
Twenty (Simple) Questions

Yuval Filmus, 26 April 2021, HUJI CS Colloquium

Joint work with 
Yuval Dagan, Ariel Gabizon, Daniel Kane, Shay Moran



The Game of 20 Questions



The Game of 20 Questions

Thinks of a number 
between 1 to n

Bob



The Game of 20 Questions

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions



The Game of 20 Questions

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Cooperative!



The Game of 20 Questions

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Cooperative!

binary search: 
logn questions



Distributional 20 Questions



Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

Bob



Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions



Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

µ known to both parties!



Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

µ known to both parties!

Huffman’s algorithm: 
H(µ)+1 questions 

on average



Distributional 20 Questions

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

µ known to both parties!

Huffman’s algorithm: 
H(µ)+1 questions 

on average

H(µ) = entropy of µ = 
amortized # questions 

when solving many 
games in parallel



Distributional 20 Questions

Huffman’s algorithm could involve complicated questions:



Distributional 20 Questions

Huffman’s algorithm could involve complicated questions:
H

un
te

r D
es

po
rt

es

Is x one of 
2,3,5,7,11,13?



Distributional 20 Questions

Huffman’s algorithm could involve complicated questions:
H

un
te

r D
es

po
rt

es

Is x one of 
2,3,5,7,11,13?

What can we accomplish using simple questions?



Binary Search Trees

<3?

<2?

1 2

3

N

N

Y

Y



Binary Search Trees

<3?

<2?

1 2

3

N

N

Y

Y

Gilbert and Moore: optimal BST achieves H(µ)+2



Binary Search Trees

<3?

<2?

1 2

3

N

N

Y

Y

Gilbert and Moore: optimal BST achieves H(µ)+2

(optimal for distributions concentrated on some x∈{2,…,n–1})



Gilbert–Moore Algorithm

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

Binary search over [0,1]



Gilbert–Moore Algorithm

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

Binary search over [0,1]



Gilbert–Moore Algorithm

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2

Binary search over [0,1]



Gilbert–Moore Algorithm

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/4

Binary search over [0,1]



Gilbert–Moore Algorithm

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]



µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]



µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]



µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]



µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]



µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

Ask most informative question

Gilbert–Moore Algorithm

Rissanen–Horibe Algorithm 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2 3/45/8

Binary search over [0,1]

Both algorithms 
guarantee H(µ)+2



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

µ(5)/2 µ(5)/2



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

µ(5)/2 µ(5)/2



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

1/4 1/4

µ(5)/2 µ(5)/2



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

1/4 1/4

µ(5)/2 µ(5)/2

After k questions, zero in on interval of length 2–k



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

1/4 1/4

µ(5)/2 µ(5)/2

After k questions, zero in on interval of length 2–k

Can stop once interval has length at most µ(x)/2



Analysis of Gilbert–Moore

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1

1/2 1/2

1/4 1/4

µ(5)/2 µ(5)/2

After k questions, zero in on interval of length 2–k

Can stop once interval has length at most µ(x)/2
Stop after ⌈log(2/µ(x))⌉<log(1/µ(x))+2 questions



Binary Split Trees

=2?

<2?

1 3

2

N

N

Y

Y



Binary Split Trees

=2?

<2?

1 3

2

N

N

Y

Y

We show: optimal binary split tree achieves H(µ)+1



Binary Split Trees

=2?

<2?

1 3

2

N

N

Y

Y

We show: optimal binary split tree achieves H(µ)+1

Same performance guarantee as Huffman!



Our Algorithm



Our Algorithm

If most probable element i has probability ≥0.3: 
Ask if x = i 

Otherwise: 
Ask most informative “<” question



Our Algorithm

If most probable element i has probability ≥0.3: 
Ask if x = i 

Otherwise: 
Ask most informative “<” question

1 2 3



Our Algorithm

If most probable element i has probability ≥0.3: 
Ask if x = i 

Otherwise: 
Ask most informative “<” question

1 2 3



Our Algorithm

If most probable element i has probability ≥0.3: 
Ask if x = i 

Otherwise: 
Ask most informative “<” question

1 2 3

Why do we care?



Chunked Binary Split Trees

word 0 word 1 word 3word 2



Chunked Binary Split Trees

word 0 word 1 word 3word 2

=AB01?
<C0A1?

<BDBB? =0010? <0042?



Chunked Binary Split Trees

word 0 word 1 word 3word 2

=AB01?
<C0A1?

<BDBB? =0010? <0042?

Performance on w words: H(µ)+w



Chunked Binary Split Trees

word 0 word 1 word 3word 2

=AB01?
<C0A1?

<BDBB? =0010? <0042?

Performance on w words: H(µ)+w

Number of different questions: 2wn1/w



Chunked Binary Split Trees

word 0 word 1 word 3word 2

=AB01?
<C0A1?

<BDBB? =0010? <0042?

Performance on w words: H(µ)+w

Number of different questions: 2wn1/w

Optimal for redundancy w!



Playing 20 Questions with a Liar



Playing 20 Questions with a Liar

Thinks of a number 
between 1 to n

Bob



Playing 20 Questions with a Liar

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions



Playing 20 Questions with a Liar

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times



Playing 20 Questions with a Liar

Thinks of a number 
between 1 to n

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

optimal cost: 
logn+kloglogn



Distributional 20 Questions with a Liar



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

Bob



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

Optimal cost: 
H(µ)+kH2(µ) 
on average



Distributional 20 Questions with a Liar

Samples a number 
between 1 to n 
according to µ

BobAlice

Finds the number by 
asking Yes/No questions

Bob allowed to lie k times

Optimal cost: 
H(µ)+kH2(µ) 
on average

H(µ) = E[log 1/µ] 
H2(µ) = E[loglog 1/µ]



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 1



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 11/4 1/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16

After first lie, answer always “>” – suspicious! 



