Twenty (Simple) Questions Joint work with
 Yuval Dagan, Ariel Gabizon, Daniel Kane, Shay Moran

The Game of $\mathbf{2 0}$ Questions

The Game of $\mathbf{2 0}$ Questions

Bob

Thinks of a number between 1 to n

The Game of $\mathbf{2 0}$ Questions

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

The Game of $\mathbf{2 0}$ Questions

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

Cooperative!

The Game of $\mathbf{2 0}$ Questions

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

Cooperative!

Distributional 20 Questions

Distributional 20 Questions

Distributional 20 Questions

Finds the number by asking Yes/No questions

Bob

Samples a number between 1 to n according to μ

Distributional 20 Questions

Finds the number by asking Yes/No questions

Bob

Samples a number
between 1 to n according to μ
μ known to both parties!

Distributional 20 Questions

Distributional 20 Questions

Finds the number by asking Yes/No questions
$\mathrm{H}(\mu)=$ entropy of $\mu=$

Bob

Samples a number
between 1 to n according to μ
μ known to both parties!

Distributional 20 Questions

Huffman's algorithm could involve complicated questions:

Distributional 20 Questions

Huffman's algorithm could involve complicated questions:

Distributional 20 Questions

Huffman's algorithm could involve complicated questions:

What can we accomplish using simple questions?

Binary Search Trees

Binary Search Trees

Gilbert and Moore: optimal BST achieves $\mathrm{H}(\mu)+2$

Binary Search Trees

Gilbert and Moore: optimal BST achieves $\mathrm{H}(\mu)+2$
(optimal for distributions concentrated on some $x \in\{2, \ldots, n-1\}$)

Gilbert-Moore Algorithm

Binary search over [0,1]

Gilbert-Moore Algorithm

Binary search over [0,1]

Gilbert-Moore Algorithm

Binary search over [0,1]

Gilbert-Moore Algorithm

Binary search over [0,1]

Gilbert-Moore Algorithm

Binary search over [0,1]

Gilbert-Moore Algorithm

Binary search over [0,1]
Rissanen-Horibe Algorithm

Ask most informative question

Gilbert-Moore Algorithm

Binary search over [0,1]
Rissanen-Horibe Algorithm

Ask most informative question

Gilbert-Moore Algorithm

Binary search over [0,1]
Rissanen-Horibe Algorithm

Ask most informative question

Gilbert-Moore Algorithm

Binary search over [0,1]
Rissanen-Horibe Algorithm

Ask most informative question

Gilbert-Moore Algorithm

Ask most informative question

Analysis of Gilbert-Moore

Analysis of Gilbert-Moore

Analysis of Gilbert-Moore

Analysis of Gilbert-Moore

After k questions, zero in on interval of length 2^{-k}

Analysis of Gilbert-Moore

After k questions, zero in on interval of length 2^{-k}
Can stop once interval has length at most $\mu(x) / 2$

Analysis of Gilbert-Moore

After k questions, zero in on interval of length 2^{-k}
Can stop once interval has length at most $\mu(x) / 2$ Stop after $[\log (2 / \mu(x))\rceil<\log (1 / \mu(x))+2$ questions

Binary Split Trees

Binary Split Trees

We show: optimal binary split tree achieves $\mathrm{H}(\mu)+1$

Binary Split Trees

We show: optimal binary split tree achieves $\mathrm{H}(\mu)+1$
Same performance guarantee as Huffman!

Our Algorithm

Our Algorithm

If most probable element i has probability ≥ 0.3 :
Ask if $x=i$
Otherwise:
Ask most informative "<" question

Our Algorithm

If most probable element i has probability ≥ 0.3 :
Ask if $x=i$
Otherwise:
Ask most informative "<" question

1	2	3

Our Algorithm

If most probable element i has probability ≥ 0.3 :
Ask if $x=i$
Otherwise:
Ask most informative "<" question

1	(2)	3

Our Algorithm

If most probable element i has probability ≥ 0.3 :
Ask if $x=i$
Otherwise:
Ask most informative "<" question

1	(2)	3

Why do we care?

Chunked Binary Split Trees

word 0	word 1	word 2	word 3

Chunked Binary Split Trees

word 0	word 1	word 2	word 3

Chunked Binary Split Trees

Performance on w words: $\mathrm{H}(\mu)+w$

Chunked Binary Split Trees

Performance on w words: $\mathrm{H}(\mu)+w$
Number of different questions: $2 w n^{1 / w}$

Chunked Binary Split Trees

word 0	word 1	word 2	word 3

Performance on w words: $\mathrm{H}(\mu)+w$
Number of different questions: $2 w n^{1 / w}$
Optimal for redundancy w !

