Twenty (Simple) Questions Joint work with Yuval Dagan, Ariel Gabizon, Daniel Kane, Shay Moran

Yuval Filmus, 26 April 2021, HUJI CS Colloquium

Bob

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Cooperative!

Bob

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Cooperative!

Bob

binary search: logn questions

Thinks of a number between 1 to n

Bob

Alice

Finds the number by asking Yes/No questions

Bob

Alice

Finds the number by asking Yes/No questions

 μ known to both parties!

Bob

Alice

Finds the number by asking Yes/No questions

 μ known to both parties!

Bob

Huffman's algorithm: $H(\mu)$ +1 questions on average

Alice

H(μ) = entropy of μ = amortized # questions when solving many games in parallel

Huffman's algorithm: H(μ)+1 questions on average

Finds the number by asking Yes/No questions

µknown to both parties!

Huffman's algorithm could involve complicated questions:

ls x one of 2,3,5,7,11,13?

Huffman's algorithm could involve complicated questions:

Hunter Desportes

ls x one of 2,3,5,7,11,13?

What can we accomplish using simple questions?

Huffman's algorithm could involve complicated questions:

Binary Search Trees

Binary Search Trees

Gilbert and Moore: optimal BST achieves $H(\mu)+2$

Binary Search Trees

Gilbert and Moore: op (optimal for distributions co

Gilbert and Moore: optimal BST achieves $H(\mu)+2$

(optimal for distributions concentrated on some $x \in \{2, ..., n-1\}$)

Binary search over [0,1]

Rissanen-Horibe Algorithm

Rissanen-Horibe Algorithm

1/2

After *k* questions, zero in on interval of length 2^{-k}

Can stop once interval has length at most $\mu(x)/2$

After k questions, zero in on interval of length 2^{-k} Can stop once interval has length at most $\mu(x)/2$ Stop after $\left[\log(2/\mu(x))\right] < \log(1/\mu(x)) + 2$ questions

We show: optimal binary split tree achieves $H(\mu)+1$

- We show: optimal binary split tree achieves $H(\mu)+1$
 - Same performance guarantee as Huffman!

1 2	3
-----	---

|--|

word 2

word 3

<0042?

		word 2	word 3
--	--	--------	--------

=0010? <0042?

Performance on *w* words: $H(\mu)+w$

Performance on *w* words: $H(\mu)+w$ Number of different questions: $2wn^{1/w}$

word 2	word 3

=0010? <0042?

Performance of Number of different Optimal for

- Performance on *w* words: $H(\mu)+w$
- Number of different questions: 2wn^{1/w}
 - Optimal for redundancy w!

Bob

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Bob

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Bob allowed to lie k times

Thinks of a number between 1 to n

Alice

Finds the number by asking Yes/No questions

Bob allowed to lie k times

Bob

optimal cost: logn+kloglogn

Thinks of a number between 1 to n

Bob

Alice

Finds the number by asking Yes/No questions

Bob

Alice

Finds the number by asking Yes/No questions

Bob allowed to lie k times

Bob

Alice

Finds the number by asking Yes/No questions

Bob allowed to lie k times

Bob

Optimal cost: H(μ)+kH₂(μ) on average

Alice

 $H(\mu) = E[\log 1/\mu]$ $H_2(\mu) = E[loglog 1/\mu]$

Finds the number by asking Yes/No questions

Bob allowed to lie k times

Optimal cost: $H(\mu)+kH_{2}(\mu)$ on average

Bob

After first lie, answer always ">" – suspicious!

After first lie, answer always ">" – suspicious!

