
Fast matrix multiplication

Yuval Filmus

May 3, 2017

1 Problem statement

How fast can we multiply two square matrices? To make this problem precise, we need to fix a computational
model. The model that we use is the unit cost arithmetic model. In this model, a program is a sequence of
instructions, each of which is of one of the following forms:

1. Load input: tn ← xi, where xi is one of the inputs.

2. Load constant: tn ← c, where c ∈ R.

3. Arithmetic operation: tn ← ti ◦ tj , where i, j < n, and ◦ ∈ {+,−, ·, /}.

In all cases, n is the number of the instruction.
We will say that an arithmetic program computes the product of two n× n matrices if:

1. Its inputs are xij , yij for 1 ≤ i, j ≤ n.

2. For each 1 ≤ i, k ≤ n there is a variable tm whose value is always equal to

n∑
j=1

xijyjk.

3. The program never divides by zero.

The cost of multiplying two n× n matrices is the minimum length of an arithmetic program that computes
the product of two n× n matrices.

Here is an example. The following program computes the product of two 1× 1 matrices:

t1 ← x11

t2 ← y11

t3 ← t1 · t2

The variable t3 contains x11y11, and so satisfies the second requirement above for (i, k) = (1, 1). This shows
that the cost of multiplying two 1× 1 matrices is at most 3.

Usually we will not spell out all steps of an arithmetic program, and use simple shortcuts, such as the
ones indicated by the following program for multiplying two 2× 2 matrices:

z11 ← x11y11 + x12y21

z12 ← x11y12 + x12y22

z21 ← x21y11 + x22y21

z22 ← x21y12 + x22y22

1

When spelled out, this program uses 20 instructions: 8 load instructions, 8 product instructions, and 4
addition instructions.

Along these lines we can write a program that multiplies two n×n matrices using 2n2 load instructions,
n3 product instructions, and n2(n − 1) addition instructions, for a total of Θ(n3) instructions. Can we do
any better?

1.1 Uniformity

The usual algorithm for matrix multiplication is often written using three nested for loops:

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

Z[i][j] += X[i][k] * Y[k][j]

(Assuming Z is initialized to zero.) This is an example of a uniform algorithm: intuitively, the same
algorithm is used for all values of n. In contrast, the model described above is non-uniform: for each n there
might be a completely different algorithm. This might be an issue since in practice we don’t want to write
a different algorithm for each n. Moreover, what good is an algorithm for multiplying n× n matrices if it is
difficult to find?

This suggests considering the uniform complexity of matrix multiplication, in which the program is not
given for each n separately, but rather there is a “uniform way” to describe the programs for all different n.
We won’t define this concept precisely here. It turns out that in the case of matrix multiplication, uniformity
doesn’t affect the theoretical complexity, as we indicate below.

2 Karatsuba multiplication

It turns out that we can multiply n×n matrices faster than O(n3), using a sophisticated divide-and-conquer
approach. A simpler instance of this approach is the Karatsuba multiplication algorithm for multiplying two
n-bit numbers.

Integer multiplication algorithms are usually analyzed using the bit complexity model (although Fürer
advocates using a “word complexity” model instead). This model is similar to the arithmetic model that we
described above, with a crucial difference: all our variables are now bits rather than real numbers. The basic
operations allowed are unary NOT and binary AND, OR, and XOR. (The basic inventory of operations is not
so important as long as there is a finite number of them — changing the inventory changes the complexity
measure by at most a constant factor.)

The multiplication algorithm we all learned in school can be described as follows:

1. Input: x = xn−1 . . . x0, y = yn−1 . . . y0.

2. For 0 ≤ i ≤ n− 1, compute Yi = xi · y · 2i.

3. Add the numbers Y0, . . . , Yn−1.

Computing each Yi uses n AND operations, so computing all Yi takes n2 operations. Adding two numbers
takes O(n) operations, and altogether the numbers Y0, . . . , Yn−1 can be summed in O(n2) operations. The
overall complexity is O(n2).

We can try to improve on this using a divide-and-conquer approach. Assume for simplicity that n is even,
and split x into two bit-strings, xh = xn−1 . . . xn/2 and x` = xn/2−1 . . . x0. As numbers, x = 2n/2xh + x`.

Split y similarly into y = 2n/2yh + y`. A simple divide-and-conquer approach for computing xy uses the
formula

xy = 2nxhyh + 2n/2(xhy` + x`yh) + x`y`.

2

How do we use this formula in an algorithm? We compute the four products xhyh, xhy`, x`yh, x`y` recursively,
and then put them together using several addition operations. If we denote by T (n) the number of operations
that this algorithm uses, then T (n) satisfies the recurrence

T (n) = 4T (n/2) + Θ(n),

whose disappointing solution is T (n) = Θ(n2). This algorithm is thus no better than the trivial one.
Karatsuba’s algorithm improves on this by using a smarter formula. It first computes recursively the

following three smaller products:

m1 = xhyh,m2 = x`y`,m3 = (xh + x`)(yh + y`).

(The numbers xh +x` and yh + y` are in fact n/2 + 1 bits long, but this doesn’t make any difference.) Given
these numbers, it calculates

xy = 2nm1 + 2n/2(m3 −m1 −m2) +m3.

To check that this formula is valid, it suffices to verify that

m3 −m1 −m2 = xhy` + x`yh.

The number of operations T (n) used by this algorithm satisfies the recurrence

T (n) = 3T (n/2) + Θ(n),

whose solution is T (n) = Θ(n3/2), a significant improvement! Similar ideas will enable us to improve on the
trivial matrix multiplication algorithm.

Karatsuba’s algorithm has been improved by Toom and Cook using a similar approach, and then by
Schönhage and Strassen who gave an FFT-based O(n log n log log n) algorithm. The asymptotically fastest
algorithm currently known is Fürer’s algorithm, whose running time is O(n log n2log

∗ n), where log∗ n is the
number of times you have to apply log until the number gets below 1. Some people conjecture that integer
multiplication requires Ω(n log n) operations in the bit complexity model, though no lower bound is known.

The bit complexity of integer multiplication is sometimes denoted M(n). It is known to control the
complexity of integer division, which can be done in O(M(n)) bit operations.

3 Strassen’s algorithm

Strassen tried to prove that the Θ(n3) algorithm is optimal, and ended up improving it, using a smart way
to multiply two 2× 2 matrices:

m1 ← (x11 + x22)(y11 + y22)

m2 ← (x21 + x22)y11

m3 ← x11(y12 − y22)

m4 ← x22(y21 − y11)

m5 ← (x11 + x12)y22

m6 ← (x21 − x11)(y11 + y12)

m7 ← (x12 − x22)(y21 + y22)

z11 ← m1 +m4 −m5 +m7

z12 ← m3 +m5

z21 ← m2 +m4

z22 ← m1 −m2 +m3 +m6

3

A short calculation, which we skip, shows that this algorithm indeed computes the product of two 2× 2
matrices. (It is an edifying exercise to verify this using a computer algebra system.)

An important property of Strassen’s algorithm is that it never relies on commutativity of the entries
of the matrices. That is, it never uses xijyk` = yk`xij . This guarantees that it is a valid algorithm for
multiplying two 2× 2 matrices over arbitrary rings, and is important for using it recursively.

How do we use Strassen’s algorithm to multiply larger matrices? Suppose for simplicity that we want to
multiply two n × n matrices, when n is a power of 2. We can think of an n × n matrix as a 2 × 2 matrix
whose entries are (n/2)× (n/2) matrices. Multiplying these 2× 2 block matrices is the same as multiplying
the original matrices. In more detail, consider the following equation:(

X11 X12

X21 X22

)(
Y11 Y12
Y21 Y22

)
=

(
Z11 Z12

Z21 Z22

)
.

The entries of X11 are xij for 1 ≤ i, j ≤ n/2. The entries of X12 are xij for 1 ≤ i ≤ n/2 and n/2+1 ≤ j ≤ n,
and so on. Consider the (i, j)th entry of Z11:

(Z11)ij = (X11Y11)ij + (X12Y21)ij

=

n/2∑
k=1

(X11)ik(Y11)kj + (X12)ik(Y21)kj

=

n/2∑
k=1

xikykj + xi(n/2+k)y(n/2+k)j

=

n∑
k=1

xikykj

= zij .

A similar calculation works for the other three blocks. In other words, if we multiply these block matrices,
then the product matrix, when “flattened”, will contain the product of the original (non-block) matrices.

This suggests that we can multiply two n×n matrices by using Strassen’s original algorithm to multiply(
X11 X12

X21 X22

)
and

(
Y11 Y12
Y21 Y22

)
. Strassen’s algorithm contains addition and multiplication instructions. Ad-

dition instructions we can handle by adding the matrices, at a cost of (n/2)2 per addition. Multiplication
instructions we handle by calling Strassen’s algorithm recursively. Since there are only a constant number of
addition and subtraction instructions, the arithmetic complexity T (n) of Strassen’s algorithm satisfies the
recurrence

T (n) = 7T (n/2) + Θ(n2),

whose solution is T (n) = Θ(nlog2 7), where log2 7 ≈ 2.80 < 3.
What if n is not a power of 2? In that case, we can pad the original matrices to the next power of 2

N ≤ 2n, to obtain an algorithm whose arithmetic complexity is Θ(N log2 7) = O(N log2 7). (In practice it
might be better to pad the matrices so that n is always even, and then pad them again as needed during the
recursion.)

3.1 The exponent of matrix multiplication

Strassen’s algorithm shows that we can improve on the trivial Θ(n3) algorithm. But by how much? To make
this question precise, let us define ω, the exponent of matrix multiplication.

Let T consist of all values x such that two n × n matrices can be multiplied using O(nx) arithmetic
operations. We define ω as the infimum of T . As a result, for every ε > 0, two n × n matrices can be
multiplied using O(nω+ε) arithmetic operations, where the hidden constant can depend on ε.