Playing 20 Questions with a Liar

Playing 20 Questions with a Liar

Bob

Thinks of a number between 1 to n

Playing 20 Questions with a Liar

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

Playing 20 Questions with a Liar

Finds the number by
asking Yes/No questions

Bob

Thinks of a number between 1 to n

Bob allowed to lie k times

Playing 20 Questions with a Liar

Alice

Finds the number by
asking Yes/No questions

Bob

Thinks of a number between 1 to n

Bob allowed to lie k times

Distributional 20 Questions with a Liar

Distributional 20 Questions with a Liar

Distributional 20 Questions with a Liar

Finds the number by asking Yes/No questions

Bob

Samples a number
between 1 to n according to μ

Distributional 20 Questions with a Liar

Finds the number by asking Yes/No questions

Bob

Samples a number
between 1 to n according to μ

Bob allowed to lie k times

Distributional 20 Questions with a Liar

Distributional 20 Questions with a Liar

Gilbert-Moore with Lies

Gilbert-Moore with Lies

Gilbert-Moore with Lies

Gilbert-Moore with Lies

Lie!

Gilbert-Moore with Lies

Gilbert-Moore with Lies

Gilbert-Moore with Lies

Lie!

Gilbert-Moore with Lies

Lie!

After first lie, answer always ">" - suspicious!

Gilbert-Moore with Lies

After first lie, answer always ">" - suspicious!

Figure out true answer, possibly rollback

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds
Each lie position requires Alice to find loglog(1/ $\mu(x))$ more bits

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds
Each lie position requires Alice to find loglog(1/ $\mu(x))$ more bits
Upper bound:

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds
Each lie position requires Alice to find loglog(1/ $\mu(x))$ more bits
Upper bound:
Length of suspicion interval balances "false positive" and overhead

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds
Each lie position requires Alice to find loglog(1/ $\mu(x))$ more bits
Upper bound:
Length of suspicion interval balances "false positive" and overhead Optimal choice turns out to be log(depth) $\approx \log \log (1 / \mu(x))$

Why $\mathrm{kH}_{2}(\mu)$ is right overhead?

$$
H(\mu)=E[\log 1 / \mu] \quad H_{2}(\mu)=E[\log \log 1 / \mu]
$$

Lower bound:
At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log (1 / \mu(x))$ rounds
Each lie position requires Alice to find loglog(1/ $\mu(x))$ more bits
Upper bound:
Length of suspicion interval balances "false positive" and overhead Optimal choice turns out to be log(depth) $\approx \log \log (1 / \mu(x))$ Cost incurred once per lie

Matching Huffman's algorithm exactly

Matching Huffman's algorithm exactly

Can we match Huffman exactly using a subset of all possible questions?

Matching Huffman's algorithm exactly

Can we match Huffman exactly using a subset of all possible questions?

Matching Huffman's algorithm exactly

Can we match Huffman exactly using a subset of all possible questions?

Matching Huffman's algorithm exactly

Can we match Huffman exactly using a subset of all possible questions?

Enough to handle "dyadic" distributions

Matching Huffman's algorithm exactly

Enough to show:
Each dyadic distribution μ has a strategy
using $\mathrm{H}(\mu)$ questions in expectation

Matching Huffman's algorithm exactly

Enough to show:
Each dyadic distribution μ has a strategy
using $\mathrm{H}(\mu)$ questions in expectation
Equivalently:
Can always find question splitting μ evenly

Matching Huffman's algorithm exactly

Enough to show:
Each dyadic distribution μ has a strategy using $\mathrm{H}(\mu)$ questions in expectation

Equivalently:
Can always find question splitting μ evenly

$$
\begin{array}{cccccccc}
1 / 4 & 1 / 16 & 1 / 8 & 1 / 8 & 1 / 16 & 1 / 16 & 1 / 16 & 1 / 4 \\
\mu(1) & \mu(2) & \mu(3) & \mu(4) & \mu(5) & \mu(6) & \mu(7) & \mu(8)
\end{array}
$$

Matching Huffman's algorithm exactly

Enough to show:
Each dyadic distribution μ has a strategy
using $\mathrm{H}(\mu)$ questions in expectation
Equivalently:
Can always find question splitting μ evenly

$$
\left.\begin{array}{lll}
1 / 4 & 1 / 16 \\
\mu(1) & \mu(2) & 1 / 8 \\
\mu(3)
\end{array}\right)\left(\begin{array}{llll}
1 / 8 & 1 / 16 & 1 / 16 & 1 / 16 \\
\mu(4) & 1 / 4 \\
\mu(5) & \mu(6) & \mu(7) & \mu(8)
\end{array}\right.
$$

Matching Huffman's algorithm exactly

Goal: Can always find question splitting μ evenly

$$
\left(\begin{array}{llllll}
1 / 4 & 1 / 16 \\
\mu(1)
\end{array} \begin{array}{c}
1 / 8 \\
\mu(2)
\end{array} \begin{array}{llll}
1 / 8 & 1 / 16 & 1 / 16 & 1 / 16 \\
\mu(3) & 1 / 4 \\
\mu(5) & \mu(6) & \mu(7) & \mu(8)
\end{array}\right.
$$

Matching Huffman's algorithm exactly

Goal: Can always find question splitting μ evenly

$$
\left(\begin{array}{llllll}
1 / 4 & 1 / 16 \\
\mu(1)
\end{array}\right) \begin{array}{llll}
1 / 8 \\
\mu(2)
\end{array}\left(\begin{array}{llll}
1 / 8 & 1 / 16 & 1 / 16 & 1 / 16 \\
\mu(3) & 1 / 4 \\
\mu(5) & \mu(6) & \mu(7) & \mu(8)
\end{array}\right.
$$

