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Abstract

A function f : Sn → R of the form f(π) =
!

ij cij1π(i)=j is Boolean if it is a dictator (depends on

a single π(i) or on a single π−1(j)). What can we say about f if it is almost Boolean? We answer this
question for several different notions of almost : L2, L0, L∞.

1 Motivation: Erdős–Ko–Rado theorem for permutations

We say that two permutations α,β intersect if they agree on the image of some point: α(i) = β(i) for some
i. A family F of permutations is intersecting if every two permutations in F intersect.

How large can an intersecting family of permutations on n elements be?

A simple argument along the lines of Katona’s circle argument [Kat72], due to Frankl and Deza [FD77],
shows that any such family contains at most (n − 1)! permutations. The idea is to decompose the group
Sn of all permutations on n elements into (n − 1)! many subsets of length n, each consisting of a single
permutation and its cyclic shifts. For example, if n = 5, then one such subset is

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

These permutations are pairwise non-intersecting, and so every intersecting family contains at most one of
them. Since Sn can be decomposed into (n−1)! such subsets, it follows that every intersecting family contains
at most (n − 1)! many permutations. This is the Erdős–Ko–Rado theorem for permutations, generalizing a
classical result on intersecting families of sets [EKR61].

Conversely, the following intersecting family contains (n− 1)! permutations: all permutations mapping i
to j. We call such families double cosets,1 and they also go by other names, such as stars, links, and canonical
intersecting families. This suggests a natural follow-up question:

What are all intersecting families of the maximum size (n− 1)!? Are they all canonical?

The answer to this question is positive, as shown by Cameron and Ku [CK03], Larose and Malvenuto [LM04],
Godsil and Meagher [GM09], and Ellis, Friedgut and Pilpel [EFP11], using different techniques. Some of
these proofs are more ad hoc than others. The proof that spurred our work is the one due to Ellis, Friedgut
and Pilpel, which uses spectral techniques, and is arguably more conceptual than the others.

We present their proof below. First, however, let us mention that in some settings, not all intersecting
families of maximum size are canonical, and so the question is not redundant. A case in point is the

1They are double coset of the point stabilizer of 1.
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alternating group An, which is the group of all even permutations. Ku and Wong [KW07] gave an example
of an intersecting family of maximum size on 4 points which is not canonical:

1 2 3 4
1 3 4 2
2 3 1 4

They also showed that non-canonical examples occur only for n = 4.

Spectral proof Ku [KW07] proposed a proof of the Erdős–Ko–Rado theorem for permutations using the
Hoffman bound, which was realized by Renteln [Ren07]. The idea of the proof (replacing the Hoffman bound
with the slightly simpler Lovász bound) is to construct a symmetric Sn × Sn matrix A with the following
properties:

1. If α,β are intersecting then Aαβ = 1.

2. The maximal eigenvalue of A is (n− 1)!.

Suppose we have constructed such a matrix (we explain below how to do it). Let f be the indicator vector
of an intersecting family F . Then

|F|2 = fTAf ≤ (n− 1)!fT f = (n− 1)!|F|,

and so |F| ≤ (n − 1)!. Moreover, if |F| = (n − 1)!, then f must lie in the eigenspace of (n − 1)!. Ellis,
Friedgut and Pilpel used this additional property to classify all intersecting families of maximum size.

But first, let us explain how to construct A.2 Our starting point is the all-ones matrix J , and the adjacency
matrix B of the derangement graph, which is the graph on Sn in which two permutations are connected if they
do not intersect. The maximum eigenvalue of B is clearly Dn, the number of derangements (permutations
without any fixed points), and the corresponding eigenspace Vmax consists of all constant vectors (this is
because the derangement graph is connected). Renteln showed that the minimum eigenvalue is −Dn/(n−1),
as conjectured by Ku [KW07], and described its eigenspace Vmin explicitly when n ≥ 5.

Given this data, we take

A = J − (n− 1)(n− 1)!

Dn
B,

which clearly satisfies the first property above. The all-ones matrix J has two eigenspace: Vmax corresponds
to the eigenvalue n!, and V ⊥

max corresponds to the eigenvalue 0. This means that J and B have common
eigenspaces, allowing us to determine the maximal eigenvalue of A. There are two competing options for this
eigenvalue: the one corresponding to Vmax, and the one corresponding to Vmin. The eigenvalue corresponding

to Vmax is n!− (n−1)(n−1)!
Dn

Dn = (n−1)!, and the one corresponding to Vmin is − (n−1)(n−1)!
Dn

·− Dn

n−1 = (n−1)!.
The two eigenvalues coincide, showing that the maximum eigenvalue of A is indeed (n − 1)!. Furthermore,
the corresponding eigenspace is U1 := Vmax ⊕ Vmin.

Summarizing, if F is an intersecting family of size (n − 1)!, then its characteristic function f belongs
to the eigenspace U1 (for n ≥ 5). We can describe this eigenspace explicitly: it is the linear span of the
characteristic functions of double cosets! We can therefore express f in the following form:

f =
!

i,j

cijxij ,

where xij is the indicator of “i goes to j”, that is, xij = 1 if the input permutation sends i to j. In other
words, xij is the characteristic function of the double coset consisting of all permutations mapping i to j.
Another way of thinking of xij is as the (i, j)’th entry of the input permutation, encoded as a permutation
matrix.