4

Why define ω in this roundabout way? Why not define it as the minimum value such that two n × n
matrices can be multiplied using O(nω) arithmetic operations? The reason is that it is suspected that ω = 2
but 2 /∈ T . That is, it is conjectured that two n × n matrices can be multiplied using O(n2+ε) arithmetic
operations for every ε > 0, but that there is no O(n2) algorithm. (In fact, Ran Raz proved a lower bound of
Ω(n2 log n) under some mild restrictions.)

Often in papers one sees a running time quoted as O(nω), say. This is, however, formally wrong, since ω
is an infimum rather than a minimum. Such running times should be interpreted as O(nω+ε) for all ε > 0.

The exponent ω is important since many other operations on matrices have the same exponent, for
example matrix inversion and solving linear equations.

Another quantity of interest in the field is α, the exponent of rectangular matrix multiplication. It is
the supremum of the values x < 1 such that an n × nx matrix can be multiplied by an nx × n matrix in
time O(n2+o(1)). It is known that α > 0 (and there are some concrete algorithms showing that), and the
conjecture ω = 2 is equivalent to the conjecture α = 1.

Strassen’s algorithm is considered on the verge of being practical (some claim it is practical, some claim
it is not). Most developments following Strassen’s algorithm are of purely theoretical interest. The reader
interested in practical matrix multiplication should take a look at the 2016 survey of Dumas and Pan, Fast
Matrix Multiplication and Symbolic Computation.

3.2 Strassen’s algorithm as tensor decomposition

We have described Strassen’s algorithm (in its base case) as a sequence of instructions. A different way of
describing it is via the following identity:

2∑
i=1

2∑
j=1

2∑
k=1

xijyjkzik = (x11 + x22)(y11 + y22)(z11 + z22)

+ (x21 + x22)y11(z21 − z22)

+ x11(y12 − y22)(z12 + z22)

+ x22(y21 − y11)(z11 + z21)

+ (x11 + x12)y22(z12 − z11)

+ (x21 − x11)(y11 + y12)z22

+ (x12 − x22)(y21 + y22)z11.

How did we generate this identity? In the left-hand side, the coefficient of the formal variable zik is the
value that zik should have at the end of the algorithm, that is,

∑2
j=1 xijyjk. In the right-hand side, the

coefficient of the formal variable zik is the value that zik has at the end of the algorithm. For example,
z11 = m1 +m4 −m5 +m7, and accordingly, z11 appears in lines 1, 4, 5, 7 (with a negative sign on line 5), in
which m1,m4,m5,m7 are multiplied by some linear combination of the zik’s.

Later on we will show that this identity can be summarized as

R(〈2, 2, 2〉) ≤ 7.

Here 〈2, 2, 2〉 corresponds to the task of multiplying two 2 × 2 matrices (the numbers 2, 2, 2 correspond to
the dimensions of the matrices involved), and 7 corresponds to the number of lines in the decomposition.

4 Bilinear notation

Our task in this section is to explain what the notation R(〈2, 2, 2〉) ≤ 7 means. We will start with a different
way of viewing matrices.

5

Suppose that A is an n×m matrix with entries aij , and consider the expression

xTAy =
(
x1 · · · xn

)
A

 y1
...
ym

 =

n∑
i=1

m∑
j=1

aijxiyj .

This expression is called a bilinear function (in the same way that
∑
i aixi, corresponding to a vector, is

a linear function), but we will think of it as an expression (in fact, a polynomial) in the formal variables
x1, . . . , xn, y1, . . . , ym.1

We will particularly be interested in the notion of rank from the point of view of this new notation. A
matrix A has row rank 1 if there exists a row vector v such that all rows are multiples of v. If the ith row
is βiv, then aij = βivj , and so

xTAy =

n∑
i=1

m∑
j=1

xiyjβivj =

n∑
i=1

m∑
j=1

βixivjyj =

(
n∑
i=1

βixi

) m∑
j=1

vjyj

 .

You can think of this equation as a formal equation, or as an equation of formal expressions. It expresses
the fact that A is the outer product of the column vector β and the row vector v.2

A matrix A has row rank r if there are r row vectors v1, . . . , vr such that all rows are linear combinations
of v1, . . . , vr, say the ith row is

∑r
`=1 βi`v`. In that case

xTAy =

n∑
i=1

m∑
j=1

xiyj

r∑
`=1

βi`(v`)j

=

r∑
`=1

n∑
i=1

m∑
j=1

βi`xi(v`)jyj

=

r∑
`=1

(
n∑
i=1

βi`xi

) m∑
j=1

(v`)jyj

 .

In other words, A is a sum of r rank one matrices.
This shows that the row rank of a matrix A is the minimum number of rank one matrices which sum to

A. Since the definition of rank one matrix is symmetric in rows and columns (that is, it remains the same if
we switch rows and columns), we obtain a proof of the non-trivial fact that the row rank of a matrix equals
its column matrix. Indeed, both are equal to the tensor rank of the matrix, which is the minimal number of
outer products which sum to the matrix.

4.1 3D tensors

We can do exactly the same in more than two dimensions. We will only be interested in three-dimensional
tensors. These are three-dimensional arrays, which correspond to trilinear functions in the same way that
two-dimensional arrays (matrices) correspond to bilinear functions (and one-dimensional arrays, that is,
vectors, correspond to linear functions). We will identify a × b × c tensors with the corresponding trilinear
function

a∑
i=1

b∑
j=1

c∑
k=1

xiyjzktijk.

1The sophisticated reader can notice that A is a linear transformation from some vector sapce V with basis x1, . . . , xn to
some other vector space W with basis y1, . . . , ym, and xi ⊗ yj is a basis for the tensor product V ⊗W , and this expression is
just the expansion of A ∈ V ⊗W in this basis.

2If you think of A as belonging to the tensor product V ⊗W , then this shows that A = (
∑n

i=1 βixi)⊗ (
∑m

j=1 vjyj).

6

A rank one tensor (the analog of an outer product) is a tensor in which tijk = αiβjγk. The corresponding
trilinear function is (

a∑
i=1

αixi

) b∑
j=1

βjyj

(c∑
k=1

γkzk

)
.

The rank of a tensor T , denoted R(T), is the minimal number of rank one tensors which sum up to T .
In contrast to matrix rank, which can be calculated efficiently using Gaussian elimination, tensor rank is
NP-hard to compute (as shown by H̊astad).

We will be interested in particular tensors called matrix multiplication tensors. The 〈n,m, p〉 tensor is an
nm×mp× np tensor whose rows are indexed by pairs of indices from [n]× [m], whose columns are indexed
by [m] × [p], and whose depths are indexed by [n] × [p]. The (ir, jr), (jc, kc), (id, kd)-entry is 1 if ir = id,
jr = jc, and kc = kd, and 0 otherwise. The corresponding trilinear function is

〈n,m, p〉 =

n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzik.

In what way does this correspond to matrix multiplication? Suppose that we multiply an n×m matrix X
whose entries are xij by an m×p matrix Y whose entries are yij , obtaining an n×p matrix W whose entries
are wik. Then

wik =

m∑
j=1

xijyjk,

and so

〈n,m, p〉 =

n∑
i=1

p∑
k=1

zik

m∑
j=1

xijyjk =

n∑
i=1

p∑
k=1

zikwik.

In other words, the coefficient of zik in 〈n,m, p〉 is the bilinear function wik which is the (j, k)th entry of
the matrix XY . We can thus think of 〈n,m, p〉 as describing the task of multiplying an n×m matrix by an
m× p matrix.

Another interpretation of 〈n,m, p〉 is

〈n,m, p〉 = Tr(XY ZT),

where again X is an n×m matrix with entries xij , Y is an m× p matrix with entries yjk, and Z is an n× p
matrix with entries zik. (In terms of W = XY , this is Tr(WZT), which is the inner product of XY and Z.)

The rank of 〈n, n, n〉 is intimately connected to the complexity of matrix multiplication, as we show in
detail below.

At this point we have explained all pieces of notation in the statement R(〈2, 2, 2〉) ≤ 7; in fact, it can be
shown that R(〈2, 2, 2〉) = 7. We have seen that the algorithm corresponding to the bound R(〈2, 2, 2〉) ≤ 7
implies that ω ≤ log2 7, and this can be generalized.

4.2 Algorithms from tensor rank

Given a bound on the tensor rank of 〈n, n, n〉, can we construct an algorithm for multiplying arbitrary square
matrices?

Theorem 1. If R(〈n, n, n〉) ≤ r then ω ≤ logn r. In other words,

nω ≤ R(〈n, n, n〉).

Proof. The proof is very similar to the analysis of Strassen’s algorithm. The first step is an algorithm for
multiplying two n×n matrices using r “non-commutative” multiplications (in the literature, these are known
as essential multiplications, in contrast to multiplication by real constants).

7

Suppose that the decomposition is

n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzik =

r∑
`=1

∑
ij

a`ijxij

∑
jk

b`jkyjk

(∑
ik

c`ikzik

)
. (1)

Our algorithm proceeds as follows, on input X,Y :

1. Compute s` =
∑
ij a`ijxij for 1 ≤ ` ≤ r.

2. Compute t` =
∑
jk b`jkyjk for 1 ≤ ` ≤ r.

3. Compute m` = s`t` for 1 ≤ ` ≤ r.

4. Compute ẑik =
∑r
`=1m`c`ik for all i, k.

We claim that ẑik is the (i, k)th entry of Z = XY . Indeed, notice that

ẑik =

r∑
`=1

∑
ij

a`ijxij

∑
jk

b`jkyjk

 c`ik.

After a bit of algebra, this shows that

n∑
i=1

p∑
k=1

ẑikzik =

r∑
`=1

∑
ij

a`ijxij

∑
jk

b`jkyjk

(∑
ik

c`ikzik

)
.

