
FFT and Schönhage–Strassen

Yuval Filmus

July 7, 2017

1 Polynomial multiplication and convolution

Consider the following problem. Given two univariate polynomials

P =

n∑
i=0

pix
i, Q =

n∑
i=0

qix
i,

compute the product polynomial

R =

2n∑
i=0

rix
i, ri =

∑
j,k : j+k=i

pjqk.

When we say “compute R”, we really mean “compute the coefficients of R”.
Each ri is the sum of at most n products, so we can compute R using O(n2) operations. Surprisingly

(or perhaps, at this state of the course, not so surprisingly), this can be significantly improved to O(n log n)
using the fast Fourier transform (FFT).

The Fourier transform is often approached from a physics perspective, but here we will take the point of
view of representation theory1. According to this point of view, we think of P and Q as linear combinations
of the “formal monomials” x0, . . . , xn. If we identify xi with the natural number i, then this views P,Q
as members of the vector space C[N] (we will see later that it is advantageous to work over the complex
numbers rather than the real numbers). We turn this vector space into an algebra by defining a multiplication
operation. It is defined on basis elements as xi · xj = xi+j , and extended linearly for arbitrary vectors (this
ensures that P (aQ+ bR) = aPQ+ bPR). The resulting algebraic structure is known as the monoid algebra
of N (over C).

Since we are looking for algorithmic solutions, it is probably not such a good idea to look at the infinite-
dimensional C[N]. Since degR ≤ 2n, it suffices to work over a basic structure which has analogs of x0, . . . , x2n.
One possible choice is the group Zm for some m > 2n. We thus look at the vector space C[Zm], and endow
it with the multiplication operation defined on basis elements by xi · xj = xi+j mod m, and extended linearly
(this operation is sometimes called convolution). We obtain the so-called group algebra of Zm (over C).
The reader can check that if we consider P,Q to be elements of C[Zm] then their product PQ in the group
algebra encodes the polynomial PQ.

We have thus reduced the problem of multiplying univariate polynomials to that of multiplying two
elements in the group algebra C[Zm]. Representation theory tells us2 that there is a basis χ0, . . . , χm−1 of

1Our presentation will be somewhat unorthodox even from that perspective.
2Each element x of the group algebra corresponds to the linear operator Tx which maps y to xy. Since the group algebra

C[Zm] is m-dimensional whereas the dimension of the space of m×m matrices is m2, not every linear operator on the matrix
algebra is realizable as Tx for some element Tx in the group algebra. Since Zm is abelian, representation theory tells us that
there is a common basis of eigenvectors for the Tx. With respect to this basis, the Tx become diagonal operations. Since the
dimension of the space of m ×m diagonal matrices is m, this fixes the dimension issue: every diagonal matrix in this basis is
realizable as Tx, and vice versa. The non-abelian case is more complicated, but well-understood.

1



the group algebra which satisfies the following identity:m−1∑
j=0

αjχj

m−1∑
j=0

βjχj

 = m

m−1∑
j=0

αjβjχj .

It also tells us what the basis is:

χj =

m−1∑
i=0

ωijxi,

where ω = e2πi/m is a primitive mth root of unity (that is, ωm = 1, and ωr 6= 1 for all 1 ≤ r < m). In a
subsection below, we demystify this, and some subsequent, formulas.

Given this explicit form, we can prove the identity directly:m−1∑
j=0

αjχj

(m−1∑
k=0

βkχk

)

=

m−1∑
j,s=0

αjω
sjxs

m−1∑
k,t=0

βkω
tkxt


=

m−1∑
i=0

xi

m−1∑
j,k=0

m−1∑
s=0

αjω
sjβkω

(i−s)k


=

m−1∑
i=0

xi

m−1∑
j,k=0

αjβkω
ik
m−1∑
s=0

ωs(j−k)

 .
The point now is that when j = k, we have ωs(j−k) = 0, and so

∑m−1
s=0 ωs(j−k) = m. When j 6= k, we have

ωj−k 6= 1 (since ω is a primitive mth root), and so we can use the formula for the sum of a geometric series
to deduce that

m−1∑
s=0

ωs(j−k) =
ωm(j−k) − 1

ωj−k − 1
= 0,

since ωm = 1. The sum above is thus equal to

m−1∑
i=0

xi

m−1∑
j=0

mαjβjω
ij

 =

m−1∑
j=0

mαjβj

m−1∑
i=0

ωijxi =

m−1∑
j=0

mαjβjχj .