2Grayed out paragraphs can be skipped on first reading.
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Every function on Sn can be written as some polynomial in the variables xij . The degree of a function
is the minimum degree of such a polynomial. A function belongs to U1 if it has degree at most 1; we also
say that it is linear. You might wonder why we don’t allow a constant coefficient. Such a coefficient is not
needed, since it can be expressed via the identity

"
j x1j = 1; however, constant coefficients will be useful

at some point below.
Reiterating, if F is an intersecting family of size (n− 1)!, then its characteristic function f is a Boolean

function (that is, a function attaining the values 0 and 1) of degree at most 1.

What are the Boolean degree 1 functions on Sn?

In the case of the Boolean cube {0, 1}n, this is a simple exercise. A function on the Boolean cube has
degree at most 1 if it can be written in the form

f(x1, . . . , xn) = c+

n!

i=1

cixi.

(This time we cannot get rid of the constant coefficient.) If f is Boolean, then at most one of the ci’s can be
non-zero, since otherwise the function will attain at least three different values. Therefore f must depend
on at most one coordinate xi, and consequently, it is one of the following functions: 0, 1, xi, 1 − xi; we call
such a function a dictator (this includes constants).

The case of the symmetric group is more complicated: it is no longer true that at most one of the cij ’s
can be non-zero, since there are pairs of variables xi1j1 , xi2j2 which cannot equal 1 at the same time; we say
that they are disjoint, since the corresponding double cosets are disjoint. A pair of variables is disjoint if the
two variables are on the same row (i1 = i2) or column (j1 = j2).

A sum of pairwise disjoint xij ’s is always Boolean. This gives rise to two more examples of Boolean
degree 1 functions:

!

j∈J

xij for some 1 ≤ i ≤ n and J ⊆ {1, . . . , n},

!

i∈I

xij for some 1 ≤ j ≤ n and I ⊆ {1, . . . , n}.

These classes of functions are closed under negation (f '→ 1 − f), so in contrast to the case of the Boolean
cube, there is no need to explicitly list their negations. We call such functions dictators, since in the first
case, the value of the function on a permutation π depends on π(i), and in the second case, it depends on
π−1(j).

Ellis, Friedgut and Pilpel [EFP11] showed that all Boolean degree 1 functions are of this form, using the
Birkhoff–von Neumann theorem. This theorem states that every doubly stochastic matrix is a linear com-
bination of permutation matrices. Equivalently, the polytope P ⊂ Rn2

whose vertices are the permutation
matrices is represented by the inequalities xij ≥ 0 for all i, j and by the equalities

"
j xij = 1 for all i and"

i xij = 1 for all j.
Now suppose that f =

"
i,j cijxij is Boolean and non-zero. Let F be the linear span of f−1(0), viewed

as a set of permutation matrices. Since f is linear, f(F ) = 0, and so F is a face of the polytope (it cannot

be all of Rn2

since f is non-zero), and so it is contained in some facet xij = 0. Consequently, if xij = 1 then
f(x) ∕= 0; since f is Boolean, in fact f(x) = 1 for such x. Therefore f − xij is another Boolean degree 1
function, with fewer 1’s. Continuing in this way, we get that f is a sum of xij ’s, which must be disjoint since
f is Boolean.

The only sum of disjoint xij ’s which is the characteristic function of a family of size (n− 1)! is a sum of
length 1, and so an intersecting family of size (n− 1)! must be a double coset.

Stability The next question that comes to mind is:
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How do intersecting families of size (1− ε)(n− 1)! look like? Are they all “essentially” canonical?

We can attack this question using the spectral technique: if f is the characteristic function of an in-
tersecting family of size (1 − ε)(n − 1)!, then f must be close to a degree 1 function, in the sense that
E[(f − g)2] = O(ε) for some degree 1 function g;3 we call this closeness in L2, and it is the default notion of
closeness that we use below.

What can we say about Boolean functions which are close to degree 1? This is the question that will
occupy us in the rest of the talk, rephrased from the point of view of g. Namely, instead of studying Boolean
functions which are close to degree 1, we will study degree 1 functions which are close to Boolean; the two
questions are equivalent.

First, however, we should mention that Ellis [Ell12a] gave a very strong answer to the question about
intersecting families of permutations. Verifying a conjecture of Cameron and Ku [CK03], Ellis showed that
every intersecting family of size at least (1 − 1/e + o(1))(n − 1)! is in fact contained in a double coset; this
is optimal by considering the family obtained by starting with the double coset x11, adding a permutation
π /∈ x11, and throwing out all permutations in x11 which do not intersect π.

Ellis’s proof combines an isoperimetric inequality on the transposition graph (the graph on Sn in which
two permutations are connected if they differ by a transposition) with the cross-intersecting version of the
Erdős–Ko–Rado theorem, which states that if F ,G are such that every permutation in F intersects every
permutation in G, then |F| · |G| ≤ (n− 1)!2; this cross-intersecting version can be proved using the spectral
argument outlined above, together with the additional information that the minimal eigenvalue of A is at
least −(n− 1)!.

