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In this short note, we discuss constructive and non-constructive aspects of the Euclidean algorithm. As
an application, we explain how to perform modular arithmetic.

1 GCD

Let a, b be two positive integers. A positive integer g is said to be their greatest common divisor1 if:

• g is a common divisor of a, b, that is, g | a and g | b.

• If h is another common divisor of a, b then g | h.

A greatest common divisor is always unique2 (since if g, h are two GCDs then g | h and h | g). We
can show that the GCD exists using the fundamental theorem of arithmetic: if p1, . . . , pn are all the primes

dividing a, b and a =
∏n
i=1 p

αi
i , b =

∏n
i=1 p

βi

i , then it is not hard to check that g =
∏n
i=1 p

min(αi,βi)
i is a

greatest common divisor of a, b. We denote the GCD of a, b by (a, b).
The proof we’ve just seen gives an algorithm for computing (a, b). However, this algorithm is very slow,

since it requires factoring a and b. Euclid supposedly came up with a much better algorithm, known today
as the Euclidean algorithm:

• Arrange a, b so that a ≥ b.

• While b > 0, do a, b← b, a mod b.

• Return a.

It is an elementary exercise to show that this algorithm always terminates, and furthermore returns the
GCD (we have to extend the definition of GCD to the case in which one of a, b is zero; in this case (a, 0) = a).
How good is this algorithm? It turns out that the worst case is given by Fibonacci numbers (defined by the
recurrence F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1).

Theorem 1. If max(a, b) ≤ Fm then the algorithm terminates after at most m iterations of the loop.

Proof. We can assume that a ≥ b. The proof is by induction on m. For m = 0, the loop terminates
immediately. For m = 1, if a ≤ 1 then the loop terminates after at most one iteration. Suppose now that
m ≥ 2. Denote by a′, b′ the values of a, b after the first iteration of the loop, and by a′′, b′′ their values after
the second iteration. If b ≤ Fm−1 then a′ ≤ Fm−1 and so induction shows that after the first iteration, the
loop terminates after at most m− 1 further iterations, for a total of at most m iterations. If b ≥ Fm−1 then

a′′ = b′ = a mod b = a− b ≤ Fm − Fm−1 = Fm−2,

and so after the first two iterations, the loop terminates after at most m− 2 further iterations, for a total of
at most m iterations.

1The second property below states that g is greatest with respect to the order x | y rather than with respect to x < y. This
is important since in other situations, such as polynomials, there is no natural total order on elements.

2In more general situations, all we can say is that g, h are associates, that is, g = xh for some invertible x. The only invertible
integers are ±1, so since our GCDs are positive, they are unique.
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We usually measure the running time of algorithms in terms of the input length, which in this case is

roughly n = log2 a + log2 b. It is known that Fm ≈ ϕm/
√

5, where ϕ = 1+
√
5

2 is the golden ratio (in fact Fm
is the rounding of ϕm/

√
5), and so a ≤ 2n ≤ Fm for m = dlogϕ 2en. This shows that the algorithm makes

O(n) iterations. Since a mod b can be computed in polynomial time (in fact, O(n2)), the entire algorithm
runs in polynomial time (in fact, O(n3)).

2 Bezout’s identity

Bezout’s identity states that for any two positive integers a, b there exist integers x, y (not necessarily positive)
such that

xa + yb = (a, b).

One proof goes as follows. Let S consist of all values of xa + yb (for arbitrary integers x, y) which are
positive integers. Since a, b ∈ S, the set S is non-empty, and so contains a minimum g = xa + yb. We claim
that g = (a, b). Indeed, if h is a common divisor of a, b then h | xa + yb = g. It remains to show that
g | a (the same argument shows that g | b). If not, then let h = a mod g > 0, so that a = kg + h. Then
h = a− kg = (1− x)a− yb ∈ S while 0 < h < g, contradicting the definition of g. This contradiction shows
that g | a, completing the proof.