On the other hand, by (1), the right-hand side is equal to

n∑
i=1

p∑
k=1

 m∑
j=1

xijyjk

 zik.

Comparing coefficients, we see that

ẑik =

m∑
j=1

xijyjk = (XY)ik.

This shows that the algorithm correctly computes the product of two n× n matrices.
Just as we did for Strassen’s algorithm, we can apply this algorithm recursively for multiplying larger

square matrices whose dimensions are a power of n. Given two N × N matrices (where N is a power of
n), we think of them as n × n block matrices, whose entries are themselves (N/n) × (N/n) matrices. We
can run the algorithm described above on these block matrices. Computing s1, . . . , sr, t1, . . . , tr uses O(N2)
operations. We compute each m` recursively. Finally, given m1, . . . ,mr, we can compute each ẑik using
O(N2) operations. Since there are only a constant number of output entries, the overall complexity is
O(N2) plus r products of (N/n)× (N/n) matrices. The number of operations T (N) satisfies the recurrence

T (N) = rT (N/n) + Θ(N2),

whose solution (assuming3 r > n2) is T (N) = Θ(N logn r).
As in the case of Strassen’s algorithm, if N is not a power of n then we can pad it to the next power

of n, which is at most a factor of n larger. Since n is a constant, the resulting algorithm uses Θ(N logn r)
arithmetic operations for all N .

3It is not too hard to show that r ≥ n2 always, essentially since we have to compute n2 “independent” entries. It turns out
that in fact r > n2 always.

8

As a corollary, we get that ω is at most the tensor rank exponent c, which is the infimum of the values
x such that R(〈n, n, n〉) = O(nx). Indeed, for every ε > 0 there are constants n0, C such that for n ≥ n0,
R(〈n, n, n〉) ≤ Cnc+ε. Theorem 1 shows that

ω ≤ logn(Cnc+ε) = c+ ε+
logC

log n
.

Taking the limit n→∞, we see that ω ≤ c+ ε. Since this holds for all ε > 0, we see that ω ≤ c.
Surprisingly, the converse also holds, and in fact c = ω. We prove this interesting result in the next

section.

5 Bilinear algorithms

Given an arbitrary algorithm for multiplying two n × n matrices, we will show how to convert it to an
algorithm whose form is very similar to Strassen’s. In particular, we will be able to read from this algorithm
a bound on the rank of 〈n, n, n〉.

The main observation that facilitates this conversion is that the entries of the product matrix are a
quadratic polynomial in the entries of the input matrices. This allows us to maintain only the “degree 2
prefix” of all values calculated in the program, and brings us almost all the way to the required normal form.

5.1 Decomposition into homogeneous parts

Let P be a multivariate polynomial. We can write P as a linear combination of monomials. The (total) degree
of a monomial m is the sum of the degrees of the variables appearing in it. For example, deg(x12y

2
23) = 3

(you can also think of it as the number of variables which are multiplied together, counted with repetition).
A polynomial is homogeneous if all monomials appearing in it have the same degree. For example, x12 + y12
is homogeneous, but x12 + y212 is not.

Every polynomial P can be written as a sum of homogeneous polynomials, one of each degree. This
is done by taking all monomials of degree d appearing in P , together with their coefficients, into a new
polynomial P=d. If we do this for all degrees, then P is the sum of all P=d. For example, if P = 1 + x12 +
3y22 + x13y22 − 4x212 then

P=0 = 1, P=1 = x12 + 3y22, P
=2 = x13y22 − 4x212.

The degree of P , denoted degP , is the maximal degree of a monomial in P . We thus have

P =

degP∑
d=0

P=d.

The main observation behind our transformation is that if zik are the entries of the product matrix, then
zik is homogeneous of degree 2 as a function of the entries of the matrices being multiplied. In fact, zik is a
bilinear function of the xij and yij , which says that the degree 2 monomials are all products of an xij and
a yk`. We will use this stronger property in the sequel.

Our transformation is embedded in the following theorem, which we only describe for programs without
division. Handling division is not much more difficult, and we leave it as a nice exercise.

Theorem 2. Let Π be a (valid) program for multiplying two n× n matrices without division. Replace each
instruction with the following mini-program, to comprise a new program Π′:

• Replace tp ← xij with

tp,0 ← 0

tp,1 ← xij

tp,2 ← 0

9

• Replace tp ← yij with

tp,0 ← 0

tp,1 ← yij

tp,2 ← 0

• Replace tp ← r (for r ∈ R) with

tp,0 ← r

tp,1 ← 0

tp,2 ← 0

• Replace tp ← tq + tr with

tp,0 ← tq,0 + tr,0

tp,1 ← tq,1 + tr,1

tp,2 ← tq,2 + tr,2

• Replace tp ← tq − tr with

tp,0 ← tq,0 − tr,0
tp,1 ← tq,1 − tr,1
tp,2 ← tq,2 − tr,2

• Replace tp ← tqtr with

tp,0 ← tq,0tr,0

tp,1 ← tq,0tr,1 + tq,1tr,0

tp,2 ← tq,0tr,2 + tq,1tr,1 + tq,2tr,0

Then Π′ also computes the product of two n×n matrices, and moreover tp,d = t=dp for all p and d ∈ {0, 1, 2}.

Proof. If we show that tp,d = t=dp , then it follows that Π′ also computes the product of two n× n matrices.
Indeed, for every 1 ≤ i, k ≤ n there is p such that in Π it holds that tp =

∑n
j=1 xijyjk. Since tp = t=2

p , in Π′

it holds that tp,2 =
∑n
j=1 xijyjk.

We prove that tp,d = t=dp by induction. This is easy to check for the base cases tp ← xij , tp ← yij , and

tp ← r. Suppose now that tq,d = t=dq and tr,d = t=dr holds for some q, r and d ∈ {0, 1, 2}. The result for

tp ← tq ± tr is not difficult to verify directly (since (P +Q)=d = P=d +Q=d), and the result for tp ← tq · tr
follows from the formula deg(m1m2) = (degm1)(degm2) for the degree of the product of two monomials
m1,m2.

We encourage the reader to fill in the various details we left out in the proof of the preceding theorem.
Theorem 2 is helpful since the expressions computed by tp,0, tp,1, tp,2 have a particular form, as indicated

by the following theorem.

Theorem 3. Let Π′ be the program described in Theorem 2. Let p1, . . . , pm be all the product instructions
in Π, say tpi ← tqi · tri .

For each original instruction tp:

1. tp,0 is a constant (doesn’t depend on the xij or yij).

10

2. tp,1 is a linear combination of the xij and yij.

3. tp,2 is a linear combination of products tqi,1tri,1.

Proof. The proof is again by induction. We have to consider the various types of instructions. If the pth
instruction is tp ← xij , then tp,0 = tp,2 = 0 and tp,1 is the linear combination xij . The instruction tp ← yij
is handled similarly. If the pth instruction is tp ← r, then tp,0 = r is constant, and tp,1 = tp,2 = 0.

Suppose now that the pth instruction is tp ← tq + tr. First, tp,0 = tq,0 + tr,0 is the sum of two constants,
and so also a constant. Second, tp,1 = tq,1 + tr,1 is the sum of two linear combinations of xij , yij , and so
also such a linear combination. Third, tp,2 = tq,2 + tr,2 is the sum of two linear combinations of products
tqi,1tri,1, and so also such a linear combination. The instruction tp ← tq − tr is handled similarly.

The most interesting case is tp ← tqtr. First, tp,0 = tq,0tr,0 is the product of two constants, and so also
a constant. Second, tp,1 = tq,0tr,1 + tq,1tr,0. Since tr,1 is a linear combination of xij , yij and tq,0 is constant,
the product tq,0tr,1 is also such a linear combination. The same can be said about the other term, and so
tp,1 is a linear combination of xij , yij .

Finally, tp,2 = tq,0tr,2 + tq,2tr,0 + tq,1tr,1. The first two terms are linear combinations of products tqi,1tqi,1
multiplied by a constant, and so also such linear combinations. The final terms is itself a product tqi,1tri,1
(for i such that p = pi), and so tp,2 is a linear combination of products tqi,1tri,1.

This allows us to rewrite Π′ in a new equivalent form.

Theorem 4. In the notation of Theorem 3, consider the following program Π′′:

1. For 1 ≤ s ≤ m, compute tqs,1 ←
∑
ij αqsijxij +

∑
jk βqsjkyjk and trs,1 ←

∑
ij αrsijxij +

∑
jk βrsjkyjk,

the linear combinations promised by Theorem 3.

2. For 1 ≤ s ≤ m, compute ms ← tqs,1trs,1.

3. For each 1 ≤ i, k ≤ n, let tpik be the instruction computing
∑n
j=1 xijyjk. For each i, k, compute

tpik,2 ←
∑
s γsikms, the linear combination promised by Theorem 3.

Then the program Π′′ computes the product of two n× n matrices.

Proof. The new program is valid since tpik,2 = tpik =
∑n
j=1 xijyjk for each i, k.

This new program is very similar to Strassen’s algorithm as described above. The only difference is that
in Strassen’s algorithm, each ms was a product of a linear combination of the xij and a linear combination
of the yij , whereas here tqs,1 and trs,1 can mix both. However, this is not difficult to fix.

5.2 Decomposition into xy parts

Let P be a homogeneous polynomial in the xij and yij . Just as we had earlier partitioned P according to the
total degree, we can partition P according to the decomposition of each monomial — how many variables
of type xij and how many of type yij are involved. We denote the part which contains monomials which are

products of a variables of type xij and b variables of type yij by P=xayb . For example, if P = x12 +3y23−y14
then

P=x = x12, P
=y = 3y23 − y14.