If we have an element of C[Zm] expressed in the basis χ0, . . . , χm−1, we can compute its expression in
the usual basis using the definition of χj :

m−1∑
j=0

αjχj =

m−1∑
j=0

αj

m−1∑
i=0

ωijxi =

m−1∑
i=0

xi

m−1∑
j=0

αjω
ij

 .
(This is usually known as the Fourier inversion formula.) Going in the other way is known as the Fourier
transform:

m−1∑
i=0

aix
i =

m−1∑
j=0

χj

[
1

m

m−1∑
i=0

αiω
−ij

]
.

2



We can check the validity of this formula by evaluating the right-hand side:

m−1∑
j=0

χj

[
1

m

m−1∑
i=0

αiω
−ij

]
=

m−1∑
j=0

m−1∑
k=0

ωjkxk

[
1

m

m−1∑
i=0

αiω
−ij

]

=

m−1∑
k=0

xk

 1

m

m−1∑
i,j=0

αiω
j(k−i)


=

m−1∑
k=0

xk
m−1∑
i=0

αi

 1

m

m−1∑
j=0

ωj(k−i)


=

m−1∑
k=0

xkαk,

just as before.
All of the above suggests the following algorithm for polynomial multiplication:

• Express P as a linear combination P =
∑m−1
j=0 αjχj .

• Express Q as a linear combination Q =
∑m−1
j=0 βjχj .

• Compute R = PQ =
∑m−1
j=0 mαjβjχj .

• Convert R to a linear combination of the basis xi.

In the first two steps we are computing Fourier transforms, and the last step computes an inverse Fourier
transform. The formulas for both are very similar (they differ by replacing ω with ω−1, another primitive mth
root of unity), so they have the same complexity. How fast can we compute the inverse Fourier transform?

1.1 A more traditional view

Before turning to the Fast Fourier Transform, let us propose a different exposition of the foregoing. We can
think of elements of C[Zm] as functions from Zm to C. For example, the basis χ0, . . . , χm−1 corresponds to
the functions

χj(i) = ωij .

These functions are homomorphisms from Zm to C×, that is, χj(i1 + i2) = χj(i1)χj(i2). In fact, they are

all such homomorphisms. Another important property they satisfy is χj(i) = χj(−i).
We define an inner product on C[Zm] by the formula

〈f, g〉 =
1

m

m−1∑
i=0

f(i)g(i).

Under this inner product, the basis χ0, . . . , χm−1 is orthonormal:

〈χj , χk〉 =
1

m

m−1∑
i=0

ωi(j−k) =

{
1 if j = k,

0 otherwise,

a calculation we have seen several times. This property allows us to deduce the Fourier transform formula
almost immediately: if f =

∑m−1
j=0 αjχj then

〈f, χj〉 =

m−1∑
i=0

αi〈χi, χj〉 = αj .

3



We recover the formula

αj = 〈f, χj〉 =

m−1∑
i=0

f(i)χj(i) =

m−1∑
i=0

f(i)ω−ij .

In the literature, αj is often denoted f̂(j).

What about convolution? Suppose that f =
∑m−1
j=0 αjχj , g =

∑m−1
j=0 βjχj , and h = f ∗ g is given by

h(i) =

m−1∑
r=0

f(r)g(i− r),

which is the same as our polynomial multiplication. To find the Fourier expansion of h (its expansion in the
basis χ0, . . . , χm−1), we first consider the case in which f = χj and g = χk. In that case

(χj ∗ χk)(i) =

m−1∑
r=0

χj(r)χk(i− r) = χk(i)

m−1∑
r=0

χj(r)χk(r) = mχk(i)〈χj , χk〉.

We conclude that χj ∗ χk = 0 if j 6= k, and χj ∗ χj = m. Linearity then implies the convolution formula

h =

m−1∑
j=0

mαjβjχj .

