f̂(σ)χσ.

We then have Inf[f ] =
∑
d d‖f=d‖2. This is a special case of the Efron–Stein decomposition (which also

has many other names), see [O’D14, Section 8.3].

Noise We proceed to define the noise operator, for ρ ∈ [0, 1]. Given a point x ∈ Ωnr , let yi = xi with
probability ρ, and yi is chosen randomly from Ωr otherwise. We define (Tρf)(x) = E[f(y)]. Clearly
Tρ1 = 1. The effect of Tρ on xdi for d 6= 0 is

Tρx
d
i = ρxdi + (1− ρ) E

ω∈Ωr
[ωd] = ρxdi .

Therefore
Tρf =

∑
σ

ρ|σ|f̂(σ)χσ =
∑
d

ρdf=d.

Our proof of Friedgut–Kalai–Naor used the hypercontractive inequality. Alon et al. [ADFS04] gener-
alize this proof to this setting, and as a result obtain a stability version of the Erdős–Ko–Rado theorem
in this setting. So there is at least one application of these generalizations!

Efron–Stein decomposition There is a decomposition which is in between the Fourier expansion
itself and the very rough decomposition into degree d parts, which is a special case of the Efron–Stein
decomposition. For each subset S ⊆ [n] we define f⊆J as f averaged over coordinates not in J , and f=S

by

f=S =
∑
J⊆S

(−1)|S|−|J|f⊆J .
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(This formula is a result of Möbius inversion on the formula f⊆S =
∑
J⊆S f

=J .) What does this give

in our case? There is an obvious guess, and to verify it we first need to compute f⊆J . At this point, a
routine calculation gives

f⊆J =
∑

σ : suppσ⊆J

f̂(σ)χσ,

where supp(σ) = {i : σ(i) 6= 0}. Therefore

f=S =
∑
J⊆S

(−1)|S|−|J|
∑

σ : suppσ⊆J

f̂(σ)χσ =
∑

σ : suppσ=S

f̂(σ)χσ,

using Möbius inversion again. In particular, this shows that

f =
∑
S⊆[n]

f=S

is an orthogonal decomposition, another generalization of the usual Fourier transform.
The formula used to define f=S makes sense in more general situations, and one can prove that

the resulting decomposition is always orthogonal (see [O’D14, Theorem 8.35]). This decomposition
is variously named Hoeffding decomposition, Efron–Stein decompositions, ANOVA decomposition, or
simply orthogonal decomposition.
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11 Roth’s theorem for Zn3
(Ryan O’Donnell’s lecture notes [O’D07, Lecture 27].)

The classical theorem of van der Waerden in Ramsey theory states that if the integers are colored
using finitely many colors, then there are arbitrarily long monochromatic arithmetic progressions. In
fact, for every number of colors c and any length k there exists a number n such that any c-coloring
of [n] contains a k-term arithmetic progression. The corresponding “density” version of this theorem
would state that for any c, k there exists a number n such that any subset of [n] of density 1/c contains
a k-term arithmetic progression. This clearly implies van der Waerden’s theorem.

The density version of van der Waerden’s theorem was proven by Roth using Fourier analysis on Zn.
Let rk(n) be the minimum density such that any subset of [n] of this density must contain a k-term
arithmetic progression. (A simple averaging argument due to Varnavides shows that any set of density
(1+ε)rk(n) must contain many k-term arithmetic progressions.) The density version of van der Waerden’s
theorem implies that r3(n) → 0. How fast does r3(n) tend to 0? Behrend gave a construction showing

that r3(n) = Ω(n/e−
√

logn), and the best upper bound, due to Bloom, is r3(n) = O(n(log log n)4/ log n).
Erdős and Turán conjectured that any sequence (ai) satisfying

∑
i 1/a1 = ∞ contains arbitrarily large

arithmetic progressions.
If we could improve Bloom’s bound to O(n/ log n), then it would follow that the primes, whose density

is n/ log n, contain infinitely many 3-term arithmetic progressions. (In fact, r3(n) = O(n log log n/ log n)
would suffice, as Gowers [Gow13] observes.) Van der Corput proved unconditionally that the primes
contain infinitely many 3-term arithmetic progressions.