2 Linear functions close to Boolean

Here is the research question which we will answer in this talk:

Suppose that f is a degree 1 function which is ε-close to Boolean, that is, E[(f − F )2] ≤ ε for some
Boolean function F . What can we say about f?

A few years ago, together with David Ellis and Ehud Friedgut we came up with two different answers to
this question:

• Sparse regime [EFF15a]: If f has degree 1, E[f ] = c/n, and f is εc/n-close to Boolean, then f
is O(c2

√
ε/n + (c/n)2)-close to a sum xi1j1 + · · · + ximjm , where m ≈ c and the summands are not

necessarily disjoint.

• Dense regime [EFF15b]: If f has degree 1, η ≤ E[f ] ≤ 1− η, and f is ε-close to Boolean, then f is
O(ε1/7/η + n−1/3/η)-close to a dictator.

The two results are most effective in two different regimes. For the first result, we think of c as small, even
constant. The function f is very sparse, and so we have to compare its distance from Boolean to its sparsity
(otherwise it is trivially close to the zero function). For constant c, we get that f is O(

√
ε/n+1/n2)-close to

a sum of possibly non-disjoint xij ’s. We cannot guarantee that the summands are disjoint, since a function
of the form x11 + x22 is quite close to Boolean: the distance is only O(1/n2). If c is linear in n then the first
result is completely useless.

For the second result, we think of η as constant, and so the function f is balanced. The result then states
that f is O(ε1/7 + 1/n1/3)-close to a dictator. In contrast to the first result, here the approximation is a
bona fide dictator, intuitively since a sum of many non-disjoint xij ’s is not close to Boolean; this will come
up again below. If we take η = O(1/n), in order to accommodate the kind of sparse functions handled by
the first result, then the second result becomes completely useless.

3In order to deduce this we also need A to have an eigenvalue gap: the second largest eigenvalue must be bounded away
from (n− 1)!. This can be shown using the method of Renteln.
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There are many problems with these two results. First of all, they do not cover the entire range of sparsity:
what happens if f is neither very sparse nor balanced? Second, when ε gets very small, the approximation
error gets “stuck”, since there is a dependence on n. Third, the dependence on ε is not optimal: ideally, we
would like the approximation error to be proportional to the distance from Boolean.

In short, our dream result would look as follows:

There is an explicit class Fε of functions (depending on n) such that:

• If f is a degree 1 function which is ε-close to Boolean, then f is O(ε)-close to some function in Fε.

• Every function in Fε is O(ε)-close to Boolean.

Such a result exists for the Boolean cube: the Friedgut–Kalai–Naor (FKN) theorem [FKN02].

If f : {0, 1}n → R is ε-close to Boolean, then it is O(ε)-close to a dictator.

Our goal is to obtain an analogous result for the symmetric group. Taking a look at the two results
mentioned above, it is not so clear what Fε should be. The first result suggests taking as Fε an arbitrary
sum of xij ’s, while the second result suggests taking as Fε the set of dictators, matching the FKN theorem.
How do we bridge this gap?

We will take as inspiration another extension of the FKN theorem, this time to the (n, k)-slice, the
domain consisting of all vectors in {0, 1}n with exactly k many 1s. This domain, also known as the Johnson

association scheme, is often denoted by
#
[n]
k

$
or J(n, k). We define p = k/n, and usually assume that p ≤ 1/2.

A function on the slice has degree 1 if it can be written in the form

f(x1, . . . , xn) =

n!

i=1

cixi.

(Once again, we don’t need a constant coefficient, since x1 + · · · + xn = k.) Here is the FKN theorem for
the slice [Fil16]:

If f :
#
[n]
pn

$
→ R is a degree 1 function which is ε-close to Boolean, where p ≤ 1/2, then f is O(ε)-close

to a function of the form
xi1 + · · ·+ xim or 1− xi1 − · · ·− xim ,

where m ≤ 1 or m = O(
√
ε/p).

Where does the mysterious bound O(
√
ε/p) come from? Consider the function

f = x1 + · · ·+ xm,

where we think of m as “not too large”. Since every triplet of coordinates is almost independent (unless pn
is extremely small), %

m

2

&
p2 ≳ Pr[f ≥ 2] ≳

%
m

2

&
p2 −

%
m

3

&
p3.

If mp is large then f will not be close to Boolean (this will follow from the discussion below), and otherwise
Pr[f ≥ 2] ≈

#
m
2

$
p2.

If m ≤ 1 then f is Boolean. Otherwise, Pr[f ≥ 2] ≈ (mp)2/2, and so for f to be ε-close to Boolean, we
need (mp)2 ≤ 2ε, or m ≤

√
2ε/p; conversely, for such values of m, calculation shows that f is indeed ε-close

to Boolean (essentially because the distribution of f is roughly Poisson).
An analogous calculation shows that Pr[f ≥ 1] ≈ mp = O(

√
ε), and so we obtain the following curious

corollary:
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If f :
#
[n]
pn

$
→ R is ε-close to Boolean then f is O(

√
ε)-close to a dictator.