2 Fast Fourier Transform

It turns out that when m = 2M , the Fourier transform and its inverse can be computed very quickly, in time
O(m logm). The corresponding algorithm is known as the Fast Fourier Transform.

Recall that the inverse Fourier transform asks us to compute the coefficients p0, . . . , pm−1 given the
coefficients α0, . . . , αm−1, using the formula

pi =

2M−1∑
j=0

αjω
ij .

The basic idea is to break the sum into two parts. There are two natural ways of doing it: according to LSB
and according to MSB (these are known as decimation-in-time and decimation-in-frequency, respectively).
We choose breaking according to the LSB:

pi =

2M−1−1∑
j=0

(
α2jω

2ij + α2j+1ω
2ij+i

)
=

2M−1−1∑
j=0

α2j(ω
2)ij + ωi

2M−1−1∑
j=0

α2j+1(ω2)ij .

The expressions in the two sums are the same ones as the inverse Fourier transform for Zm/2! There is a
slight complication: the inverse Fourier transform for Zm/2 has i < 2M−1, but here the indices i could be as

large as 2M − 1. This is no big deal, however, since (ω2)2
M−1

= 1, and so (ω2)ij = (ω2)(i mod 2M−1)j . With
this correction in place, we can explain the FFT algorithm:

• Compute (recursively) the inverse Fourier transform s0, . . . , sm/2−1 of α0, α2, . . . , αm−2.

• Compute (recursively) the inverse Fourier transform t0, . . . , tm/2−1 of α1, α3, . . . , αm−1.

• For i = 0, . . . ,m− 1, compute

pi = si mod (m/2) + ωiti mod (m/2).

4



The base of the recursion is when m = 1, in which case the formula is just p0 = α0. The number of
arithmetic operations performed, as a function of m, satisfies the recurrence

T (m) = 2T (m/2) + Θ(m),

whose solution is T (m) = Θ(m logm).

The FFT in hand, we can calculate the running time of the polynomial multiplication algorithm described
above. We take m = 2dlog2(2n+1)e, which satisfies 2n+1 ≤ m ≤ 4n+2. Given polynomials P,Q, we compute
their Fourier transforms in time O(m logm) = O(n log n). We then compute the Fourier transform of
R = PQ in linear time O(m) by multiplying the Fourier coefficients (the coefficients of the characters
χj). Finally, we compute the inverse Fourier transform of R in time O(m logm) = O(n log n). The entire
algorithm takes time O(n log n).

We can multiply multivariate polynomials using multidimensional Fourier transforms. For example, we
can multiply bivariate polynomials using the Fourier transform in the group Z2

m. An extreme case is the Walsh
transform, which is the Fourier transform in Zn2 , useful in theoretical computer science. Multidimensional
Fourier transforms are computed essentially by computing the Fourier transform across each dimension in
sequence. The generalization to arbitrary (non-abelian) groups is the subject of representation theory.

2.1 In-place algorithms

What happens if we want to implement FFT in place? To see what happens, let us work out the algorithms
for small m. We will use the notation ωm for e2πi/m, which is a primitive mth root of unity.

When m = 2, the original algorithm is:

• s0 ← α0.

• t0 ← α1.

• p0 ← s0 + ω0
2t0 = α0 + α1.

• p1 ← s0 + ω1
2t0 = α0 − α1.

If we want to implement this algorithm in-place, we need to execute the last two lines simultaneously:

α0, α1 ← α0 + α1, α0 − α1.

We can also express this as a matrix-vector multiplication:[
α0

α1

]
←
[
1 1
1 −1

] [
α0

α1

]
.

This is known as a butterfly, due to its diagrammatic shape:
α0

α1

α0 + α1

α0 − α1

When m = 4, the algorithm is:

• s0, s1 ← α0 + α2, α0 − α2.

• t0, t1 ← α1 + α3, α1 − α3.

• p0 ← s0 + ω0
4t0.

• p1 ← s1 + ω1
4t1.

• p2 ← s0 + ω2
4t0.

5



• p3 ← s1 + ω3
4t1.