Roth proved his result using Fourier analysis (Croot and Sisask later showed how to modify the
argument to avoid Fourier analysis), but his proof doesn’t immediately generalize to longer arithmetic
progressions. Szemerédi extended Roth’s theorem to k-term arithmetic progressions for any k, using his
regularity lemma. Furstenberg and Katznelson reproved the result (without explicit density bounds)
using ergodic theory. Finally, Gowers was able to generalize Roth’s original proof using higher-order
Fourier analysis. Green and Tao were able to transfer these results to the primes, thus showing that
the primes (and in fact any subset of primes with positive density) contain arbitrarily long arithmetic
progressions.

Roth’s theorem follows from a similar result for the group Zn (a subset of [n] can be embedded
in Z3n so that a 3-term arithmetic progression in the latter corresponds to one in the former). More
generally, arithmetic progressions make sense for any Abelian group G, where an arithmetic progression
is a sequence of the form x, x + d, x + 2d, . . . , x + (k − 1)d. For k-term arithmetic progressions it is
prudent to demand that no non-zero element satisfies (k − 1)d = 0. In particular, for k = 3 we need G
to have odd order. Meshulam [Mes95] proved an analog of Roth’s theorem for finite Abelian groups of
odd order and high rank (number of factors in a maximal decomposition); his proof is much simpler and
less technical than Roth’s.

We will concentrate on the case G = Zn3 . Our goal would be to show that for some constant C, if
A ⊂ Zn3 contains at least C3n/n elements then A contains a 3-term arithmetic progression. We follow
the exposition in Ryan O’Donnell’s lecture notes.

Let f be the characteristic function of A, and let µ = E[f ] ≥ C/n. We can represent an arithmetic
progression x, x+ d, x+ 2d in a simpler form: letting y = x+ d, the progression becomes x, y, 2x− y =
−x−y. If we were to choose A randomly by putting in each element with probability µ, then for random
x, y, the probability that x, y,−x − y ∈ A is µ3. Hence if A is “random-looking”, we expect A to have
many 3-term arithmetic progressions. How do we quantify the “randomness” of A? It turns out that
from the point of view of 3-term arithmetic progressions, A is random unless it has a prominent Fourier
coefficient. We get this by explicitly counting the number of 3-term arithmetic progressions, repeating
calculations that we had encountered earlier while analyzing the BLR linearity test.

The number of 3-term arithmetic progressions is the number of pairs x 6= y satisfying x, y,−x−y ∈ A.
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In order to get an expression for this, we first ignore the constraint x 6= y, and calculate:

Pr[x, y,−x− y ∈ A] = E[f(x)f(y)f(−x− y)]

= E
x,y

∑
σ,τ,υ

f̂(σ)f̂(τ)f̂(υ)χσ(x)χτ (y)χυ(−x− y)

= E
x,y

∑
σ,τ,υ

f̂(σ)f̂(τ)f̂(υ)χσ(x)χυ(x)χτ (y)χυ(y)

=
∑
σ

f̂(σ)3

= µ3 +
∑
σ 6=0

f̂(σ)3.

(In the calculation we used orthogonality of characters, together with the fact that χσ(−x) = χσ(x),
which follows from ω−1 = ω for any root of unity ω.) We call such a formula a counting formula.

The actual number of 3-term arithmetic progressions is thus

9n Pr[x, y,−x− y ∈ A]− |A| = 9n

µ3 − 3−nµ+
∑
σ 6=0

f̂(σ)3

 .