(We cannot say that f is close to a constant, since we also have to consider the case m = 1.)
What this corollary shows is that when looked at from afar (at a scale of O(

√
ε)), the only functions close

to Boolean are dictators, while up close, a more interesting picture emerges. This, it turns out, explains the
discrepancy between the different results for the symmetric group in the sparse and dense regimes.

At this point we can hazard a guess at what Fε should look like: it should consist of all sums of xij ’s
which “look Boolean”, together with their negation. In contrast to the situation on the slice, in which any
two xi’s are non-disjoint, on the symmetric group the notion of non-disjointness is non-trivial. If xi1j1 , xi2j2

are two non-disjoint variables then they contribute 1/n2 to Pr[f ≥ 2], and so the number of such pairs should
be limited to O(εn2). Moreover, for technical reasons, we will need to limit the number of summands to
O(n). We arrive at the following definition:

The class Fε(K) consists of all sums xi1j1 + · · ·+ ximjm and 1− xi1j1 − · · ·− ximjm satisfying

1. m ≤ Kn.

2. The number of non-disjoint pairs xisjs , xitjt is at most Kεn2.

Our main result states that an analog of the FKN theorem holds for the symmetric group with respect
to this class, for some constant K > 0:

• If f is a degree 1 function which is ε-close to Boolean, then f is O(ε)-close to a function in Fε(K).

• Every function in Fε(K) is O(ε)-close to Boolean.

The second part is an easy calculation, in which we need to use the bound m ≤ Kn. We describe the
proof of the first part, which is the hard direction, in the rest of the talk.

But first, when does a collection C of m ≤ Kn double cosets contain only Kεn2 many non-disjoint pairs?
We consider two cases: either there is a “prominent line” L, which is a row or column containing more than√
εn many double cosets, or no line is prominent.
In the first case, any double coset outside of L intersect all double cosets in L, save possibly one, and so

there are at least (m− |L|)(|L|−1) ≥ (m− |L|)
√
εn many non-disjoint pairs. Consequently, m− |L| ≤ K

√
εn,

that is, almost all of C lies inside the prominent line L.
In the second case, every double coset in C intersects at most 2

√
εn other double cosets in C, and so

there are at least |C|(|C| − 2
√
εn)/2 many non-disjoint pairs. Hence either |C| ≤ 4

√
εn, or the number of

non-disjoint pairs is at least |C|2/4, and consequently |C| ≤ 2
√
εn.

Suppose that g is the sum of the xij ’s corresponding to the double cosets in C. In the first case, by
throwing out all double cosets outside of L, we can approximate g up to an error of O(

√
ε) by the sum of

double cosets in L, which is a dictator. In the second case, g is sparse: it is O(
√
ε)-close to the zero function.

Taking g to be the function in Fε(K) promised by our FKN theorem, we conclude the following corollary:

If a degree 1 function on the symmetric group is ε-close to Boolean, then it is O(
√
ε)-close to a dictator.

This corollary is tight, as demonstrated by the function

f =

√
εn!

i=1

xii.

Once again, at an error scale of O(
√
ε), the only degree 1 functions which are almost Boolean are dictators,

while at a scale of O(ε), a more nuanced picture emerges.
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3 On the proof

The main idea behind the proof, borrowed from [Fil16], is to reduce the FKN theorem on the symmetric
group to the FKN theorem on the Boolean cube, by finding an “equitable” covering of the symmetric group
by high-dimensional Boolean cubes.

Suppose for simplicity that n is even. We can construct a copy of the (n/2)-dimensional Boolean cube
{0, 1}n/2 as follows. Let a1, . . . , an and b1, . . . , bn be two arbitrary permutations of 1, . . . , n. Given a point
y ∈ {0, 1}n/2, we construct a permutation π ∈ Sn using the following rules:

1. If y1 = 1 then π(a1) = b1 and π(a2) = b2, and otherwise π(a1) = b2 and π(a2) = b1.

2. If y2 = 1 then π(a3) = b3 and π(a4) = b4, and otherwise π(a3) = b4 and π(a4) = b3.

3. . . .

4. If yn/2 = 1 then π(an−1) = bn−1 and π(an) = bn, and otherwise π(an−1) = bn and π(an) = bn−1.

In other words, π always sends {a1, a2} to {b1, b2}, {a3, a4} to {b3, b4}, and so on; y1 determines whether
a1 gets sent to b1 and a2 to b2, or vice versa; and so on. We denote the resulting set of 2n/2 permutations
by Da,b.

Suppose that f is a degree 1 function given by the formula

f =
!

i,j

cijxij .

What happens when we restrict f to Da,b? We get

f |Da,b
= y1(ca1b1 + ca2b2) + (1− y1)(ca1b2 + ca2b1) + · · ·+ yn/2(can−1bn−1 + canbn) + (1− yn/2)(can−1bn + canbn−1)

= y1(ca1b1 + ca2b2 − ca1b2 − ca2b1) + · · ·+ yn/2(can−1bn−1
+ canbn − can−1bn − canbn−1

) + Cf,a,b,

where Cf,a,b is some constant independent of y.
The crucial observation is that since f is close to Boolean, for random a, b, the function f |Da,b

is also
close to Boolean, and so the FKN theorem for the Boolean cube applies to it. The reason is that if we choose
a, b at random and a random point in Da,b, then we just get a random permutation (this is what we meant
by an equitable covering). The FKN theorem tells us something about the coefficients of the function f |Da,b

,
which will allow us to understand the coefficients cij of f .