If we want to implement this algorithm in-place, we first need to perform the first two lines in-place:

• α0, α2 ← α0 + α2, α0 − α2.

• α1, α3 ← α1 + α3, α1 − α3.

• p0 ← α0 + ω0
4α1.

• p1 ← α2 + ω1
4α3.

• p2 ← α0 + ω2
4α1.

• p3 ← α2 + ω3
4α3.

To implement the second half in-place, we need to perform pairs of lines simultaneously:

• α0, α2 ← α0 + α2, α0 − α2.

• α1, α3 ← α1 + α3, α1 − α3.

• α0, α1 ← α0 + ω0
4α1, α0 − ω0

4α1.

• α2, α3 ← α2 + ω1
4α3, α2 − ω1

4α3.

(We used ω2
4 = −1.) If we look at the correspondence between the entries of p and the entries of α, we see

something strange:
p0, p1, p2, p3 = α0, α2, α1, α3.

The two middle values got switched! This phenomenon is known as bit reversal.
Let us take this one step further, and consider the case m = 8. The original algorithm is:

• Compute the transform of α0, α2, α4, α6, and put the results in s0, s1, s2, s3.

• Compute the transform of α1, α3, α5, α7, and put the results in t0, t1, t2, t3.

• For i = 0, 1, 2, 3, compute pi, pi+4 = si + ωi8ti, si − ωi8ti.

(We used ω4
8 = −1.) When performing the first part in-place, we get:

• Compute the transform of α0, α2, α4, α6 in-place, obtaining s0, s2, s1, s3.

• Compute the transform of α1, α3, α5, α7 in-place, obtaining t0, t2, t1, t3.

• For i = 0, 1, 2, 3, compute pi, pi+4 = si + ωi8ti, si − ωi8ti.

Implementing the second part in-place, we get:

• Compute the transform of α0, α2, α4, α6 in-place.

• Compute the transform of α1, α3, α5, α7 in-place.

• α0, α1 ← α0 + ω0
8α1, α0 − ω0

8α1.

• α2, α3 ← α2 + ω2
8α3, α2 − ω2

8α3.

• α4, α5 ← α4 + ω1
8α5, α4 − ω1

8α5.

• α6, α7 ← α6 + ω3
8α7, α6 − ω3

8α7.

6



The correspondence this time is:

p0, p1, p2, p3, p4, p5, p6, p7 = α0, α4, α2, α6, α1, α5, α3, α7.

The bit-reversal phenomenon is more apparent if we use binary indices:

p000 p001 p010 p011 p100 p101 p110 p111
α000 α100 α010 α110 α001 α101 α011 α111.

Here is a diagram describing the entire algorithm:
α0

α1

α2

α3

α4

α5

α6

α7

p0

p4

p2

p6

p1

p5

p3

p7

×
×

×
×

×

×

×

×

ω0
4

ω0
4

ω1
4

ω1
4

ω0
8

ω2
8

ω1
8

ω3
8

Multiplication nodes ⊗ multiply the wire by the stated constant.
Each butterfly has the same semantics as before:
a

b

a+ b

a− b
We can now describe the general in-place FFT algorithm on m = 2M points, using the notation brM (x)

for the bit reversal of the M -bit index x:

• Compute the in-place FFT of the 2M−1 points α2i (where 0 ≤ i < 2M−1).

• Compute the in-place FFT of the 2M−1 points α2i+1 (where 0 ≤ i < 2M−1).

• For 0 ≤ i < 2M−1, let I = brM (i), and compute[
α2i

α2i+1

]
=

[
1 ωIm
1 −ωIm.

] [
α2i

α2i+1

]
.

• For 0 ≤ i < 2M , let I = brm(i), and if i < I then exchange αi and αI .

The base case, m = 1 or M = 0, is the trivial “do-nothing” algorithm.
We can also insert the input bit-reversed, changing the twiddle factors (the factors ωim) accordingly, and

then the output will be in the correct order.