We want to find a condition for the right-hand side to be positive, and to this end we proceed to estimate
the error term: ∣∣∣∣∣∣

∑
σ 6=0

f̂(σ)3

∣∣∣∣∣∣ ≤
∑
σ 6=0

|f̂(σ)|3

≤
∑
σ 6=0

|f̂(σ)|2 max
σ 6=0
|f̂(σ)|

= (µ− µ2) max
σ 6=0
|f̂(σ)|.

Therefore if all non-constant Fourier coefficients are small compared to µ2, then A contains 3-term
arithmetic progressions, just by counting. This suggests measuring the randomness of A in terms of the
largest magnitude of a non-constant Fourier coefficient. We say that A is ε-pseudorandom if |f̂(σ)| ≤ ε
for all σ 6= 0 (recall that f is the characteristic function of A). If A is µ2-pseudorandom then the number
of 3-term arithmetic progressions is at least

9n
(
µ3 − 3−nµ− (µ− µ2)µ2

)
= 9nµ

(
µ4 − 3−nµ

)
,

which is positive as long as µ3 > 3−n.
What if A is not µ2-pseudorandom? In that case f must correlate noticeably with some Fourier

character χσ, and this gives A some structure; this is known as the structure versus pseudorandomness
paradigm, first appearing in Szemerédi’s work. The idea now is to find a substructure H of Zn3 inside
which A has larger density. If A ∩ H is pseudorandom, then A ∩ H contains a 3-term arithmetic
progression. Otherwise, we find a substructure of H inside which A has an even larger density, and so
on. This process cannot go on forever, since the density of A keeps increasing. This kind of argument is
known as a density increase argument, and it first appears in the same work of Szemerédi.

What kind of structure is implied by |f̂(σ)| being large? It is natural to partition Zn3 into three
subsets, according to the value of χσ. Notice that

f̂(σ) = 3−n
∑
x

f(x)χσ(x) = 3−n
∑
ω∈Ω

ω
∑

χσ(x)=ω

f(x) = E
ω∈Ω

E[f(x)|χσ(x) = ω].

(Here Ω = Ω3 consists of all third roots of unity.) In particular, if |f̂(σ)| ≥ µ2 then |E[f(x)|χσ(x) =
ω]| ≥ µ2 for some ω ∈ Ω, which implies that the density of f is at least µ2 on {x : χσ(x) = ω}. Since
µ2 < µ, this is not really what we wanted.
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To fix this, we look at g = f−µ instead; since σ 6= 0, |ĝ(σ)| = |f̂(σ)| ≥ µ2. Let δω = E[g(x)|χσ(x) = ω]
and µω = E[f(x)|χσ(x) = ω], and note that µω = µ + δω. We thus want to show that one of the δω is
positive and large. The preceding argument shows that |δω| ≥ µ2 for some ω, but we get no guarantee
that δω > 0. To fix this, note that E[δω] = E[g] = 0, and so

µ2 ≤ |ĝ(σ)| ≤ E
ω∈Ω

[|δω|] = E
ω∈Ω

[|δω|+ δω] = 2 E
ω∈Ω

[δω1δω>0].

It follows that δω ≥ µ2/2 for some ω ∈ Ω.
Concluding, for some ω ∈ Ω it holds that the density of A inside H = {x ∈ Ωn : χσ(x) = ω} is

at least µ + µ2/2. We can think of H as a subset of Zn3 obtained as the set of solutions to the single
equation of the form

∑
i aixi = b, and then we can write H in the form H = TZn−1

3 + z, where T is a
full rank linear transformation. It is then natural to consider B = T−1(A ∩H − z), which is a subset of
Zn−1

3 of density at least µ+µ2/2. An arithmetic progression x, y,−x− y in B translates to the sequence
Tx+ z, Ty + z, T (−x− y) + z in A, which is an arithmetic progression since the sum of the outer terms
is double the inner term: Tx + z + T (−x − y) + z = −T (y) + 2z = 2(T (y) + z). Thus if B contains a
3-term arithmetic progression, so does A.

