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Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Cooperative!

binary search: 
logn questions
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Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

µ known to both parties!

Huffman’s algorithm: 
H(µ)+1 questions 

on average

H(µ) = entropy of µ = 
amortized # questions 

when solving many 
games in parallel
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Is x one of 
2,3,5,7,11,13?

What can we accomplish using simple questions?
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Gilbert and Moore: optimal BST achieves H(µ)+2

(optimal for distributions concentrated on some x∈{2,…,n–1})
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µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]

Both algorithms 
guarantee H(µ)+2
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Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

1/4 1/4

µ(5)/2 µ(5)/2

After k questions, zero in on interval of length 2–k

Can stop once interval has length at most µ(x)/2
Stop after ⌈log(2/µ(x))⌉<log(1/µ(x))+2 questions
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We show: optimal binary split tree achieves H(µ)+1

Same performance guarantee as Huffman!
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Our Algorithm

If most probable element i has probability ≥0.3: 
Ask if x = i 

Otherwise: 
Ask most informative “<” question

1 2 3

Why do we care?
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Chunked Binary Split Trees

word 0 word 1 word 3word 2

=AB01?
<C0A1?

<BDBB? =0010? <0042?

Performance on w words: H(µ)+w

Number of different questions: 2wn1/w

Optimal for redundancy w!
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Playing 20 Questions with a Liar

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

optimal cost: 
logn+kloglogn



Distributional 20 Questions with a Liar



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

Bob



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

Optimal cost: 
H(µ)+kH2(µ) 
on average



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

Optimal cost: 
H(µ)+kH2(µ) 
on average

H(µ) = E[log 1/µ] 
H2(µ) = E[loglog 1/µ]



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/4 1/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16

After first lie, answer always “>” – suspicious! 



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16

After first lie, answer always “>” – suspicious! 

Figure out true answer, possibly rollback
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Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:

Upper bound:

At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 

Length of suspicion interval balances “false positive” and overhead
Optimal choice turns out to be log(depth)≈loglog(1/µ(x))
Cost incurred once per lie
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Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly
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Either µ({1,…,n/2}) ≥ 1/2 or µ({n/2+1,…,n}) ≥ 1/2, say the former
Arrange elements in non-increasing order of probability
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Some prefix sums to exactly 1/2
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Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}

Size: 1.4142n, best known explicit construction

Random construction gives 1.25n, which is optimal!

Optimal number of questions for Huffman + ε: nO(1/ε)

Construction: choose 1.25n random sets of every size
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What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086

What do we get with “<“ questions? With “<“ and “=“ questions?

“<“ questions: H(µ)+1.086 [Nakatsu]

“<“ and “=“ questions: between H(µ)+0.501 and H(µ)+0.586

Achieved for uniform distributions!
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Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)

•Other models of errors?       At most p fraction, at most q fraction in every prefix

•What happens if we limit worst-case number of questions?

•Fast algorithms for finding optimal binary split trees?

Thank You!