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$

Matching Huffman's algorithm exactly

Goal: Can always find question splitting μ evenly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$ Either $\mu(\{1, \ldots, n / 2\}) \geq 1 / 2$ or $\mu(\{n / 2+1, \ldots, n\}) \geq 1 / 2$, say the former

Matching Huffman's algorithm exactly

Goal: Can always find question splitting μ evenly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$ Either $\mu(\{1, \ldots, n / 2\}) \geq 1 / 2$ or $\mu(\{n / 2+1, \ldots, n\}) \geq 1 / 2$, say the former Arrange elements in non-increasing order of probability

$1 / 4$	$1 / 8$	$1 / 8$	$1 / 16$
$\mu(1)$	$\mu(3)$	$\mu(4)$	$\mu(2)$

Matching Huffman's algorithm exactly

Goal: Can always find question splitting μ evenly
$\left(\begin{array}{c}1 / 4 \\ \mu(1)\end{array} \begin{array}{c}1 / 8 \\ \mu(2) \\ \mu(3)\end{array}\left(\begin{array}{cccc}1 / 8 & 1 / 16 & 1 / 16 & 1 / 16 \\ \mu(4) & 1 / 4 \\ \mu(5) & \mu(6) & \mu(7) & \mu(8)\end{array}\right.\right.$

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$ Either $\mu(\{1, \ldots, n / 2\}) \geq 1 / 2$ or $\mu(\{n / 2+1, \ldots, n\}) \geq 1 / 2$, say the former Arrange elements in non-increasing order of probability

Some prefix sums to exactly $1 / 2$

Matching Huffman's algorithm exactly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$

Matching Huffman's algorithm exactly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$
Size: 1.4142^{n}, best known explicit construction

Matching Huffman's algorithm exactly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$
Size: 1.4142^{n}, best known explicit construction Random construction gives 1.25^{n}, which is optimal!

Matching Huffman's algorithm exactly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$
Size: 1.4142^{n}, best known explicit construction
Random construction gives 1.2^{n} n, which is optimal!
Construction: choose 1.25^{n} random sets of every size

Matching Huffman's algorithm exactly

Example: all subsets of $\{1, \ldots, n / 2\}+$ all subsets of $\{n / 2+1, \ldots, n\}$
Size: 1.4142^{n}, best known explicit construction
Random construction gives 1.2^{n} n, which is optimal!
Construction: choose 1.25^{n} random sets of every size Optimal number of questions for Huffman $+\varepsilon: n^{\circ(1 / \varepsilon)}$

What about smooth distributions?

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?
Gallager: cannot go below $\mathrm{H}(\mu)+0.086$

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?
Gallager: cannot go below $\mathrm{H}(\mu)+0.086$
Achieved for uniform distributions!

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?
Gallager: cannot go below $\mathrm{H}(\mu)+0.086$
Achieved for uniform distributions!
What do we get with "<" questions? With "<" and " $=$ " questions?

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?
Gallager: cannot go below $\mathrm{H}(\mu)+0.086$
Achieved for uniform distributions!
What do we get with "<" questions? With "<" and " $=$ " questions?
"<" questions: $\mathrm{H}(\mu)+1.086$ [Nakatsu]

What about smooth distributions?

Huffman worst case $\mathrm{H}(\mu)+1$ only obtained when μ almost constant
What happens when all probabilities in μ are small?
Gallager: cannot go below $\mathrm{H}(\mu)+0.086$
Achieved for uniform distributions!
What do we get with "<" questions? With "<" and " $=$ " questions?
"<" questions: $\mathrm{H}(\mu)+1.086$ [Nakatsu]
"<" and " $=$ " questions: between $\mathrm{H}(\mu)+0.501$ and $\mathrm{H}(\mu)+0.586$

Many open questions

Many open questions

-Questions with $d>2$ answers? Mehalel: $1.25 \rightarrow 1+(d-1) / d d /(d-1)$

Many open questions

-Questions with $d>2$ answers? Mehalel: $1.25 \rightarrow 1+(d-1) / d d /(d-1)$

- Other models of errors?

At most p fraction, at most q fraction in every prefix

Many open questions

-Questions with $d>2$ answers? Mehalel: $1.25 \rightarrow 1+(d-1) / d d /(d-1)$

- Other models of errors? At most p fraction, at most q fraction in every prefix
-What happens if we limit worst-case number of questions?

Many open questions

-Questions with $d>2$ answers? Mehalel: $1.25 \rightarrow 1+(d-1) / d d /(d-1)$

- Other models of errors? At most p fraction, at most q fraction in every prefix
-What happens if we limit worst-case number of questions?
- Fast algorithms for finding optimal binary split trees?

Many open questions

-Questions with $d>2$ answers? Mehalel: $1.25 \rightarrow 1+(d-1) / d d /(d-1)$

- Other models of errors? At most p fraction, at most q fraction in every prefix
-What happens if we limit worst-case number of questions?
- Fast algorithms for finding optimal binary split trees?

Thank You!