Summarizing our work so far, we have shown that if A is a subset of Zn3 of measure µ > 3−n/3

without a 3-term arithmetic progression, then there is a subset B ⊆ Zn−1
3 of measure µ+ µ2/2 without

a 3-term arithmetic progression. Continuing this way 2/µ times, we have doubled the density; and so
continuing this way 4/µ times, we have made the density infinite, which is absurd. This implies that
after some i < 4/µ steps, we have reached a set of measure µi ≤ 3−(n−i)/3. This definitly cannot happen
if µ > 3−(n−4/µ)/3. If µ > C/n then 3−(n−4/µ)/3 < 3−(1−4/C)(n/3), and so for any C > 4 and large
enough n, µ > C/n implies that µ > 3−(n−4/µ)/3 and the density increment argument works. We have
shown that any subset of Zn3 of density Ω(3n/n) contains a 3-term arithmetic progression.

We can try to replicate the same proof for longer arithmetic progressions. We will find out that the
pseudorandomness condition isn’t good enough for the counting lemma to imply that the set has 4-term
arithmetic progressions. Gowers found stronger pseudorandomness conditions given by his (Gowers)
uniformity norms, and this led to higher-order Fourier analysis.

55



12 Reed–Muller codes

(Kumar and Pfister [KP15].)
One of the central problems in information theory is that of channel capacity. We want to transfer data

through a channel, and the question is how to overcome noise in the channel. Two classical channels are
the binary symmetric channel and the binary erasure channel. In the binary symmetric channel BSC(p),
data is sent in as bits. Independently, each bit is flipped with probability p. The capacity of this channel
(we explain later what this means) is 1−h(p), where h(p) = −p log2 p− (1− p) log2(1− p) is the entropy
function. In the binary erasure channel BEC(p), data is also sent in bits. Independently, each bit is
erased (changed to ∗) with probability p. The capacity of this channel is 1 − p. (The binary deletion
channel is the superficially similar channel in which each bit is deleted with probability p; we don’t see
the positions of the deleted bits, rather they are just absent from the output stream. The capacity of
this channel is still unknown.)

Suppose that we want to send n bits of information through the binary erasure channel. The number
of bits coming out is (usually) roughly (1− p)n, and so we don’t expect to be able to reliably send more
than that many bits of data. Moreover, with some small probability pn all bits are erased, so we cannot
guarantee being able to send any amount of information. The definition of capacity is thus a bit subtle.

We start by defining codes. A code is a collection of 2k binary vectors of some length n. The rate
of the code is k/n. We use the code in the following way. We translate a message m of length k bits
into a codeword X. We send X through the channel to get Y . Now we run some decoding procedure to
get a codeword Z. If X = Z then we say that the decoding was successful. The error probability of a
decoding procedure is the probability that decoding was successful given a uniformly random message.

For a given channel, a rate r is achievable if there is a sequence of codes Cn whose rate tends to r
which can be decoded with error probability tending to zero. The capacity of a channel is the maximum
rate achievable. Shannon gave a formula for the rate of a channel, and this formula implies the claimed
capacities of BSC and BEC. The codes that Shannon uses to prove his theorem are random, and so
cannot be used in practice. One of the main aims of coding theory is finding codes with good parameters
for which encoding and decoding is efficient. We say that a sequence of codes Cn is capacity-achieving
for a channel if their rates tend to the capacity of the channel and they can be decoded with error
probability tending to zero. We are thus looking for capacity-achieving codes which have low encoding
and decoding complexity.

While capacity-achieving families of codes are known for both BEC and BSC, some of the common
families of codes in standard use are not known to achieve capacity. One of these standard codefamilies
is Reed–Muller codes, which we describe later on. Recently, a simple connection between this question
and sharp threshold theorems has been discovered by two groups, Kudekar et al. [KMEU15] and Kumar
and Pfister [KP15]. Both groups analyzed Reed–Muller codes with respect to BEC, showing that in some
sense they are capacity-achieving. The result obtained by the second group is stronger, and to obtain
their stronger result they have to use a deep sharp threshold theorem of Bourgain and Kalai [BK97]. It
is their work which we follow here.