Similarly, if P = x212 + x13y15 − y25y17 then

P=xx = x212, P
=xy = x13y15, P

=yy = −y25y17.

Earlier we observed that zik = z=2
ik . We can now say even more: zik = z=xyik . This suggests a way of

massaging Π′′′.

Theorem 5. In the notation of Theorem 4, consider the following program Π′′′:

11

1. Compute tqs,1,x ←
∑
ij αqsijxij and trs,1,x ←

∑
ij αrsijxij for each s.

2. Compute tqs,1,y ←
∑
jk βqsjkyjk and trs,1,y ←

∑
jk βrsjkyjk for each s.

3. Compute ms,xy ← tqs,1,xtrs,1,y + trs,1,xtqs,1,y for each s.

4. For each 1 ≤ i, k ≤ n, compute tpik,2,xy ←
∑
s γsikms.

Then the program Π′′′ computes the product of two n× n matrices.

Proof. Note that tqs,1,x = t=xqs,1 and tqs,1,y = t=yqs,1, and similarly for rs. Thus tqs,1 = tqs,1,x + tqs,1,y (which is
also easy to see directly). It is then not hard to check that ms,xy = m=xy

s , and so that tpik,2,xy = t=xyp,2 for
each i, k. Since tpik,2 =

∑
j xijyjk = t=xypik,2

, we see that Π′′′ is indeed valid.

The final stroke is to observe that Theorem 5 gives a rank 2m decomposition of 〈n, n, n〉.

Theorem 6. Let Π be a program that computes the product of two n × n matrices, without division, and
contains m multiplication steps. Then R(〈n, n, n〉) ≤ 2m.

Proof. The validity of Π′′′′ is expressed by the following identity, for all 1 ≤ i, k ≤ n:

n∑
j=1

xijyjk = tpik,2,xy =

m∑
s=1

γsik

∑
ij

αqsijxij

∑
jk

βrsjkyjk

+ γsik

∑
ij

αrsijxij

∑
jk

βqsjkyjk

 .

Multiplying this by zik and summing over all i, k, we obtain

〈n, n, n〉 =

m∑
s=1

∑
ij

αqsijxij

∑
jk

βrsjkyjk

(∑
ik

γsikzik

)
+

m∑
s=1

∑
ij

αrsijxij

∑
jk

βqsjkyjk

(∑
ik

γsikzik

)
,

which shows that R(〈n, n, n〉) ≤ 2m.

As a corollary, we can deduce that c ≤ ω, thus completing the proof that c = ω. Indeed, for every ε > 0
there are constants n0, C such that for n ≥ n0, there exists a program Πn that multiplies two n×n matrices
using at most Cnω+ε operations. Theorem 6 shows that R(〈n, n, n〉) ≤ 2Cnω+ε = O(nω+ε), and so c ≤ ω+ε.
Since this holds for all ε > 0, we conclude that c ≤ ω.

5.3 Note on uniformity

Earlier we discussed the issue of uniformity. The exponent ω is defined so that for every ε > 0 and for
large enough n, there is an arithmetic program that multiplies two n×n matrices using O(nω+ε) arithmetic
operations. Can we obtain such a uniform program?

Indeed we can! For every ε > 0, there are arithmetic programs that multiply two n × n matrices using
O(nω+ε/2) operations. For large enough n, this will be at most nω+ε/2 operations. Theorem 6 shows that
R(〈n, n, n〉) ≤ nω+ε for large enough n. Fix such n, and use Theorem 1 to deduce a uniform algorithm which
uses O(nω+ε) arithmetic operations.

From a theoretical perspective, if we know ω, then for each ε > 0 we can find n large enough such that
R(〈n, n, n〉) ≤ nω+ε, together with such a decomposition, in constant time. Therefore the uniform complexity
of matrix multiplication (say in the word RAM model) is O(nω+εM) for all ε > 0, where M is the cost of
multiplying two matrix entries.

6 Operations on tensors

Our next stop will require us to generalize some classical operations on matrices: transposition, Kronecker
product (a generalization of the outer product), and direct sum (creating a block diagonal matrix).

12

6.1 Shuffle

Tensor shuffle (this is a non-standard name!) is the operation that corresponds to transposition of matrices.
As usual, we start with the case of matrices. Let A be an n×m matrix whose corresponding bilinear form is

n∑
i=1

m∑
j=1

xiyjaij .

The bilinear form corresponding to the transposed matrix AT is

m∑
j=1

n∑
i=1

xjyiaij .

This form is obtained from the preceding one simply by switching the xs and the ys, which corresponds
exactly to switching rows and columns.

There are several corresponding operations on 3D tensors. In fact, any of the 5 different ways of permuting
the three dimensions is a kind of “shuffle”. The most important for us will be rotation, in which rows become
depths, columns become rows, and depths become rows. We will denote this operation in the same way as
matrix transpose (this is non-standard notation). That is, given an a× b× c tensor

W =

a∑
i=1

b∑
j=1

c∑
k=1

xiyjzkwijk,

the rotated tensor WT is the b× c× a tensor

WT =

b∑
j=1

c∑
k=1

a∑
i=1

xjykziwijk.

It is not difficult to see that rotation (in fact, any shuffle) preserves tensor rank, since the rotation of a
rank one tensor is another rank one tensor:(∑

i

αixi

)∑
j

βjyj

(∑
k

γkzk

)T
=

∑
j

βjxj

(∑
k

γkyk

)(∑
i

αizi

)
.

Particularly interesting is the effect of rotation on matrix multiplication tensors:

〈n,m, p〉T =

 n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzik

T

=

n∑
i=1

m∑
j=1

p∑
k=1

xjkyikzij

≈ 〈m, p, n〉.

Here ≈ means that the two tensors are the same up to renaming of rows, columns, and depths. All we have
to do is to switch the indices of the y variables, that is, replace yik with yki. (We could avoid this mishap
by using

∑
ijk xijyjkzki instead of

∑
ijk xijyjkzik.)

Renaming doesn’t affect the rank, and we conclude that R(〈n,m, p〉) = R(〈m, p, n〉). Another rotation
shows that R(〈n,m, p〉) = R(〈p, n,m〉).

If instead of rotating we transpose the rows and the columns, then we get

n∑
i=1

m∑
j=1

p∑
k=1

xjkyijzik ≈ 〈p,m, n〉.

13

This time we have to switch the indices of both the x and the y variables. As before, we get thatR(〈n,m, p〉) =
R(〈p,m, n〉). Continuing in this way, we see that the rank of 〈n,m, p〉 doesn’t depend on the order of the
three dimensions n,m, p.

Let us pause to consider an example, the tensor 〈1, n, 1〉:

〈1, n, 1〉 =

n∑
j=1

x1jyj1z11.

This tensor describes the task of computing the inner product of two vectors of length n. In contrast, its
rotations are

〈n, 1, 1〉 =

n∑
i=1

xi1y11z1i,

〈1, 1, n〉 =

n∑
k=1

x11y1kz1k,

and they describe the task of multiplying a vector of length n by a scalar. Surprisingly, these three different
tasks have the same difficulty, as measured by rank. (In fact, it is not too difficult to show that R(〈1, n, 1〉) =
n.)

6.2 Tensor product

Our next operation is somewhat less standard, and known in the matrix world as Kronecker product. How-
ever, in some sense we have already seen it, since it corresponds to the divide-and-conquer approach.

We start by describing this operation for matrices. Let A be an nA×mA matrix, and let B be an nB×mB

matrix. Their Kronecker product A⊗B is an nAnB ×mAmB matrix whose rows and columns are indexed
by pairs of indices, and whose entries are given by the formula

(A⊗B)(iA,iB),(jA,jB) = aiA,jAbiB ,jB .

This formula makes it clear that Kronecker product distributes over addition: A⊗ (B+C) = A⊗B+A⊗C.
Notice also that if A is a column vector and B is a row vector, then A ⊗ B is just their product, given by
(A⊗B)ij = (AB)ij = AiBj . In this case the tensor product is known as an outer product.

As an example of the Kronecker product, if we index the rows and columns in the order (1, 1), (1, 2), (2, 1), (2, 2),
then

(
1 −1
−1 1

)
⊗
(

1 −1
−1 1

)
=

1 ·
(

1 −1
−1 1

)
−1 ·

(
1 −1
−1 1

)
1 ·
(

1 −1
−1 1

)
−1 ·

(
1 −1
−1 1

)
 =


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 .

(These matrices are known as Hadamard matrices, and describe the Walsh transform, which is the Fourier
transform in the group Zn2 .)

In terms of bilinear forms, the bilinear form corresponding to A⊗B is

nA∑
iA=1

nB∑
iB=1

mA∑
jA=1

mB∑
jB=1

xiAiByjAjBaiAjAbiBjB .

We can obtain this expression by multiplying the bilinear forms corresponding to A and B, and replacing
xiAxiB with xiAiB and yjAyjB with yjAjB .

We can do the same with 3D tensors. If P is an aP×bP×cP tensor andQ is an aQ×bQ×cQ tensor then T =
P ⊗Q is an aPaQ×bP bQ×cP cQ tensor whose entries are T (iP iQ, jP jQ, kP kQ) = P (iP , jP , kP)Q(iQ, jQ, kQ).

14

As in the case of matrices, we can obtain the trilinear form of P ⊗ Q from those of P and Q by replacing
xiP xiQ by xiP iQ , and similarly for the y and z variables.

We will be particularly interested in the tensor product of two matrix multiplication tensors. Using the
recipe above, we find that

〈n1,m1, pi〉 ⊗ 〈n2,m2, p2〉 =

 n1∑
i1=1

m1∑
j1=1

p1∑
k1=1

xi1j1yj1k1zi1k1

⊗
 n2∑
i2=1

m2∑
j2=1

p2∑
k2=1

xi2j2yj2k2zi2k2


=

n1∑
i1=1

n2∑
i2=1

m1∑
j1=1

m2∑
j2=1

p1∑
k1=1

p2∑
k2=1

x(i1,i2),(j1,j2)y(j1,j2),(k1,k2)z(i1,i2),(k1,k2)

≈
n1n2∑
i=1

m1m2∑
j=1

p1p2∑
k=1

xi,jyj,kzi,k

= 〈n1n2,m1m2, p1p2〉.