While this shows the existence of integers x, y satisfying Bezout’s identity, it is not clear how to find x, y
using this proof. Indeed, a priori we would have to try infinitely many x, y! (Using the identity ba− ab = 0
we can fix that.) A better approach is to modify the Euclidean algorithm. The Euclidean algorithm is based
on the identity

(a, b) = (b, a mod b).

Calculating (a, b) is reduced to calculating (b, a mod b), with base cases (a, 0) = a. We can prove Bezout’s
identity using the same approach:

• Base case: (a, 0) = a = 1 · a + 0 · 0.

• Induction: Suppose that (b, a mod b) = xb + y(a mod b). Let a = sb + (a mod b). Then (a, b) =
(b, a mod b) = xb + y(a mod b) = xb + y(a− sb) = ya + (x− ys)b.

This approach can be turned into an algorithm which, given a, b, computes (a, b) as well as integers x, y such
that xa + yb = (a, b), and it allows us to obtain bounds on x, y.

Theorem 2. The integers x, y produced by the algorithm satisfy

|x| ≤ b

(a, b)
, |y| ≤ a

(a, b)
.

Proof. The proof is by induction. The base case is when b | a (when b = 0 the inequality |x| ≤ b
(a,b) is

violated). In this case (b, a mod b) = xb + y(a mod b) for x, y = 1, 0, and so the new combination x′, y′ is
y, x − ys = 0, 1, which clearly satisfies the inequalities. For the inductive case, suppose that (b, a mod b) =
xb+y(a mod b), where |x| ≤ a mod b

(a,b) and |y| ≤ b
(a,b) . The new linear combination calculated by the algorithm

is (a, b) = x′a + y′b, where x′, y′ = y, x− ys. We have |x′| = |y| ≤ b
(a,b) and

|y′| ≤ |x|+ s|y| ≤ a mod b + sb

(a, b)
=

a

(a, b)
.

This theorem also shows that the algorithm runs in polynomial time. How does this algorithm look?

• Start at a0, b0 = a, b.

• Compute a1, b1 = b0, a0 mod b0.
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• Compute a2, b2 = b1, a1 mod b1.

• More steps of this kind.

• Compute am, bm = bm−1, am−1 mod bm−1, where bm = 0.

• Let xm, ym = 1, 0.

• Compute xm−1, ym−1 = ym, xm − ymsm, where sm = bam/bmc.

• More steps of this kind, until x0, y0 are computed.

This algorithm requires us to remember all the intermediate values of ai, bi, since we compute the xi, yi
in reverse order. A different algorithm, the extended Euclidean algorithm, doesn’t suffer from this problem,
and thus needs to store only a constant number of values. The idea is to maintain numbers xi, yi, zi, wi
so that a0 = xiai + yibi and b0 = ziai + wibi. It turns out that xi, yi, zi, wi can be computed given only
xi−1, yi−1, zi−1, wi−1 and xi−2, yi−2, zi−2, wi−2. It is a nice exercise to work out this algorithm.

3 Modular arithmetic

What is Bezout’s identity good for? It allows us to implement modular inverse. Given a ∈ Z∗n, we can find
a−1 (as a number in the range 1, . . . , n − 1) by finding numbers x, y such that xa + yn = (a, n) = 1. This
identity shows that xa ≡ 1 (mod n), and so x ≡ a−1 (mod n). While x is not guaranteed to be in the range
1, . . . , n− 1, the remainder x mod n is in this range.

Modular addition, subtraction and multiplication are also easy to implement. A more challenging op-
eration is modular exponentiation, computing ab mod n. Modular powers can be computed efficiently using
repeated squaring. Repeated squaring is based on the two identities

a2x mod n = (ax)2 mod n, a2x+1 mod n = a(ax)2 mod n.

Using these identities, we can compute ab mod n using O(log b) modular multiplications. The reader is
encouraged to work out the corresponding algorithm in complete detail.
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