Let C ⊆ {0, 1}n be a linear code of dimension k. This just means that C is a vector subspace
of {0, 1}n (under addition modulo 2). Since C has dimension k, it has 2k codewords and so its rate
is r = k/n. One particularly simple decoding procedure for this code under the BEC is as follows.
Denoting by X the input to the channel and Y the output of the channel, if Yi 6= ∗ then we know that
Xi = Yi. Even if Yi = ∗ then it might be the case that all codewords consistent with Y have the same
value for the ith coordinate, and again we recover Xi. Otherwise we declare failure. We will analyze the
success probability of this decoding procedure with respect to the binary erasure channel in which the
probability of erasing the ith bit is pi.

Let X be a uniformly random codeword of C, and let Y be the corresponding output of the binary
erasure channel with erasure probabilities p = (p1, . . . , pn). Denote by αi(p) the probability that the
decoding procedure outlined above fails in decoding the ith bit, and by βi(p) the same probability under
the assumption that Yi = ∗. Clearly αi(p) = piβi(p), and βi(p) is independent of pi.

Given Y , the set of codewords which could map to Y form an affine subspace V (Y ). We define
D(p) = E[dimV (Y )]. (The original paper defines D(p) = H(X|Y ), where H is entropy, but in our case
we can avoid the concept of entropy.) How doesD(p) depend on pi? Let Y [i] result from setting the ith bit
to ∗. If Yi = ∗ then V (Y ) = V (Y [i]). Otherwise, either V (Y ) = V (Y [i]) or dimV (Y ) = dimV (Y [i])− 1,
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the latter case happening with probability βi(p). Therefore D(p) = E[dimV (Y [i])]− (1−pi)βi(p). Since
the first term doesn’t depend on pi, we conclude that

∂D(p)

∂pi
= βi(p).

Why is this useful? Let D(p) be the value of D at the constant p vector. The formula implies that

dD(p)

dp
=
∑
i

∂D(p)

∂pi
=

n∑
i=1

βi(p).

Since clearly D(1) = k whereas D(0) = 0, integration gives the so-called area formula∫ 1

0

1

n

n∑
i=1

βi(p) dp =
k

n
.

Let β(p) = (1/n)
∑
i βi(p) (in fact, all our codes will be symmetric and so β(p) = βi(p) for all i.) A

simple coupling argument shows that β is increasing. If β had a sharp threshold then the area formula
implies that this threshold must occur close to k/n, and so as long as p < k/n, β(p) ≈ 0, that is, the
average bit is decoded correctly with high probability. If β(p) = o(1/n) then the entire codeword is
decoded correctly with high probability.

In order to analyze βi(p), let us find an alternative expression for it. Let S = {i : Yi = ∗} ∪ {i}. It is
not hard to check that the ith bit cannot be decoded iff S contains the support of some codeword x which
furthermore satisfies xi = 1. If we let Ci = {x ∈ C : xi = 1} and Ui = {A \ i : A ⊃ suppx for some x ∈
Ci}, then βi(p) = µ

[n]\i
p (Ui). Since the set Ui is monotone, the Russo–Margulis lemma shows that

dβi(p)

dp
=

Inf(p)[f ]

p(1− p)
.

If each Ui is invariant under some transitive permutation group (this happens, for example, when C is
invariant under some 2-transitive permutation group), then all influences are equal, and so the KKL
theorem shows that

dβi(p)

dp
= Ω(βi(p)(1− βi(p)) log(n− 1)) = Ω(βi(p)(1− βi(p)) log n).

If βi(p0) = ε and βi(p1) = 1− ε, then this implies that 1− 2ε = Ω((p1 − p0)ε(1− ε) log n), and so

β−1
i (1− ε)− β−1(ε) = O

(
1

ε log n

)
.