The FKN theorem implies that f |Da,b
is close to a function of one of the following forms: 0, 1, xi, 1− xi.

In particular, the coefficients in front of the yi are either all close to zero, or one of them is close to ±1
and the rest are close to zero. Since there are n/2 such coefficients, we get that for random i1, i2, j1, j2, the
quantity

ci1j1 + ci2j2 − ci1j2 − ci2j1

is O(ε/n)-close to 0 or to ±1 on average, and moreover, it is close to ±1 only for a O(1/n) fraction of these
expressions.

How do we turn information about such expressions to information about individual coefficients? The
idea is to fix a “good” choice i2 = I, j2 = J , namely one for which the two properties listed above still hold
when we fix i2, j2 and vary only over i1, j1. We can thus “decode” ci,j , for every i ∕= I and j ∕= J , into a
value di,j ∈ {0,±1} such that

cij ≈ dij + ciJ + cIj − cIJ ,

and so

f ≈
!

i ∕=I
j ∕=J

(dij + ciJ + cIj − cIJ)xij

=
!

i ∕=I
j ∕=J

dijxij +
!

i

ciJ +
!

j

cJi − ncIJ .
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What happened here? Every permutation contributes exactly ciJ to the sum
"

ij ciJxij , since exactly one
of xi1, . . . , xin is equal to 1. Similarly, every permutation contributes exactly cIj to the sum

"
ij cIjxij , and

exactly ncIJ to the sum
"

ij cIJ .
A simple argument shows that the constant coefficient must be close to an integer, and so defining

diJ = dIj = 0, we can approximate f as follows:

f ≈ d+
!

ij

dijxij ,

where d is an integer, dij ∈ {0,±1}, and only O(n) many of the dij ’s are non-zero. The latter property is
a reflection of the original fraction of non-zero ci1j1 + ci2j2 − ci1j2 − ci2j1 being O(1/n) (there are (n − 1)2

many choices for i1, j1). Furthermore, careful calculation shows that the approximation error is O(ε).

At this point, it looks like we are almost done: up to the constant coefficient d, we have managed to
approximate f by a difference of two sums of xij ’s. However, our stakes are higher: we would like to
approximate f either by a single sum, or by one minus a single sum.

Before we continue, let us pause to consider what happens in the case of the (n, k)-slice. Assuming k ≤
n/2, there is a very similar reduction to the k-dimensional cube: choose a random permutation a1, . . . , an, and
consider all vectors x satisfying xa1

+xa2
= xa3

+xa4
= · · · = xa2k−1

+xa2k
= 1 and xa2k+1

= · · · = xan
= 0;

the coordinate y1 determines whether (xa1 , xa2) = (1, 0) or (xa1 , xa2) = (0, 1), and so on.
Repeating essentially the same argument, we deduce that a degree 1 function on the slice which is close

to Boolean must be close to a function of the form

d+
!

i

dixi,

where d is an integer, di ∈ {0,±1}, and O(n/k) of the di’s are non-zero. We can analyze the distribution of
such a sum by “brute force”, showing that since the result is close to Boolean, the linear combination must
be either a sum of xi’s or one minus such a sum.

The case of the symmetric group is more complicated, since not all xij ’s are related to one another in
the same way: some pairs are disjoint, and some intersect. Therefore we will need a more subtle argument.

Let us start an easy case: suppose that there are only n/2 many non-zero dij ’s (we can actually guarantee
that this happens when f is somewhat unbalanced). In this case, a union bound shows that a random
permutation “misses” all non-zero dij ’s with probability at least 1/2, and consequently d ∈ {0, 1}.

Given that a random permutation passes through a particular non-zero dij , with probability 1/2− o(1)
it will miss all other non-zero dij , and so the function will evaluate to d + dij . Consequently, if d = 0 then
most of the non-zero dij ’s must be 1’s, and if d = 1 then most of the non-zero dij ’s must be −1’s. Throwing
out the errant dij ’s, we obtain an approximation of f as either a sum of O(n) many xij ’s, or one minus such
a sum. Since f is close to Boolean, the sum contains at most O(εn2) many non-disjoint pairs, completing
the proof.

It remains to reduce the general case to this special case, in which a random permutation misses all non-
zero dij ’s with some constant probability. Can this actually fail to happen? Indeed it can, as the following
example demonstrates:

1−
!

j

x1j .

This kind of function is not ruled out by the data we have on d and the dij . However, it is easy to fix such
an example by finding a better representation of the same function, namely the zero function.