In the third step we renamed (i1, i2) to n2(i1−1)+i2, (j1, j2) to m2(j1−1)+j2, and (k1, k2) to p2(k1−1)+k2,
and have surprisingly obtained a single matrix multiplication tensor. This should not be too surprising,
however, since this is exactly how our recursive divide-and-conquer approach works: when we think of an
n × n matrix as a 2 × 2 matrix with (n/2) × (n/2) blocks and use this to multiply n × n matrices, we are
implicitly using the formula 〈n, n, n〉 = 〈2, 2, 2〉 ⊗ 〈n/2, n/2, n/2〉.

In the future, we will sometimes use the useful notation T⊗n for the nth tensor power of T , which is
obtained by computing the tensor product of n copies of T .

What is the influence of tensor product on rank? Consider again two tensors P,Q, and their rank
decompositions

P =

R(P)∑
sP=1

(∑
iP

αPsP iP xiP

)∑
jP

βPsP jP yjP

(∑
kP

γPsP kP zkP

)
,

Q =

R(Q)∑
sQ=1

∑
iQ

αQsQiQxiQ

∑
jQ

βQsQjQyjQ

∑
kQ

γQsQkQzkQ

 .

Since tensor product distributes over addition (just like the Kronecker product of matrices),

P ⊗Q =

R(P)∑
sP=1

R(Q)∑
sQ=1

∑
iP ,iQ

αPsP iPα
Q
sQiQ

xiP iQ

∑
jP ,jQ

βPsP jP β
Q
sQjQ

yjP jQ

 ∑
kP ,kQ

γPsP kP γ
Q
sQkQ

zkP kQ

 .

This shows that R(P ⊗Q) ≤ R(P)R(Q).
Combining rotation with tensor product, we obtain an important corollary, that allows us to obtain

bounds on ω from bounds on the rank of 〈n,m, p〉 for any n,m, p.

Theorem 7. If R(〈n,m, p〉) ≤ r then ω ≤ log 3
√
nmp r. In other words,

(nmp)ω/3 ≤ r.

Proof. Observe that

R(〈nmp, nmp, nmp〉) = R(〈n,m, p〉 ⊗ 〈m, p, n〉 ⊗ 〈p, n,m〉) ≤ R(〈n,m, p〉)R(〈m, p, n〉)R(〈p, n,m〉) =

R(〈n,m, p〉)3 = r3.

Theorem 1 therefore implies that
ω ≤ lognmp(r

3) = log 3
√

(nmp)
r.

15

6.3 ω as a limit

Another important corollary shows that ω can be obtained as a limit.

Theorem 8. The limit limn→∞ lognR(〈n, n, n〉) exists, and is equal to ω.

Proof. Let ck = log2k R(〈2k, 2k, 2k〉) = 1
k log2R(〈2k, 2k, 2k〉). Then

ca+b =
1

a+ b
log2R(〈2a+b, 2a+b, 2a+b〉) ≤ 1

a+ b
log2[R(〈2a, 2a, 2a〉)R(〈2b, 2b, 2b〉)] =

a

a+ b
ca +

b

a+ b
cb.

In particular, choosing a = b we see that c2a ≤ ca. The sequence c2t is monotone decreasing and bounded
from below (since ck ≥ 0 for all k), and so approaches a limit c∗.

Our next step is showing that limn→∞ cn = c∗. First note that the inequality ca+b ≤ a
a+bca + b

a+bcb
easily generalizes to larger sums: if a =

∑m
i=1 ai then

ca ≤
m∑
i=1

ai
a
cai .

Now let k be an arbitrary index. Every n ≥ k can be written as the sum of m = bn/kc copies of k and
am+1 = n mod k, and so

cn ≤
m∑
i=1

k

n
ck +

r

n
cr =

(
1− r

n

)
ck +

r

n
cr ≤ ck +

k

n
max
0≤s<k

cs.

Let ε > 0 be given. For n ≥ max0≤s<k csk/ε, the second term is bounded by ε, and so for large enough n,
cn ≤ ck + ε. For every ε > 0 there exists t such that c2t ≤ c∗+ ε, and so for large enough n, cn ≤ c∗+ 2ε. We
conclude that lim supn→∞ cn ≤ c∗. On the other hand, if ck < c∗ for any k > 0 then lim supn→∞ cn ≤ ck < c∗,
contradicting the fact that limt→∞ c2t = c∗. We conclude that c∗ = limk→∞ ck.

The final step is handling lognR(〈n, n, n〉) for arbitrary n. For that we will need the observation that
R(〈n, n, n〉) is non-decreasing in n. Indeed, consider n1 < n2, and let r = R(〈n2, n2, n2〉). Then there is a
decomposition

n2∑
i=1

n2∑
j=1

n2∑
k=1

xijyjkzik =

r∑
s=1

 n2∑
i=1

n2∑
j=1

αsijxij

 n2∑
j=1

n2∑
k=1

βsjkyjk

(n2∑
i=1

n2∑
k=1

γsikzik

)
.

Take this identity and substitute zero for xij , yjk, zik whenever i > n1, j > n1, or k > n1, to obtain

n1∑
i=1

n1∑
j=1

n1∑
k=1

xijyjkzik =

r∑
s=1

 n1∑
i=1

n1∑
j=1

αsijxij

 n1∑
j=1

n1∑
k=1

βsjkyjk

(n1∑
i=1

n1∑
k=1

γsikzik

)
.

The left-hand side is just 〈n1, n1, n1〉, and so this gives a rank r decomposition of 〈n1, n1, n1〉, showing that
R(〈n1, n1, n1〉) ≤ r = R(〈n2, n2, n2〉).

Every number n can be written as 2kα for 1 ≤ α < 2. Monotonicity of R(〈n, n, n〉) implies that

R(〈2k, 2k, 2k〉) ≤ R(〈n, n, n〉) ≤ R(〈2k+1, 2k+1, 2k+1〉).

Taking the logarithm with respect to n, we obtain

ck logn(2k) ≤ lognR(〈n, n, n〉) ≤ ck+1 logn(2k+1).

Substituting n = 2kα, we get logn(2k) = logn(n/α) = 1− logn α, and similarly logn(2k+1) = logn[(2/α)n] =
1 + logn(2/α), and so 1 ≤ α ≤ 2 implies the bounds(

1− log 2

log n

)
ck ≤ lognR(〈n, n, n〉) ≤

(
1 +

log 2

log n

)
ck+1.

As n→∞, both sides of the inequality tend to c∗, and we conclude that lognR(〈n, n, n〉) −→ ω.

16

6.4 Direct sum

The final operation we consider is the direct sum. Given an nA ×mA matrix A and an nB ×mB matrix B,
their direct sum A⊕B is the (nA + nB)× (mA +mB) matrix whose matrix form is(

A 0nA×mB

0nB×mA
B

)
.

The corresponding bilinear form is

nA∑
iA=1

mA∑
jA=1

xiAyjAaiAjA +

nB∑
iB=1

mB∑
jB=1

xnA+iBymA+jBbiBjB .

Notice that up to renaming of the xs and ys, this is just the sum of the bilinear forms corresponding to A
and B.

There is also a simple interpretation in terms of vector spaces. If we think of A as a linear transformation
from VA to WA and of B as a linear transformation from VB to WB , then A⊕B is the linear transformation
from VA ⊕ VB to WA ⊕WB given by (A⊕B)(vA, vB) = (AvA, BvB).

The direct sum of two tensors P,Q is defined analogously. Suppose that P is aP × bP × cP and that Q
is aQ × bQ × cQ. Their direct sum P ⊕Q is the (aP + aQ)× (bP + bQ)× (cP + cQ) tensor given by

aP∑
iP=1

bP∑
jP=1

cP∑
kP=1

xiP yjP zkP piP jP kP +

aQ∑
iQ=1

bQ∑
jQ=1

cQ∑
kQ=1

xaP+iQybP+jQzcP+kQqiQjQkQ .

Again, up to renaming this is just the sum of the trilinear forms corresponding to P and Q. For this reason,
if we sum a decomposition of P into the sum of R(P) rank one tensors and a decomposition of Q into the
sum of R(Q) rank one tensors (suitably renamed), then we get a decomposition of P ⊕ Q into the sum of
R(P) +R(Q) rank one tensors. In other words, R(P ⊕Q) ≤ R(P) +R(Q). (Try to think whether equality
holds — it certainly does for matrices.)

Direct sums figure prominently in the asymptotic sum inequality.

7 Border rank

Suppose that At is a sequence of n ×m matrices of rank r which converge4 to a matrix A. Then I claim
that A also has rank at most r. (Certainly A can have smaller rank. For example, if I is the identity
matrix then I/t −→ 0.) Indeed, suppose for simplicity that n = m (otherwise add zero rows or columns, as
needed). The co-rank of an n×n matrix M , which is n−R(M), is the number of eigenvalues of M which are
equal to zero. If the eigenvalues of M (with multiplicity) are λ1, . . . , λn then the characteristic polynomial
of M is equal to C(M) = det(xI −M) =

∏n
i=1(x − λi). Thus C(M) is a multiple of xn−R(M), and so

the n−R(M) least significant coefficients of C(M) vanish (these are the coefficients of x0, . . . , xn−R(M)−1).
Back to our sequence, this shows that the n − r least significant coefficients of C(At) vanish. Since the
characteristic polynomial is a continuous function of the entries, C(At) −→ C(A), and so the n − r least
significant coefficients of C(A) vanish, showing that the co-rank of A is at least n− r, and so its rank is at
most R.