2.2 Number-theoretic transform

The Fast Fourier transform, as we have described it, requires floating point computations when implemented
on a real computer. This invariably introduces calculation errors, and so the answer is not exact. We can
avoid this by replacing C with another ring which contains mth roots of unity. The ring has to contain the
coefficients of the polynomials P,Q. Assuming that these coefficients are small integers, we can choose the
ring Z2m−1, which contains a primitive mth root of unity, namely 2. This ring has to be large enough so
that the coefficients of the product polynomial R are at most 2m−1 (or 2m − 1 if they are non-negative), as
this will allow their decoding at the end of the process. To this end we might want to choose a ring Z2km−1
for a large enough k, which also contains a primitive mth root of unity, namely 2k. In practice, 2km + 1 is
better than 2km − 1, since it allows several optimizations. The primitive mth roots of unity are 4 and 4k,
respectively.

7



During the FFT algorithm, we have to multiply by powers of ω. Since for us ω is a power of 2 (both in
the initial step and in the recursive steps), we can implement this by the fast operation of bit rotation (or
using shifts). When counting only bit operations, bit rotations are for free. Therefore if we are using the
ring 2km ± 1, computing the direct and inverse Fourier transforms takes Θ(km2 logm) bit operations (since
each addition takes Θ(km) bit operations).

3 Schönhage–Strassen algorithm

The idea of the Schönhage–Strassen algorithm is to express integer multiplication as polynomial multiplica-
tion. Suppose that a = an−1 . . . a0 and b = bn−1 . . . b0 are two n-bit non-negative integers. Then

ab =

(
n−1∑
i=0

aix
i

)(
n−1∑
i=0

bix
i

)∣∣∣∣∣
x=2

.

Using the number theoretic transform with m = 2dlog2(2n+1)e = Θ(n), we can multiply the polynomials in
time Θ(m2 logm) = Θ(n2 log n), which is worse than the trivial algorithm. The point of difficulty is that
FFT uses an mth root of unity, and so we need to work in a ring containing an mth root of unity with a
simple form, and such rings are large. To contravene this difficulty, we will partition a, b into groups of `
bits:

ab =

n/`−1∑
i=0

`−1∑
j=0

2ja`i+jx
i

n/`−1∑
i=0

`−1∑
j=0

2jb`i+jx
i

∣∣∣∣∣∣
x=2`

.

We need to work over a ring Z2k(2n/`+1)±1 with 2k(2n/`+1) > (n/` + 1)2`+1, so we choose the smallest k
such that k(2n/` + 1) > log(n/` + 1) + ` + 1. Our choice of ` will be larger than log n, so we will have
k(2n/`+ 1) = Θ(`). The FFT algorithm thus takes time Θ(k(n/`) · (n/`) log(n/`)) = Θ(n log(n/`)). Having
computed the Fourier transforms, we need to multiply the Fourier coefficients. These are n/` products of
coefficients of length Θ(`) bits. After running FFT again to compute the inverse transform and converting
the Fourier coefficients to integers, we are left with computing

2n/`∑
i=0

ci2
`i,

where each ci has length `+ log n bits. Each of these staggered additions takes time Θ(`+ log n), for a total
of Θ(n+ (n/`) log n). The total running time thus satisfies the recurrence

T (n) = (n/`)T (Θ(`)) + Θ(n log(n/`)).

How should we choose `? Let us assume that Θ(`) = B` for some B > 1, and ignore the other Θ.
Opening up the recursion, we obtain

T (n) = n log
n

`1
+
n

`1
·B`1 log

B`1
`2

+
n

`1
· B`1
`2
·B`2 log

B`2
`3

+ · · ·

= n

(
log

n

`1
+B log

B`1
`2

+B2 log
B`2
`3

+ · · ·
)
.

Finding the best choice for `i is somewhat tiresome. A good choice is `i = n(1/B)i , and substituting this we
obtain

T (n) = n
(

log n1−1/B +B log(Bn1/B−1/B2

) +B2 log(Bn1/B2−1/B3

) + · · ·
)

= n
(
(1− 1/B) log n(1 +B/B +B2/B2 + · · · ) + (logB)(1 +B +B2 + · · · )

)
.

The dots continue until `i becomes constant, which happens for Bi ≈ log n, that is, at i = Θ(log log n). The
overall complexity is thus Θ(n log n log log n).

8