Gilbert–Moore with Lies

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6)

0 13/81/4 1/2

Lie!

7/16

After first lie, answer always “>” – suspicious! 

Figure out true answer, possibly rollback



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:
At end of game, Alice knows both x and positions where Bob lied



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:
At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:
At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:

Upper bound:

At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:

Upper bound:

At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 

Length of suspicion interval balances “false positive” and overhead



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:

Upper bound:

At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 

Length of suspicion interval balances “false positive” and overhead
Optimal choice turns out to be log(depth)≈loglog(1/µ(x))



Why kH2(µ) is right overhead?
H(µ) = E[log 1/µ]                    H2(µ) = E[loglog 1/µ]

Lower bound:

Upper bound:

At end of game, Alice knows both x and positions where Bob lied
Game lasts for ≈log(1/µ(x)) rounds
Each lie position requires Alice to find loglog(1/µ(x)) more bits 

Length of suspicion interval balances “false positive” and overhead
Optimal choice turns out to be log(depth)≈loglog(1/µ(x))
Cost incurred once per lie



Matching Huffman’s algorithm exactly



Matching Huffman’s algorithm exactly
Can we match Huffman exactly using 

a subset of all possible questions?



Matching Huffman’s algorithm exactly
Can we match Huffman exactly using 

a subset of all possible questions?

=2?

<2?

1 3

2

N

N

Y

Y



Matching Huffman’s algorithm exactly
Can we match Huffman exactly using 

a subset of all possible questions?

=2?

<2?

1 3

2

N

N

Y

Y

1/4 1/4

1/2



Matching Huffman’s algorithm exactly
Can we match Huffman exactly using 

a subset of all possible questions?

=2?

<2?

1 3

2

N

N

Y

Y

1/4 1/4

1/2

Enough to handle “dyadic” distributions



Matching Huffman’s algorithm exactly
Enough to show: 

Each dyadic distribution µ has a strategy 
using H(µ) questions in expectation



Matching Huffman’s algorithm exactly
Enough to show: 

Each dyadic distribution µ has a strategy 
using H(µ) questions in expectation

Equivalently: 
Can always find question splitting µ evenly



Matching Huffman’s algorithm exactly
Enough to show: 

Each dyadic distribution µ has a strategy 
using H(µ) questions in expectation

Equivalently: 
Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)



Matching Huffman’s algorithm exactly
Enough to show: 

Each dyadic distribution µ has a strategy 
using H(µ) questions in expectation

Equivalently: 
Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)



Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)



Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}



Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}
Either µ({1,…,n/2}) ≥ 1/2 or µ({n/2+1,…,n}) ≥ 1/2, say the former



Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}
Either µ({1,…,n/2}) ≥ 1/2 or µ({n/2+1,…,n}) ≥ 1/2, say the former
Arrange elements in non-increasing order of probability

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/8

µ(4)



Matching Huffman’s algorithm exactly
Goal: Can always find question splitting µ evenly

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/16

µ(7)

1/4

µ(8)

1/16

µ(6)

1/8

µ(4)

1/16

µ(5)

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}
Either µ({1,…,n/2}) ≥ 1/2 or µ({n/2+1,…,n}) ≥ 1/2, say the former
Arrange elements in non-increasing order of probability

1/4

µ(1)

1/16

µ(2)

1/8

µ(3)

1/8

µ(4)

Some prefix sums to exactly 1/2



Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}



Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}

Size: 1.4142n, best known explicit construction



Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}

Size: 1.4142n, best known explicit construction

Random construction gives 1.25n, which is optimal!



Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}

Size: 1.4142n, best known explicit construction

Random construction gives 1.25n, which is optimal!

Construction: choose 1.25n random sets of every size



Matching Huffman’s algorithm exactly

Example: all subsets of {1,…,n/2} + all subsets of {n/2+1,…,n}

Size: 1.4142n, best known explicit construction

Random construction gives 1.25n, which is optimal!

Optimal number of questions for Huffman + ε: nO(1/ε)

Construction: choose 1.25n random sets of every size



What about smooth distributions?



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086

Achieved for uniform distributions!



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086

What do we get with “<“ questions? With “<“ and “=“ questions?

Achieved for uniform distributions!



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086

What do we get with “<“ questions? With “<“ and “=“ questions?

“<“ questions: H(µ)+1.086 [Nakatsu]

Achieved for uniform distributions!



What about smooth distributions?

Huffman worst case H(µ)+1 only obtained when µ almost constant

What happens when all probabilities in µ are small?

Gallager: cannot go below H(µ)+0.086

What do we get with “<“ questions? With “<“ and “=“ questions?

“<“ questions: H(µ)+1.086 [Nakatsu]

“<“ and “=“ questions: between H(µ)+0.501 and H(µ)+0.586

Achieved for uniform distributions!



Many open questions



Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)



Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)

•Other models of errors?       At most p fraction, at most q fraction in every prefix



Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)

•Other models of errors?       At most p fraction, at most q fraction in every prefix

•What happens if we limit worst-case number of questions?



Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)

•Other models of errors?       At most p fraction, at most q fraction in every prefix

•What happens if we limit worst-case number of questions?

•Fast algorithms for finding optimal binary split trees?



Many open questions

•Questions with d>2 answers?       Mehalel: 1.25 → 1 + (d–1)/dd/(d–1)

•Other models of errors?       At most p fraction, at most q fraction in every prefix

•What happens if we limit worst-case number of questions?

•Fast algorithms for finding optimal binary split trees?

Thank You!