Surprisingly, the corresponding property fails for 3D tensors. Consider the tensor

T = x1y1z2 + x1y2z1 + x2y1z1,

and the following sequence of tensors converging to T entrywise:

Tn = x1y1z2 + x1y2z1 + x2y1z1 +
1

n
(x1y2z2 + x2y1z2 + x2y2z1) +

1

n2
x2y2z2.

4The notion of convergence here is entrywise convergence. The same notion of convergence is obtained if we use convergence
in Frobenius norm (‖M‖ =

√
Tr(M2)), or indeed all other common matrix norms.

17

Clearly R(T) ≤ 3. In fact, R(T) = 3. To see that, suppose that

x1y1z2 + x1y2z1 + x2y1z1 =

2∑
i=1

(αi1x1 + αi2x2)(βi1y1 + βi2y2)(γi1z1 + γi2z2).

Since z2 appears in the left-hand side, it must also appear in the right-hand side. In other words, γi2 6= 0
for some i. We can assume that γ22 6= 0. Substitute z2 = −(γ21/γ22)z1, which zeroes out the factor
(γ21z1 + γ22z2), to get the equation

−γ21
γ22

x1y1z1 + x1y2z1 + x2y1z1 = (α11x1 + α12x2)(β11y1 + β12y2)((γ11 − γ12γ21
γ22

)z1).

Since y2 appears in the left-hand side, necessarily β12 6= 0. If we substitute y2 = −(β11/β12)y1 then the
right-hand side zeroes out, whereas the left-hand side doesn’t (the coefficient of x2y1z1 is still 1), and we
reach a contradiction.

We have seen that R(T) = 3. In contrast, R(Tn) = 2, since we can write

Tn = n
(
x1 +

x2
n

)(
y1 +

y2
n

)(
z1 +

z2
n

)
− nx1y1z1.

(One can show that R(Tn) > 1 along the same lines as above.) The reason that the argument for matrices
doesn’t work is apparent — the coefficients here do not converge.

If we set ε = 1/n, then we have the exact identity

(x1+εx2)(y1+εy2)(z1+εz2)−x1y1z1 = ε(x1y1z2+x1y2z1+x2y1z1)+ε2(x1y2z2+x2y1z2+x2y2z1)+ε3x2y2z2.

We can write the same identity in the following approximate form:

(x1 + εx2)(y1 + εy2)(z1 + εz2)− x1y1z1 = εT +O(ε2).

Here O(ε2) hides terms which are products of ε2 and higher powers of ε. If we think of ε as tending to zero,
then this is just the usual big O notation.

The border rank of a tensor T , denoted R(T), is the minimal rank r such that there is a sequence of
tensors Tn of rank at most r converging to T . For example, if T is the tensor considered above, then R(T) = 3
whereas R(T) = 2 (one can show that R(T) > 1). It is a highly non-trivial fact5 that if R(T) ≤ r then this
can be witnessed by a decomposition of the form

r∑
s=1

(∑
i

αsixi

)∑
j

βsjyj

(∑
k

γskzk

)
= εdT +O(εd+1)

for some integer d ≥ 0, where the coefficients αsi, βsj , γsk are polynomials in ε. We gave such a decomposition
above for our example tensor T .

In the original paper of Bini, Capovani, Lotti, and Romani which introduced border rank, the idea was
that by choosing some small ε > 0, one can calculate the matrix multiplication approximately. However, it
is also possible to eliminate the approximate aspect, and prove the analog of Theorem 7, with border rank
replacing rank. We start with the case n = m = p.

Theorem 9. If R(〈n, n, n〉) ≤ r then ω ≤ logn r. In other words,

nω ≤ R(〈n, n, n〉).
5For the curious, this holds since the Zariski closure of the space of rank r tensors is the same as its closure under the usual

topology. Apparently this is elementary algebraic geometry, but unfortunately such arguments are out of scope for the author.

18

Proof. Our starting point is the rank r decomposition

r∑
s=1

 n∑
i=1

n∑
j=1

αsijxij

 n∑
j=1

n∑
k=1

βsjkyjk

(n∑
i=1

n∑
k=1

γsikzik

)
= εd〈n, n, n〉+O(εd+1).

Raising both sides to the tth tensor power, on the left-hand side we have the sum of rt rank one tensors
(with ε), and on the right-hand side we have εtd〈nt, nt, nt〉+O(εtd+1):

rt∑
s=1

 nt∑
i=1

nt∑
j=1

α̂sijxij

 nt∑
j=1

nt∑
k=1

β̂sjkyjk

 nt∑
i=1

nt∑
k=1

γ̂sikzik

 = εtd〈nt, nt, nt〉+O(εtd+1).

Each α̂sij , β̂sjk, γ̂sik is a polynomial in ε, say α̂sij =
∑E
e=0 α̂sijeε

e, where α̂sije ∈ R, and E is an upper bound
on the degree of all these polynomials. Substituting this, we get

rt∑
s=1

 nt∑
i=1

nt∑
j=1

E∑
ex=0

α̂sijexε
exxij

 nt∑
j=1

nt∑
k=1

E∑
ey=0

β̂sjkeyε
eyyjk

 nt∑
i=1

nt∑
k=1

E∑
ez=0

γ̂sikezε
ezzik

 = εtd〈nt, nt, nt〉+O(εtd+1).

Comparing coefficients of εtd, we see that

〈nt, nt, nt〉 =
rt∑
s=1

∑
ex,ey,ez :

ex+ey+ez=td

 nt∑
i=1

nt∑
j=1

α̂sijexxij

 nt∑
j=1

nt∑
k=1

β̂sjkeyyjk

 nt∑
i=1

nt∑
k=1

γ̂skezzik

 .

This shows that

R(〈nt, nt, nt〉) ≤ rt|{0 ≤ ex, ey, ez ≤ E : ex + ey + ez = td}| =
(
td+ 2

2

)
rt ≤ Ct2rt,

for some constant C > 0 depending only on d. Applying Theorem 1, we see that

ω ≤ lognt R(〈nt, nt, nt〉) ≤ lognt rt +
logCt2

log nt
= logn r +O

(
log t

t

)
.

Taking the limit t→∞, we obtain ω ≤ logn r.

For the general case, we need to generalize all our work about tensor rotation and product to border
rank. Since the proofs are very similar, we won’t detail them, but only state the results:

• R(〈n,m, p〉) = R(〈m, p, n〉) = R(〈p, n,m〉).

• R(P ⊗Q) ≤ R(P)R(Q).

• R(P ⊕Q) ≤ R(P) +R(Q).

As a result, we can conclude the following analog of Theorem 7.

Theorem 10. If R(〈n,m, p〉) ≤ r then ω ≤ log 3
√
nmp r. In other words,

(nmp)ω/3 ≤ R(〈n,m, p〉).

The proof is the same as the proof of Theorem 7, with Theorem 1 replaced with Theorem 9.
Bini, Capovani, Romani, and Lotti gave an identity implying that R(〈3, 2, 2〉) ≤ 10, and as a result

concluded that ω ≤ log 3√12 10 ≈ 2.78, improving on Strassen’s bound. The identity is not too complicated,
but there is no reason to state it here.

Finally, let us mention that the asymptotic growth rate of R(〈n, n, n〉) is the same as that of R(〈n, n, n〉).

19

Theorem 11. The limit limn→∞ lognR(〈n, n, n〉) exists, and is equal to ω.

Proof. Since R(〈n, n, n〉) ≤ R(〈n, n, n〉), Theorem 8 implies that lim supn→∞ lognR(〈n, n, n〉) ≤ ω. In
contrast, Theorem 9 shows that lognR(〈n, n, n〉) ≥ ω, and so limn→∞ lognR(〈n, n, n〉) = ω.

Finally, let us comment that R(〈2, 2, 2〉) = 7, so that Strassen’s identity is optimal even for border rank.

8 Asymptotic sum inequality

In this section we extend Theorem 10 to direct sums of tensors. The simplest case is when we have several
different copies of the same tensor. We will denote the direct sum of ` copies of a tensor T by `T . As an
example,

`〈n, n, n〉 =
∑̀
s=1

n∑
i=1

n∑
j=1

n∑
k=1

xsijysjkzsik.

In this expression, we used the arbitrary indexing scheme xsij , ysjk, zsik. In general, we will consider two
tensors to be the same if they only differ in the names of rows, columns, and depths (earlier we used ≈ to
express this relation).

Intuitively, if we can perform ` independent multiplications of pairs of n × n matrices using r essential
multiplications, then the amortized cost of multiplying a single pair of n × n matrices is r/`, and so we
expect that Theorem 1 be generalized to

nω ≤ R(`〈n, n, n〉)
`

.

The actual proof is somewhat more subtle. The main part is the following claim.

Theorem 12. Let n,N ≥ 1 be arbitrary sizes. Then

R(〈nN, nN, nN〉) ≤
⌈
R(〈N,N,N〉)

`

⌉
R(`〈n, n, n〉).

Proof. To simplify the proof, we first consider rank instead of border rank. Afterwards we will indicate how
to generalize the proof to border rank.

Let r = R(〈N,N,N〉). Then 〈N,N,N〉 can be written as

〈N,N,N〉 =

r∑
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
.

Let r′ = R(`〈n, n, n〉). As we have seen above, this allows us to write

∑̀
s=1

n∑
i=1

n∑
j=1

n∑
k=1

xsijysjkzsik =

r′∑
t=1

∑
sij

α̂tsijxsij

∑
sjk

β̂tsjkysjk

(∑
sik

γ̂tsikzsik

)
. (2)

We have seen above that 〈nN, nN, nN〉 = 〈N,N,N〉 ⊗ 〈n, n, n〉, and so

〈nN, nN, nN〉 =

r∑
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
⊗

n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzik. (3)

The idea now is to use (2) to express the first ` terms as a sum of r′ rank one tensors. We do this by making
the following substitutions in (2):

xsij =
∑
IJ

αsIJxIJ ⊗ xij , ysjk =
∑
JK

βsJKyJK ⊗ yjk, zsik =
∑
IK

γsIKzIK ⊗ zik.