When the code is invariant under some transitive permutation group, we can replace βi by β. The area
formula implies that

k

n
≥ (1− ε)(1− β−1(1− ε)) ≥ (1− ε)(1− β−1(ε)−O(1/ε log n)).

Rearranging gives

1− β−1(ε) ≤ (1− ε)−1 k

n
+O

(
1

ε log n

)
=
k

n
+O

(
ε+

1

ε log n

)
.

Stated differently,

β

(
1− k

n
− Ω

(
ε+

1

ε log n

))
≤ ε.

In other words, if a code satisfies the requisite conditions (say it is invariant under some 2-transitive
permutation group), then the probability that decoding fails for a fixed bit at erasure probability p is
at most ε as long as the rate of the code is 1 − p − Ω(ε + 1/ε log n). In other words, such a code is
capacity-achieving with respect to decoding individual bits.
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In order to show that a code is capacity-achieving, we need to show that nβ(1 − k/n − δ) → 0
rather than just β(1 − k/n) → 0. To this end, let us start by analyzing the implications of KKL
more carefully. For p ≤ β−1(1/2), we can rewrite the guarantee of KKL as β′(p) = Ω(β(p) log n).
The solution to B′(p) = CB(p) is B(p) = AeCp, and so for p0 ≤ p1 ≤ β−1(1/2) we actually have
β(p1)/β(p0) ≥ exp Ω((p1 − p0) log n). In particular, (1/2)/ε ≥ exp Ω((β−1(1/2)− β−1(ε)) log n), or

β−1(1/2)− β−1(ε) = O

(
log(1/2ε)

log n

)
.

A similar estimate holds for β−1(1− ε)− β−1(1/2), and we conclude that

β−1(1− ε)− β−1(ε) = O

(
log(1− ε)/ε

log n

)
.

Repeating the preceding calculations, we get

β

(
1− k

n
− Ω

(
ε+

log(1/ε)

log n

))
≤ ε,

and so the probability that decoding fails for a particular bit at erasure probability p is at most ε if the
rate of the code is

1− p− Ω

(
ε+

log(1/ε)

log n

)
.

Our goal is to achieve ε = o(1/n) (so that all bits are decoded correctly with high probability) while
keeping the rate error term o(1). This is impossible using our current bounds.

Suppose, however, that we could strengthen KKL and show that

dβ(p)

dp
= Ω(β(p)(1− β(p)) log n · γ(n))

for some function γ(n) = ω(1). The same calculations as before show that we only need the rate to be

1− p− Ω

(
ε+

log(1/ε)

log n · γ(n)

)
.

In particular, choosing ε = e− log(n)
√
γ(n) = o(1/n), the rate is 1− p− o(1).

Reed–Muller codes At this point we can describe Reed–Muller codes. Let F = GF (q) (we will be
interested in the case q = 2). For parameters m, d, the Reed–Muller code RM(m, d) is the graphs of all
polynomials of degree at most d on Fm (when d = 1 we get Reed–Solomon codes). Thus n = qm and
qk =

∑
D≤d

(
m
D

)
(q − 1)D. This is a linear code, and as m tends to infinity, we can find values of d that

will ensure that the rate is roughly r for any r of our choosing. If f is a polynomial of degree at most
d then so is x 7→ f(Ax + b), where A is any invertible linear transformation; this can be seen through
the Fourier expansion of f . This shows that the code is invariant under the action of the affine group,
which is 2-transitive. It is thus eligible for our calculations. A deep result of Bourgain and Kalai [BK97]
strengthens KKL to γ(n) = log log n (this result applies to any linear-invariant code, that is, a code
invariant under the group of linear transformations), and allows us to conclude that these codes achieve
capacity.

What about the binary symmetric channel? It is conjectured that Reed–Muller codes achieve capacity
in this case as well, with a different simple decoder, the MAP or ML decoder (both are the same in this
case), which decodes each bit separately according to which value of that bit was more likely to result
in Y assuming that all other bits were chosen at random. Perhaps the proof above can be generalized
to cover this case as well.
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