Figure out true answer, possibly rollback

$H(\mu) = E[log 1/\mu]$

$H_2(\mu) = E[loglog 1/\mu]$

$H(\mu) = E[\log 1/\mu]$

Lower bound:

$H_2(\mu) = E[loglog 1/\mu]$

$H(\mu) = E[\log 1/\mu]$

Lower bound:

$H_2(\mu) = E[loglog 1/\mu]$

At end of game, Alice knows both x and positions where Bob lied

$H(\mu) = E[\log 1/\mu]$

Lower bound: At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log(1/\mu(x))$ rounds

$H_2(\mu) = E[loglog 1/\mu]$

$H(\mu) = E[\log 1/\mu]$

Lower bound:

Game lasts for $\approx \log(1/\mu(x))$ rounds

$H_2(\mu) = E[loglog 1/\mu]$

- At end of game, Alice knows both x and positions where Bob lied
- Each lie position requires Alice to find $\log\log(1/\mu(x))$ more bits

$H(\mu) = E[\log 1/\mu]$

Lower bound:

- At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log(1/\mu(x))$ rounds
- Each lie position requires Alice to find $\log\log(1/\mu(x))$ more bits

Upper bound:

$H_2(\mu) = E[loglog 1/\mu]$

$H(\mu) = E[\log 1/\mu]$

Lower bound:

- At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log(1/\mu(x))$ rounds
- Each lie position requires Alice to find $\log\log(1/\mu(x))$ more bits

Upper bound:

$H_2(\mu) = E[loglog 1/\mu]$

Length of suspicion interval balances "false positive" and overhead

$H(\mu) = E[\log 1/\mu]$

Lower bound:

- At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log(1/\mu(x))$ rounds
- Each lie position requires Alice to find $\log\log(1/\mu(x))$ more bits

Upper bound:

Optimal choice turns out to be log(depth) $\approx \log\log(1/\mu(x))$

$H_2(\mu) = E[loglog 1/\mu]$

Length of suspicion interval balances "false positive" and overhead

$H(\mu) = E[\log 1/\mu]$

Lower bound:

- At end of game, Alice knows both x and positions where Bob lied Game lasts for $\approx \log(1/\mu(x))$ rounds
- Each lie position requires Alice to find $\log\log(1/\mu(x))$ more bits

Upper bound:

Optimal choice turns out to be log(depth) \approx loglog(1/ $\mu(x)$) Cost incurred once per lie

$H_2(\mu) = E[loglog 1/\mu]$

Length of suspicion interval balances "false positive" and overhead

Can we match Huffman *exactly* using a subset of all possible questions?

Can we match Huffman *exactly* using a subset of all possible questions?

Can we match Huffman *exactly* using a subset of all possible questions?

Can we match Huffman exactly using a subset of all possible questions?

> Ν <2? 1/4

1/4

Enough to handle "dyadic" distributions

Enough to show: Each dyadic distribution μ has a strategy using H(μ) questions in expectation

- Enough to show: Each dyadic distribution μ has a strategy using H(μ) questions in expectation
- Equivalently: Can always find question splitting *µ* evenly

- Enough to show: using $H(\mu)$ questions in expectation
- Each dyadic distribution μ has a strategy
- Equivalently: Can always find question splitting μ evenly
 - 1/4 1/16 1/8 1/8 1/16 1/16 1/16 1/4
 - $\mu(1)$ $\mu(2)$ $\mu(3)$ $\mu(4)$ $\mu(5)$ $\mu(6)$ $\mu(7)$ $\mu(8)$

- Enough to show: Each dyadic distribution μ has a strategy using $H(\mu)$ questions in expectation
- Equivalently: Can always find question splitting μ evenly

1/41/161/81/161/161/161/161/4 $\mu(1)$ $\mu(2)$ $\mu(3)$ $\mu(4)$ $\mu(5)$ $\mu(6)$ $\mu(7)$ $\mu(8)$

1/41/161/81/81/161/161/161/161/4 $\mu(1)$ $\mu(2)$ $\mu(3)$ $\mu(4)$ $\mu(5)$ $\mu(6)$ $\mu(7)$ $\mu(8)$

- Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$

Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$ Either $\mu(\{1,...,n/2\}) \ge 1/2$ or $\mu(\{n/2+1,...,n\}) \ge 1/2$, say the former

Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$ Either $\mu(\{1,...,n/2\}) \ge 1/2$ or $\mu(\{n/2+1,...,n\}) \ge 1/2$, say the former Arrange elements in non-increasing order of probability 1/4 1/8 1/8 1/16