More generally, we can think of the dij as populating an n × n matrix. An obstruction to the hitting
property we are aiming at is a line (row or column) with too many non-zero entries. Since each line contains
at most three different values (0, 1,−1), there is some value which appears at most n/3 times. By subtracting
this value from the entire line and compensating for it by updating the constant coefficient (using the fact
that the xij ’s in a line always sum to 1), we can obtain an alternative representation of the same function
without this obstruction.
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Performing this process a constant number of times, we obtain a different representation

d+
!

ij

dijxij = e+
!

ij

eijxij ,

in which e is an integer, the eij are bounded integers, at most O(n) of them are non-zero, and every line in
the matrix formed by the eij ’s contains at most (2/3)n+O(1) many non-zero entries. It turns out that this
is enough for the hitting property to hold: a random permutation misses all non-zero eij ’s with constant
probability. We have thus reduced the general case to the special case which we have already showed how
to handle.

To show that the hitting property holds, we sample a uniform permutation π in a specific way which
demonstrates that all eij are missed with some constant probability. The sampling proceeds in two major
stages. The first stage is comprised of several steps, each of which determines one value of π. Thus after t
steps, we know t values of π, leaving unknown the value of π(i) for all i in some set I of size n − t, as well
as the value of π−1(j) for all j in some set J of size n − t. At odd steps, we choose i ∈ I which maximizes
#{j ∈ J : dij ∕= 0} (“the number of non-zeroes on row i”), and choose π(i) ∈ J at random. We act dually
at even steps, choosing π−1(j) ∈ I at random for j ∈ J which maximizes #{i ∈ I : dij ∕= 0} (“the number
of non-zeroes on column j”). This stage proceeds for n/4 steps, and then in the second stage we sample the
remaining unknown part of the permutation all at once.

Why does this work? Let us start by analyzing the first stage. Suppose that the line chosen at step t has
mt many non-zeroes. Then the sample at that step misses all non-zeroes on the line with probability

1−mt/(n− t) ≥ e−O(mt/(n−t)) ≥ e−O(mt/n),

the approximation holding since mt/(n−t) ≲ (2/3)n/(3/4)n = 8/9 and n−t ≥ (3/4)n. Since
"

t mt = O(n),
all steps are successful with constant probability.

After the first stage, all remaining lines must be very sparse, in the sense that #{j ∈ J : dij ∕= 0} is
small for every i ∈ I and #{i ∈ I : dij ∕= 0} is small for every j ∈ J , where I, J are defined as in the first
stage. Indeed, suppose that the heaviest remaining line is a row containing B many non-zeroes. This means
that every odd step during the first stage, we chose a row with at least B many non-zeroes, and so there
are at least (n/8)B many non-zero dij ’s. This shows that B = O(1), that is, every line contains O(1) many
non-zeroes. This sparsity allows us to show that the number of non-zero dij ’s hit at the second stage has a
roughly Poisson distribution (we do this by estimating moments). Since the expected number of dij ’s hit is
O(n)/n = O(1), with probability e−O(1) = Ω(1), no non-zero dij is hit at the second stage, completing the
proof of the hitting property.

4 Further results

The main result that we have been discussing so far interprets closeness in the L2 sense: two functions f, g
are close if E[(f − g)2] is small. This is natural given the application that we started with, to intersecting
families of permutations. But there are many other notions of closeness that one can consider. For example:

What can we say about degree 1 functions f which satisfy Pr[f /∈ {0, 1}] ≤ ε?
What can we say about degree 1 functions f which satisfy f(π) ∈ [−ε, ε] ∪ [1− ε, 1 + ε] for all π ∈ Sn?

In both cases, the answer should state that f is close to a function of a specific form using the same
notion of closeness. The notion of closeness used in the first question is known as L0, and the one used in
the second question is L∞.

It turns out that our main theorem holds as stated if we replace closeness in L2 by closeness in L0. That
is, for some constant K ′ > 0,

• If f is a degree 1 function satisfying Pr[f /∈ {0, 1}] ≤ ε then Pr[f ∕= g] = O(ε) for some g ∈ Fε(K
′).
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• All functions g ∈ Fε(K
′) satisfy Pr[g /∈ {0, 1}] = O(ε).

We cannot just deduce this statement from the L2 statement, since a function close to Boolean in L0

need not be close to Boolean in L2. For example, nx11 is 1/n-close to Boolean in L0, but Ω(n)-far from
Boolean in L2. Therefore we need to reprove the result in this setting.

The proof is very similar to the proof in the L2 case, the main difference being in the application of the
FKN theorem. Recall that we used the FKN theorem to show that for random a, b, the coefficients in front
of y1, . . . , yn/2 in the expression

f |Da,b
= y1(ca1b1 + ca2b2 − ca1b2 − ca2b1) + · · ·+ yn/2(can−1bn−1 + canbn − can−1bn − canbn−1) + Cf,a,b

are close to 0,±1. If many of the coefficients are “bad” (far from 0,±1) then f |Da,b
would be far from

Boolean; since on average f |Da,b
is close to Boolean, we know that the average ci1j1 + ci2j2 − ci1j2 − ci2j1 is

good.
In contrast, in the L0 setting, no matter how many of the coefficients are bad (different from 0,±1),

the probability Pr[f |Da,b
/∈ {0, 1}] cannot exceed 1. However, it is still true that there cannot be many bad

coefficients, since if there were too many, then it would be likely that we see at least two of them when we
choose a, b at random (this requires an argument), which we can rule out since on average, Pr[f |Da,b

/∈ {0, 1}]
is small.