20

(Recall that xIJ ⊗ xij is just another name for xIiJj , and so on for the columns and depths.) The left-hand
side of (2) now becomes

∑̀
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
⊗

n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzik,

and the right-hand side becomes

r′∑
t=1

∑
sijIJ

α̂tsijαsIJxIJ ⊗ xij

 ∑
sjkJK

β̂tsjkβsJKyJK ⊗ yjk

(∑
sikIK

γ̂tsikγsIKzIK ⊗ zik

)
.

In other words, we have expressed the sum of the first ` terms of (3) as a sum of r′ rank one tensors. In
the same way we can express any other sum of ` terms of (3) as a sum of r′ rank one tensors. We can
also express in the same way the sum of fewer that ` terms, by substituting zeroes for the corresponding
αsIJ , βsJK , γsIK . In this way we can partition the terms in (3) into dr/`e sets of at most ` terms, and so
express 〈nN, nN, nN〉 as the sum of dr/`er′ rank one tensors. This completes the proof for rank.

We now briefly indicate the necessary changes in the case of border rank. The expansion of 〈N,N,N〉 is
now

εD〈N,N,N〉+O(εD+1) =

r∑
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
for some D ≥ 0, and (2) becomes

εd
∑̀
s=1

n∑
i=1

n∑
j=1

n∑
k=1

xsijysjkzsik +O(εd+1) =

r′∑
t=1

∑
sij

α̂tsijxsij

∑
sjk

β̂tsjkysjk

(∑
sik

γ̂tsikzsik

)
(4)

for some d ≥ 0. We write (3) as

εD〈nN, nN, nN〉+O(εD+1) =

r∑
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
⊗

n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzik.

(5)
We claim that moreover,

εd+D〈nN, nN, nN〉+O(εd+D+1) =

r∑
s=1

(∑
IJ

αsIJxIJ

)(∑
JK

βsJKyJK

)(∑
IK

γsIKzIK

)
⊗

εd n∑
i=1

n∑
j=1

n∑
k=1

xijyjkzik +O(εd+1)

 , (6)

where the O(εd+1) term matches the term appearing in (4). To obtain this from (5), first multiply both
sides by εd, and then add the O(εd+1) term. Since

∑r
s=1 (

∑
IJ αsIJxIJ) (

∑
JK βsJKyJK) (

∑
IK γsIKzIK) is

a multiple of εD, this adds an error term of O(εd+D+1) to the left-hand side.
Just as before, we can express sums of at most ` terms in the right-hand side of (6) as sums of r′ rank

one tensors using (4), and we can complete the proof in exactly the same way.

The idea now is to use the fact that R(〈N,N,N〉) grows like Nω.

Lemma 13. If a, b > 0 and t ≥ 1 is an integer then

(a+ b)1/t ≤ a1/t
(

1 +
b

ta

)
.

21

Proof. The binomial theorem shows that (1 + b/(ta))t ≥ 1 + b/a, and so (1 + b/a)1/t ≤ 1 + b/(ta). We get
the stated inequality by multiplying both sides by a1/t.

Theorem 14. If R(`〈n, n, n〉) ≤ r then ω ≤ logn(r/`). In other words,

`nω ≤ R(`〈n, n, n〉).

Proof. We can assume that ` ≥ 2, since otherwise the result follows from Theorem 9.
Let ε > 0 be given. Theorem 8 shows that there existsNε such that whenN ≥ Nε we have R(〈N,N,N〉) ≤

Nω+ε (this also follows from Theorem 6, which shows that R(〈N,N,N〉) = O(Nω+ε/2), and in particular
R(〈N,N,N〉) ≤ Nω+ε for large enough N). For every t we have R(`t〈nt, nt, nt〉) ≤ rt, and so Theorem 12
implies that

R(〈ntN,ntN,ntN〉) ≤
⌈
Nω+ε

`t

⌉
rt.

Theorem 9 then implies that

(ntN)ω ≤
⌈
Nω+ε

`t

⌉
rt <

(r
`

)t
(Nω+ε + `t).

Taking tth roots and applying Lemma 13, we see that

(nN1/t)ω <
r

`
N (ω+ε)/t

(
1 +

`t

tNω+ε

)
.

Cancelling Nω/t on both sides and using ω + ε ≥ 1, we obtain

nω <
r

`
N ε/t

(
1 +

`t

tN

)
.

All of this holds when N ≥ Nε. Hence for t ≥ log`Nε, we can choose N = `t to obtain

nω ≤ r

`
`ε
(

1 +
1

t

)
.

Taking the limit t→∞, we get

nω ≤ r

`
`ε.

Taking the limit ε→∞, we conclude nω ≤ r/`, and so `nω ≤ r.

As in several preceding cases, we can also handle 〈n,m, p〉 for general n,m, p.

Theorem 15. If R(`〈n,m, p〉) ≤ r then ω ≤ log 3
√
nmp(r/`). In other words,

`(nmp)ω/3 ≤ R(`〈n,m, p〉).

Proof. The proof is very similar to all previous cases. We use the identity R(`〈n,m, p〉) = R(`〈m, p, n〉) =
R(`〈p, n,m〉) together with the identity `1T1 ⊗ `2T2 = `1`2(T1 ⊗ T2) to obtain

R(`3〈nmp, nmp, nmp〉) ≤ R(`〈n,m, p〉)R(`〈m, p, n〉)R(`〈p, n,m〉) ≤ r3.

Theorem 14 now shows that
`3(nmp)ω ≤ R(`〈n,m, p〉)3.

We obtain the theorem by taking the cube root.

22

We are finally ready to prove the asymptotic sum inequality, also known as Schönhage’s τ theorem.
Suppose that we have a bound on the border rank of

⊕q
s=1 `s〈ns,ms, ps〉. How can we use that to bound

ω? The asymptotic sum inequality provides the answer.

Theorem 16 (Asymptotic sum inequality). Let T =
⊕q

s=1 `s〈ns,ms, ps〉, suppose that R(T) ≤ r, and
suppose that τ is the solution of

q∑
s=1

`s(nsmsps)
τ = r.

Then ω ≤ 3τ .

Notice how this generalizes Theorem 15. Before proving the asymptotic sum inequality, we define the
notation of value of a tensor which is the direct sum of matrix multiplication tensors:

Vτ

(
q⊕
s=1

`s〈ns,ms, ps〉

)
=

q∑
s=1

`s(nsmsps)
τ .

Notice that this is just the left-hand side of the equation in the asymptotic sum inequality. Also, Theorem 15
states that

Vω/3(`〈n,m, p〉) ≤ R(`〈n,m, p〉).
It is easy to check that the value is additive and multiplication:

Vτ (T1 ⊕ T2) = Vτ (T1) + Vτ (T2), Vτ (T1 ⊗ T2) = Vτ (T1)Vτ (T2).

Proof of Theorem 16. The idea in a nutshell is to take a high tensor power of the upper bound R(T) ≤ r,
isolate one of the summands, and then apply Theorem 15. We choose the summand which gives us the best
bound on ω. Figuring out which bound we get in this way is the hard part of the proof.

Since border rank satisfies R(T1 ⊗ T2) ≤ R(T1)R(T2), we see that R(T⊗N) ≤ rN . The tensor T⊗N is a
direct sum of many matrix multiplication tensors:

T⊗N =
∑

N1,...,Nq :
N1+···+Nq=N

`N1
1 · · · `Nq

q 〈n
N1
1 · · ·nNq

q ,mN1
1 · · ·mNq

q , pN1
1 · · · pNq

q 〉.

Let us denote the summand corresponding to N1, . . . , Nq by TN1,...,Nq
. The number of different summands

is (
N + q − 1

q − 1

)
≤ CNq−1

for some constant C (depending on q).
Since the value is multiplicative, we have Vω/3(T⊗N) = Vω/3(T)N . Since it is additive,∑

N1,...,Nq :
N1+···+Nq=N

Vω/3(TN1,...,Nq
) = Vω/3(T)N .

Since there are at most CNq−1 summands, one of them, say the one corresponding to ν1, . . . , νq, satisfies

Vω/3(Tν1,...,νq) ≥
Vω/3(T)N

CNq−1 .

Substituting zero for all variables other than those appearing in Tν1,...,νq , we see that R(Tν1,...,νq) ≤ rN .
Hence Theorem 15 shows that

Vω/3(T)N ≤ CNq−1Vω/3(Tν1,...,νq) ≤ CNq−1R(Tν1,...,νq) ≤ CNq−1rN .

Taking the Nth root, we obtain
Vω/3(T) ≤ N

√
CNq−1r.

Since
N
√
CNq−1 −→ 1, taking the limit N →∞, we obtain Vω/3(T) ≤ r.

23

Schönhage showed that R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17. This is surprising, since R(〈4, 1, 4〉) = 16. With one
more essential product, we are suddenly able to also compute an additional inner product, which by itself
would require rank 9. Applying the asymptotic sum inequality, we obtain (16)ω/3 + 9ω/3 ≤ 17, or ω ≤ 2.55.

Coppersmith and Winograd showed that identities can always be improved in this way. They showed
that if an upper bound R(T) ≤ r gives some upper bound on ω via an application of the asymptotic sum
inequality, then there in an “improved” upper bound on the border rank of T⊕〈1, N, 1〉, for an appropriate N ,
which results in a better bound on ω via the asymptotic sum inequality. In other words, a single application
of the asymptotic sum inequality cannot result in an optimal bound on ω.

