
A polynomial algorithm for SAT

Yuval Filmus

April 25, 2017

1 Computation model

In this short note, we exhibit polynomial algorithms for SAT and TQBF, in an appropriate computation
model. Our model allows performing both arithmetic operations and bitwise operations, charging 1 for each
operation. In more detail, all our variables are integers, and we support the following operations:

1. a← b + c.

2. a← b− c.

3. a← bc.

4. a← bb/cc. (If c = 0, the output is undefined.)

5. a← b mod c. (If c = 0, the output is undefined.)

6. a← b&c (bitwise AND). (If b, c are not both non-negative, the output is undefined.)

7. a← b|c (bitwise OR). (If b, c are not both non-negative, the output is undefined.)

8. a← bˆc (bitwise XOR). (If b, c are not both non-negative, the output is undefined.)

In addition, we allow control operations (comparison, IF, WHILE, and so on).

2 A polynomial algorithm for SAT

SAT (or rather, its variant Formula-SAT) is the following problem. Given a formula ϕ over the de Morgan
basis (∨,∧,¬), is there a truth assignment for the variables in ϕ which satisfies ϕ? If so, we say that ϕ is
satisfiable, and otherwise ϕ is unsatisfiable. For simplicity, we assume that the variables are x1, . . . , xn for
some n.

For example, the formula
(x1 ∨ (x2 ∧ ¬x3)) ∧ x4

is satisfiable (assigning TRUE to all variables satisfies it), whereas the formula

x1 ∧ ¬x1

is unsatisfiable.
We say that an algorithm for SAT is polynomial if on a formula on n variables of length N it runs in

time poly(n,N), in the computation model described in the introduction.
Our algorithm will use the truth table representation of Boolean function, in which we identify TRUE

with 1 and FALSE with 0. Given a Boolean function f on x1, . . . , xn, we define

〈f〉n =

1∑
t1=0

· · ·
1∑

tn=0

22
0t1+21t2+···+2n−1tnf(t1, . . . , tn).

1

In other words, bit tn . . . t1 (interpreted as a binary number) of 〈f〉n is f(t1, . . . , tn).
For example, let f = x1 ∨ ¬x2. Then

〈f〉2 = (1011)2 = 11.

Reading the bits from right to left and starting with zero, the zeroth bit corresponds to (x1, x2) = (0, 0), the
first to (1, 0), the second to (0, 1), and the third to (1, 1).

Here is the idea of our algorithm. We will give an efficient algorithm for computing 〈xi〉n (that is, 〈f〉n
for f(x1, . . . , xn) = xi) for all i. Then we will give efficient algorithms to compute 〈¬f〉n from 〈f〉n, and
〈f ∧ g〉n, 〈f ∨ g〉n from 〈f〉n and 〈g〉n. Using all of these, it is possible to compute 〈ϕ〉n efficiently, and then
ϕ is satisfiable iff 〈ϕ〉n 6= 0.

Computing 〈xi〉n We have

〈xi〉n =

1∑
t1=0

· · ·
1∑

ti−1=0

1∑
ti+1=0

· · ·
1∑

tn=0

22
0t1+···+2i−2ti−1+2i−1+2iti+1+···2n−1tn

=

2i−1−1∑
r=0

2n−i−1∑
s=0

2r+2i−1+2is

= 22
i−1

2i−1−1∑
r=0

2r

2n−i−1∑
s=0

(22
i

)s

= 22

i−1

·
(

22
i−1

− 1
)
·
(

22
n − 1

22i − 1

)
=

22
i−1

(22
n − 1)

22i−1 + 1
.

We can compute 22
x

using x multiplication operations by repeatedly squaring 2, so the entire computation
uses O(n) operations.

Computing 〈¬f〉n from 〈f〉n It is not hard to check that

〈¬f〉n = 22
n

− 1− 〈f〉n.

Indeed, if we think of 〈f〉n as a bitstring of length 2n, then we obtain 〈¬f〉n by complementing it (negating
all bits), and this is the same as subtracting it from the bitstring 12

n

, whose numerical value is 22
n − 1.

Computing 〈f ∧ g〉n and 〈f ∨ g〉n given 〈f〉n and 〈g〉n This is just bitwise AND and bitwise OR, which
are primitive operations in our model.

3 A polynomial algorithm for TQBF

TQBF (Totally Quantified Boolean Formulas) is a generalization of SAT. Given a formula ϕ on the variables
x1, . . . , xn, in SAT we are interested in the truth value of

∃x1∃x2 · · · ∃xnϕ(x1, . . . , xn).

In TQBF, we are given a formula ϕ and n quantifiers Q1, . . . , Qn (each either ∃ or ∀), and we are interested
in the truth value of

Q1x1Q2x2 · · ·Qnxnϕ(x1, . . . , xn).

2

For example,
∀x1∃x2(x1 ∧ x2) ∨ (¬x1 ∧ ¬x2)

belongs to TQBF (it is a true statement), but if we switch the quantifiers to ∃x1∀x2 it doesn’t belong to
TQBF (it is a false statement).

The polynomial algorithm for TQBF is an extension of the polynomial algorithm for SAT, and it uses
the same building blocks. It first computes 〈ϕ〉n. The crucial observation is that as bitstrings we have the
equality

〈ϕ〉n = 〈ϕ|xn=1〉n−1〈ϕ|xn=0〉n−1,

where ϕ|xn=b is the formula (or function) on the n− 1 variables x1, . . . , xn−1 whose value at x1, . . . , xn−1 is
ϕ(x1, . . . , xn−1, b), that is, we obtain it by substituting b for xn. We can extract the two parts as follows:

〈ϕxn=1〉n−1 = b〈ϕ〉n/22
n−1

c, 〈ϕxn=0〉n−1 = 〈ϕ〉n mod 22
n−1

.

We can then compute 〈Qnxnϕ〉n−1 using the formulas

〈∀xnϕ〉n = 〈ϕxn=1〉n−1&〈ϕxn=0〉n−1, 〈∃xnϕ〉n = 〈ϕxn=1〉n−1|〈ϕxn=0〉n−1.

Repeating this n−1 more times, we can compute 〈Q1x1 · · ·Qnxnϕ〉0, whose numeric value is the truth value
of Q1x1 · · ·Qnxnϕ.

4 So P=NP=PSPACE?

SAT is NP-complete, and TQBF is PSPACE-complete. So it would seem that we have shown that P =
NP = PSPACE, which is considered unlikely. What went wrong? If we try to convert the algorithms into
a more conventional model such as Turing machines or the RAM model, then we only get exponential time
algorithms, since 〈ϕ〉n has length 2n, and so operations on it take time Ω(2n). Our model is thus “too
strong”. Nevertheless, similar models are used in arithmetic complexity theory, especially in contexts where
“cheating” (using very large numbers) is ruled out for some reason.

3