What happens if we consider closeness in L∞? Examples such as x11 + x22, which are close to Boolean
in L2 and in L0, are no longer close to Boolean in L∞. The difference is that closeness in L∞ is worst-case,
rather than average-case as in the other two settings. Therefore one could hope for more structure in this
case. Indeed, we can show that if ε is smaller than some constant, then we can guarantee that f is close to
a dictator in L∞. In other words, the following holds for some constant ε0:

If f is a degree 1 function satisfying f ∈ [−ε0, ε0] ∪ [1− ε0, 1 + ε0], then round(f, {0, 1}) is a dictator.

The proof follows the steps of the L2 statement, but the details are simpler.

Before moving on to future research, one question which might have crossed your mind is: were the L0

and L∞ variants studied in other settings, such as that of the Boolean cube? It turns out that these questions
are much less exciting for the Boolean cube, since the L0 and L∞ analogs of the classical FKN theorem are
much easier to prove than the original L2 version. The L0 and L∞ settings only become interesting in more
complicated domains such as the symmetric group.

5 Future research

This work leaves many directions for future research. The two most obvious are:

• What happens when we replace degree 1 functions with degree d functions for larger d?

• Can we generalize this proof technique to other domains?

We deal with these questions in order.

5.1 Higher degrees

The results discussed so far are about degree 1 functions which are close to Boolean. What can we say about
degree d functions which are close to Boolean?

This question comes up naturally in the study of d-intersecting families of permutations, in which any
two permutations agree on the images of d points.4 One example of such a family is

{π ∈ Sn : π(i1) = j1, . . . ,π(id) = jd}.
4A related notion is that of setwise-d-intersecting families, in which any two permutations agree on the image of a d-set.

These families were studied by Ellis [Ell12b], who proved analogs of all the results mentioned in the sequel in this setting.
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In analogy to the case d = 1, we call families of this type canonical d-intersecting families. Frankl and
Deza [FD77] conjectured that for every d, if n is large enough then the maximum size of a d-intersecting
family is (n− d)!, matching the size of a canonical d-intersecting family. For d = 2 this holds for all n ≥ d,
as shown by Meagher and Razafimahatratra [MR20], and a similar behavior is expected when d = 3. When
d = 4, however, canonical d-intersecting families do not have the maximum size for small n: the subset of
S7 consisting of all permutations in which at least 5 of 1, . . . , 6 are fixed points is 4-intersecting and contains
7 > (7 − 4)! permutations. Similar examples show that for all d ≥ 4, we do need n to be large enough in
order for the canonical d-intersecting families to be extremal.

Ellis, Friedgut and Pilpel [EFP11] proved the Frankl–Deza conjecture for all values of d, using the same
spectral approach that we outlined above; in contrast to the case d = 1, we cannot just take A = I−cB, where
B is the adjacency matrix of the “d-derangement graph”, in which any two permutations are connected if they
agree on fewer than d points. Instead, we need to weight the edges of the d-derangement graph appropriately.

As in the case d = 1, the proof of Ellis, Friedgut and Pilpel implies that for every d, if n is large enough,
then the characteristic function of a d-intersecting family of maximum size (n − d)! has degree d, that is,
it can be expressed as a polynomial of degree d in the variables xij . This suggests that we can prove that
the canonical d-intersecting families are the unique d-intersecting families of maximum size (“uniqueness”)
by understanding the structure of Boolean degree d functions. Similarly, the characteristic function of a
d-intersecting family of almost maximum size (1 − ε)(n − d)! is close to degree d, motivating the study of
degree d functions which are close to Boolean.

Ellis, Friedgut and Pilpel claimed that Boolean degree d functions can always be written as a non-negative
linear combination of degree d monomials xi1j1 · · ·xidjd , these monomials are just the characteristic functions
of canonical d-intersecting families. If true, this would directly imply the uniqueness claim. However, there
is an error in their proof, and in fact the claim is false [Fil17]. Nevertheless, uniqueness follows from an
argument of Ellis [Ell11], who actually showed a much stronger stability statement: every d-intersecting
family of size at least (1− 1/e+ o(1))(n− d)! must be a subset of some canonical d-intersecting family.

This suggests that before studying degree d functions which are close to Boolean, we study degree d
functions which are exactly Boolean. For inspiration, let us first consider Boolean degree d functions on the
Boolean cube. Nisan and Szegedy [NS94] showed that such functions depend on O(d2d) coordinates, and
this was later tighthened to O(2d) by Chiarelli, Hatami and Saks [CHS20] and by Wellens [Wel19]. However,
we cannot expect such a description in the case of the symmetric group. As an example, the function

x11 +

n!

i=2

x1ixi1

is a Boolean degree 2 function, but it does not look like a junta (it depends on π(i) for all i and on π−1(j)
for all j).