Strassen developed the laser method, which gives an analog of the asymptotic sum inequality for non-
disjoint tensors, in some cases. His method uses infinitely many applications of the asymptotic sum inequality,
and so in principle could result in an optimal bound on ω. This method is used to prove the best bound on
ω currently known, ω < 2.376, due to Coppersmith and Winograd, and slightly improved by Stothers, by
Vassilevska-Williams, and by Le Gall. See also the work of Ambainis, Filmus and Le Gall.

A completely different method for proving upper bounds on ω, using group theory, has been developed
by Cohn and Umans. This method hasn’t yielded any improved bounds so far.

9 Coppersmith–Winograd algorithm

The asymptotic sum inequality allows us to obtain a bound on ω given a bound on the border rank of a
disjoint sum of matrix multiplication tensors. In this section, we briefly discuss the laser method and its
application by Coppersmith and Winograd, a method which in some cases allows us to handle non-disjoint
sums.

We will focus on the two tensors analyzed by Coppersmith and Winograd:

Tsimp =

q∑
i=1

x
[0]
0 y

[1]
i z

[1]
i +

q∑
i=1

x
[1]
i y

[0]
0 z

[1]
i +

q∑
i=1

x
[1]
i y

[1]
i z

[0]
0 ,

TCW = Tsimp + x
[2]
q+1y

[0]
0 z

[0]
0 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[0]
0 y

[0]
0 z

[2]
q+1.

Here q is an arbitrary non-negative integer. We will explain the superscripts in a moment. The tensor Tsimp

is (q + 1)× (q + 1)× (q + 1), and the tensor TCW is (q + 2)× (q + 2)× (q + 2). Coppersmith and Winograd
showed that both tensors have border rank q + 2.

The rows, columns, and depths of Tsimp are each partitioned into two sets, according to their subscript.
For example, the rows are partitioned into the sets

X [0] = {x0}, X [1] = {x1, . . . , xq}.

Similarly, the rows, columns, and depths of TCW are partitioned into three sets:

X [0] = {x0}, X [1] = {x1, . . . , xq}, X [2] = {xq+1}.

We can express these tensors succinctly as follows:

Tsimp = 〈1, 1, q〉[0,1,1] + 〈q, 1, 1〉[1,0,1] + 〈1, q, 1〉[1,1,0],
TCW = 〈1, 1, q〉[0,1,1] + 〈q, 1, 1〉[1,0,1] + 〈1, q, 1〉[1,1,0] + 〈1, 1, 1〉[2,0,0] + 〈1, 1, 1〉[0,2,0] + 〈1, 1, 1〉[0,0,2].

For example, 〈1, 1, q〉[0,1,1] means a tensor of the form 〈1, 1, q〉 in which the rows belong to part 0, the columns
to part 1, and the depths to part 1. Notice that in each constituent the three part numbers sum to 2. This
will become crucial later.

The sums in Tsimp , TCW are not direct sums, since they share variables. For this reason we cannot apply
the asymptotic sum inequality directly. Instead, the idea of the laser method is to take a high tensor power,
to zero out variables in such a way that the resulting tensor becomes a disjoint sum, and then to apply the
asymptotic sum inequality.

24

In more detail, considering the tensor Tsimp , we raise R(Tsimp) ≤ q+2 to the Nth tensor power, obtaining
R(T⊗Nsimp) ≤ (q + 2)N . We can express T⊗Nsimp as a non-disjoint sum of 3N tensors, for example

T⊗2simp = 〈1, 1, q2〉[00,11,11] + 〈q, 1, q〉[01,10,11] + 〈1, q, q〉[01,11,10]

+ 〈q, 1, q〉[10,01,11] + 〈q2, 1, 1〉[11,00,11] + 〈q, q, 1〉[11,01,10]

+ 〈1, q, q〉[10,11,01] + 〈q, q, 1〉[11,10,01] + 〈1, q2, 1〉[11,11,00].

The indices correspond to the natural partition of the rows, columns, and depths of T⊗2simp into four parts:

X [00] = {x00}, X [01] = {x01, . . . , x0q}, X [10] = {x10, . . . , xq0}, X [11] = {x11, . . . , x1q, . . . , xq1, . . . , xqq}.

The next step is to substitute zeroes for some of the variables, in such a way that the resulting tensor
is a disjoint sum of matrix multiplication tensors. We substitute zeroes for entire parts. Continuing our
example, if we zero out all variables in X [00], X [01], Y [00], Y [11], Z [00], Z [10] then we are left with

〈q, 1, q〉[10,01,11] + 〈q, q, 1〉[11,10,01].

Since the rows, the columns, and the depths are disjoint (we can tell since the indices of the row parts,
column parts, and depth parts don’t repeat), this is actually equivalent to the direct sum 〈q, 1, q〉 ⊕ 〈q, q, 1〉.
Since R(T⊗2simp) ≤ (1 + 2)2 and substitution doesn’t increase the border rank (since a rank one tensor stays
a rank one tensor under substitution), the asymptotic sum inequality implies that

2(q2)ω/3 ≤ (q + 2)2.

Choosing q = 22, we obtain the bound ω < 2.7481.
We can do the same with a higher tensor power: starting with R(T⊗Nsimp) ≤ (q+2)N , we zero out groups of

variables so that whatever remains is a sum of tensors on disjoint variables, and then we apply the asymptotic
sum inequality. If after zeroing out the variables in the best possible way there are C(N) remaining tensors,
then the asymptotic sum inequality gives the bound

C(N)(qN)ω/3 ≤ (q + 2)N .

This is because all the tensors are of the form 〈qa, qb, qc〉 where a+ b+ c = N . Taking Nth roots,

C(N)1/Nqω/3 ≤ q + 2.

The goal now is to determine the limit of C(N)1/N for the best zeroing strategy.
How large can we expect C(N)1/N to be? After zeroing out, all the row parts must be different, and so

C(N) ≤ 2N . This shows that lim supC(N)1/N ≤ 2. We can improve this naive bound using the method
of types. The type of a constituent 〈qa, qb, qc〉 of T⊗Nsimp is (a, b, c). Note that a is the number of factors

〈q, 1, 1〉[1,0,1] contributing to the constituent, b is the number of factors 〈1, q, 1〉[1,1,0], and c is the number of
vectors 〈1, 1, q〉[0,1,1]. The total number of types is |{(a, b, c) : a+ b+ c = N}| =

(
N+2
2

)
.

Consider now a specific type (a, b, c). After zeroing out, all row parts must be different. Each row part
in a constituent of type (a, b, c) contains c zeroes and a + b ones, and so after zeroing out, the number of
surviving constituents of type (a, b, c), which we denote Ca,b,c(N), satisfies Ca,b,c(N) ≤

(
N
c

)
. By considering

also the column parts and the depth parts, we obtain (assuming for simplicity that N is divisible by 3)

Ca,b,c(N) ≤ min

{(
N

a

)(
N

b

)(
N

c

)}
≤
(
N

N/3

)
,

since min(a, b, c) ≤ N/3. A classical estimate6 states that
(
N
pN

)
≤ 2h(p)N , where h(p) = −p log2 p − (1 −

6You can get this estimate using Stirling’s approximation. A nicer approach is using information theory. Let
X = (X1, . . . , Xn) be a random variable over {0, 1}n chosen uniformly at random from all vectors of sum pn, so that
H(X) = log2

(n
pn

)
. On the other hand, H(X) ≤

∑n
i=1H(Xi). Since Xi is binary and Pr[Xi = 1] = p, we have

H(Xi) = h(Pr[Xi = 1]) = h(p), and so log2
(n
pn

)
≤ h(p)n. In the same way one can show that for p ≤ 1/2 we have∑pn

k=0

(n
k

)
≤ 2h(p)n.

25

p) log2(1− p) is the binary entropy function. Therefore

C(N) ≤
∑
a,b,c :

a+b+c=N

Ca,b,c(N) ≤
(
N + 2

2

)(
N

N/3

)
≤ O(N2)2h(1/3)N .

This shows that

lim sup
N→∞

C(N)1/N = lim sup
N→∞

O(N2)1/N2h(1/3) ≤ 2h(1/3) =
3

22/3
.

Amazingly, it is in fact the case that

lim
N→∞

C(N)1/N =
3

22/3
.

In other words, there is a construction matching the simple upper bound given by the method of types! The
construction is quite non-trivial, and is beyond the scope of these notes. For this construction to work, it is
essential that the sum of the row, column and depth indices for all three summands in Tsimp is the same.
The end result is that for every q, we get the bound

3

22/3
qω/3 ≤ q + 2.

In particular, when q = 8 we get ω < 2.404.
The same machinery can be applied to TCW . There is a slight complication, in that whereas all tensors

in T⊗Nsimp had the same volume (the volume of the tensor 〈n,m, p〉 is nmp), tensors in T⊗NCW have different
volumes. However, this can be taken into account, and the end result is the bound ω < 2.388.

Coppersmith and Winograd obtained the improved bound ω < 2.376 by considering a “merged” version
of T⊗2CW , a technique which is beyond the scope of these notes. Stothers obtained the improved bound
ω < 2.373 by considering a merged version of T⊗4CW . Merged versions of higher powers were considered by
Vassilevska-Williams and by Le Gall, who obtained slightly improved bounds (the bounds differ only on
the fourth digit after the point or beyond). Ambainis, Filmus and Le Gall showed that considering merged
versions of higher powers of TCW could only improve the bounds on ω by a little bit.

We close these notes by mentioning two other directions of research. The first is rectangular matrix
multiplication, in which the goal is to obtain lower bounds on α. The second is the group-theoretic approach,
due to Cohn and Umans, which is a completely different approach to the theory of fast matrix multiplication.
Both of these are beyond the scope of these notes.

26