 $\mu(1)$ $\mu(3)$ $\mu(4)$ $\mu(2)$

Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$ Either $\mu(\{1,...,n/2\}) \ge 1/2$ or $\mu(\{n/2+1,...,n\}) \ge 1/2$, say the former Arrange elements in non-increasing order of probability 1/41/81/81/16 $\mu(1)$ $\mu(3)$ $\mu(4)$ $\mu(2)$ Some prefix sums to exactly 1/2

Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$

Example: all subsets of $\{1,...,n/2\}$ + all subsets of $\{n/2+1,...,n\}$ Size: 1.4142^{*n*}, best known explicit construction

Example: all subsets of {1,... Size: 1.4142ⁿ, best know Random construction giv

- Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$
 - Size: 1.4142ⁿ, best known explicit construction
 - Random construction gives 1.25ⁿ, which is optimal!

Example: all subsets of {1,... Size: 1.4142ⁿ, best know Random construction giv Construction: choose 1.25

- Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$
 - Size: 1.4142ⁿ, best known explicit construction
 - Random construction gives 1.25ⁿ, which is optimal!
 - Construction: choose 1.25ⁿ random sets of every size

- Example: all subsets of $\{1, \dots, n/2\}$ + all subsets of $\{n/2+1, \dots, n\}$
 - Size: 1.4142ⁿ, best known explicit construction
 - Random construction gives 1.25ⁿ, which is optimal!
 - Construction: choose 1.25ⁿ random sets of every size
 - Optimal number of questions for Huffman + ε : $n^{O(1/\varepsilon)}$

Huffman worst case H(μ)+1 only obtained when μ almost constant

What happens when all probabilities in μ are small?

- Huffman worst case H(μ)+1 only obtained when μ almost constant

- Huffman worst case H(μ)+1 only obtained when μ almost constant
- What happens when all probabilities in μ are small?
- Gallager: cannot go below $H(\mu)+0.086$

- Huffman worst case H(μ)+1 only obtained when μ almost constant
- What happens when all probabilities in μ are small?
- Gallager: cannot go below $H(\mu)+0.086$
- Achieved for uniform distributions!

- Huffman worst case H(μ)+1 only obtained when μ almost constant
- What happens when all probabilities in μ are small?
- Gallager: cannot go below $H(\mu)+0.086$
- Achieved for uniform distributions!
- What do we get with "<" questions? With "<" and "=" questions?

- Huffman worst case H(μ)+1 only obtained when μ almost constant
- What happens when all probabilities in μ are small?
- Gallager: cannot go below $H(\mu)+0.086$
- Achieved for uniform distributions!
- What do we get with "<" questions? With "<" and "=" questions?
- "<" questions: $H(\mu)$ +1.086 [Nakatsu]

- Huffman worst case H(μ)+1 only obtained when μ almost constant
- What happens when all probabilities in μ are small?
- Gallager: cannot go below $H(\mu)+0.086$
- Achieved for uniform distributions!
- What do we get with "<" questions? With "<" and "=" questions?
- "<" questions: $H(\mu)$ +1.086 [Nakatsu]
- "<" and "=" questions: between H(μ)+0.501 and H(μ)+0.586

• Questions with d>2 answers? Me

Mehalel: $1.25 \rightarrow 1 + (d-1)/d^{d/(d-1)}$

- Questions with d>2 answers? Mehalel: $1.25 \rightarrow 1 + (d-1)/d^{d/(d-1)}$
- Other models of errors? At most p fraction, at most q fraction in every prefix

- Questions with d>2 answers? Mehalel: $1.25 \rightarrow 1 + (d-1)/d^{d/(d-1)}$
- Other models of errors? At most p fraction, at most q fraction in every prefix
- What happens if we limit worst-case number of questions?

- Questions with d>2 answers? Mehalel: $1.25 \rightarrow 1 + (d-1)/d^{d/(d-1)}$
- Other models of errors? At most p fraction, at most q fraction in every prefix
- What happens if we limit worst-case number of questions?
- Fast algorithms for finding optimal binary split trees?

- Mehalel: $1.25 \rightarrow 1 + (d-1)/d^{d/(d-1)}$ • Questions with d>2 answers?
- Other models of errors? At most p fraction, at most q fraction in every prefix
- What happens if we limit worst-case number of questions?
- Fast algorithms for finding optimal binary split trees?