A different kind of structure was suggested by Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+01],
who showed that a degree d function on the Boolean cube can be expressed as a decision tree of depth dO(1);
see also Buhrman and de Wolf’s survey [BdW02]. It turns out that this kind of structure does extend to
the symmetric group: together with Dafni, Lifshitz, Lindzey, Saurabh, and Vinyals [DFL+21], we showed
that a degree d function on the symmetric group can be represented as a decision tree of depth dO(1) whose
nodes correspond to queries of the form “π(i) =?” and “π−1(j) =?”. For example, the function considered
above can be expressed by a decision tree which first queries π(1), and then either immediately returns 1 (if
π(1) = 1) or queries π(π(1)) and returns 1 if π(π(1)) = 1. Using similar ideas, Dafni et al. gave a different
proof of uniqueness.

Now let us get back to our original question: what can we say about degree d functions which are close
to Boolean? In the case of the Boolean cube, Kindler and Safra [KS04] showed that if a degree d function
is ε-close to Boolean, then it is O(ε)-close to a Boolean degree d function.5 This suggests the following
conjecture:

5What they actually prove is that for some constants Cd, !d > 0, if ! ≤ !d then f is O(!)-close to a Boolean function
depending on Cd variables. This directly implies our statement, since there are only finitely many Boolean functions depending
on Cd variables whose degree is larger than d.
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For each d there exists a constant cd such that for large enough n, if a degree d function f is ε-close to
Boolean, then f is O(εcd)-close to a Boolean degree d function.

The reason that we introduce the constant cd is that already when d = 1, the conjecture only holds for
cd = 1/2; it is not clear what kind of structure emerges when we want an O(ε)-approximation to f , though we
were able to answer this question in the case of the slice, together with Dinur and Harsha [DFH19, DFH20].

A less bold version of the conjecture would state that f can be approximated by a decision tree of depth
dO(1), or equivalently, a Boolean function of degree dO(1).

When f is sparse, say E[f ] = c/nd, we were able to prove this conjecture, together with Ellis and
Friedgut [EFF17], in a strong form: if a degree d function is O(εc/n)-close to Boolean, then it is Od(c

√
ε/n+

c2/n3/2)-close to a sum of m many degree-d monomial, where m ≈ c. The conjecture is wide open in the
non-sparse case.

5.2 Other domains

The basic scheme of the proof is quite generic: given a domain, all you have to do is find an equitable
covering of the domain by high-dimensional Boolean cubes. Indeed, essentially the same proof works for
the slice [Fil16], as well as for the Boolean cube with respect to an arbitrary product measure (by a slight
extension of the proof in [Fil21]).

Another domain for which the scheme is expected to work is the “non-bipartite analog of the symmetric
group”. We usually think of the symmetric group as the set of all permutations of {1, . . . , n}, but we can
also think of it as the set of all bijections between two abstract sets of size n, or equivalently, the set of all
perfect matchings in Kn,n. The non-bipartite analog is the set of all perfect matchings in K2n, also known
as the perfect matching scheme. (Intersecting families of perfect matchings were studied by Meagher and
Moura [MM05] and by Lindzey [Lin17, Lin20, Lin18].)

The situation is less clear in the case of q-analogs, some of which appear in the following table:

q = 1 q > 1
Hamming scheme H(n,m) = {1, . . . ,m}n Bilinear scheme Hq(n,m)
Johnson scheme J(n, k) (aka the slice) Grassmann scheme Jq(n, k)

Symmetric group Sn Linear group (P )GLn(q), (P )SLn(q)

(In the second column, q is a prime power.)
The bilinear scheme is the set of all n×m matrices with entries in the finite field Fq, and a degree 1

function is one of the form
f(A) = C +

!

x,y

φx,y(x
TAy),

where φx,y : Fq → R is arbitrary; when q = 2, we can take φx,y = cx,y(−1)x
TAy, and when q is prime, we

replace −1 with a primitive q’th root of unity.
The Grassmann scheme is the set of all k-dimensional subspaces of an n-dimensional vector space over

Fq. A function has degree 1 if it is of the form

f(V ) =
!

v

cv1v∈V .

The Grassmann scheme exhibits an important symmetry: Jq(n, k) is isomorphic to Jq(n, n − k), the cor-
respondence mapping a subspace to its orthogonal complement. This means that degree 1 functions can
equivalently be defined as ones of the form

f(V ) =
!

v

cv1v⊥V .
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Why are these called q-analogs? If we look at certain parameters of these domains (for example, the di-
mension of the space of functions of degree at most d) and take the limit q = 1, then we get the corresponding
parameters for the domains listed in the q = 1 columns (this is the famous “field of one element”).

What do we know about these domains from our perspective? The first question to ask is what are all
Boolean degree 1 functions, and this is already hard to answer: in the case of the Grassmann scheme, the
answer should be

0, 1x∈V , 1y⊥V , 1x∈V + 1y⊥V

and their negations, where in the latter case, x ∕⊥ y; however, we only know this for q = 2, 3, 4, 5, since the
existing proof (work together with Ihringer [FI19]) goes by induction, and the basis is only known for these
values of q.

We do not know what all Boolean degree 1 functions look like for the bilinear scheme, nor do we know
any FKN theorems in these settings. The main reason for this lack of knowledge is that it is not clear
how to reduce these domains to the Boolean cube, and no other proof method is known, although global
hypercontractivity [KLLM21] (originally due to Noam Lifshitz) is a promising avenue.
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