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1 The bounds

Suppose that G = (V,E) is a graph. We will give two bounds on the size of independent sets in G.
The first bound is due to Lovász:

Lemma 1. Suppose that M is a symmetric V × V matrix such that M(x, y) = 1 whenever (x, y) /∈ E. If F
is an independent set then

|F | ≤ λmax(M).

Furthermore, if |F | = λmax(M) then 1F lies in the eigenspace of λmax.

Proof. On the one hand, 1′FM1F = |F |2. On the other hand, 1′FM1F ≤ λmax(M)1′F 1F = λmax(M)|F |.
Therefore |F | ≤ λmax, with equality if and only if 1F lies in the eigenspace of λmax.

The minimum value of λmax(M) over all such matrices M is known as θ(G). This is the famous Lovász
theta function.

The second bound is due to Hoffman:

Lemma 2. Suppose that M is a symmetric V × V matrix such that M(x, y) = 0 whenever (x, y) /∈ E, and
furthermore M1 = 1. If F is an independent set then

|F |
|V | ≤

−λmin(M)

1− λmin(M)
= 1− 1

1− λmin(M)
.

Furthermore, in case of equality, 1F − |F |
|V |1 lies in the eigenspace of λmin(M).

Proof. Let g = 1F − |F |
|V |1, so that g′1 = 0. This implies that

g′g = 1′F g = |F |− |F |2
|V | .

Also, we have

0 = 1′FM1F = (g + |F |
|V |1)

′M(g + |F |
|V |1) = g′Mg +

|F |2
|V | ,

since g′M1 = g′1 = 0. Therefore

|F |2
|V | = −g′Mg ≤ −λmin(M)g′g = −λmin(M)

󰀕
|F |− |F |2

|V |

󰀖
.

Rearranging,

(1− λmin(M))
|F |
|V | ≤ −λmin(M),

implying the upper bound. Moreover, equality holds if and only if g lies in the eigenspace of λmin(M).
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This gives rises to the “Hoffman theta function”, which we will denote by θH(G).
It is not hard to show that the Lovász bound is actually stronger.

Lemma 3. For all graphs G, θ(G) ≤ θH(G).

Proof. Suppose that MH is a matrix witnessing θH(G). Define

M = 11′ − |V |
1− λmin(MH)

MH .

On the one hand,

M1 =

󰀕
|V |− |V |

1− λmin(MH)

󰀖
1 = θH(G)1.

On the other hand, if v is any eigenvector orthogonal to 1 then its eigenvalue is at most

− |V |
1− λmin(MH)

·−λmin(MH) = θH(G).

This gives an alternative proof of Lemma 2.

Proof. Let MH be a matrix satisfying the conditions of Lemma 2. Then the matrix M constructed in
Lemma 3 satisfies the constraints of Lemma 1, hence the upper bound. When the upper bound is achieved,
1F must lie in the eigenspace of λmax(M), which is spanned by 1 and the eigenspace of λmin(MH). The

orthogonal projection of 1F to 1 is |F |
|V |1, and so 1F − |F |

|V |1 must lie in the eigenspace of λmin(MH). (Here

we used the fact that the eigenspaces are orthogonal.)

Both arguments can be extended in various ways. Two prominent extensions are stability and cross-
independent sets.

In the setting of the Lovász bound, suppose F is an independent family of size close to λmax(M). Then
1F must be close to the eigenspace to λmax(M). Quantitatively, the closeness would depend on the gap
between λmax(M) and the next largest eigenvalue.

Another extension handles cross-independent families, which are families F,G such that no x ∈ F and
y ∈ G form an edge. An application of Cauchy–Schwarz allows us to obtain an upper bound on

󰁳
|F ||G|.

In fact, we get a stronger upper bound on
󰁴

|F |
|V |−|F |

|G|
|V |−|G| .

2 Traffic light puzzle

A traffic light is controlled by n three-way switches. We are given that if the state of all switches is changed,
then the light changes. We will show that in this case, the traffic light is actually controlled by a single
switch!

Let F denote the set of states leading to red light. Then F is an independent set in the graph on Zn
3 in

which two vertices are connected if they differ on all coordinates. The adjacency matrix of this graph is

Mn =

󰀳

󰁃
0 1 1
1 0 1
1 1 0

󰀴

󰁄
⊗n

.

Let ω be a primitive third root of unity. Since 1 + ω + ω2 = 1−ω3

1−ω , we can check that

M1

󰀳

󰁃
1 1 1
1 ω ω2

1 ω2 ω

󰀴

󰁄 =

󰀳

󰁃
2 −1 −1
2 −ω −ω2

2 −ω2 −ω

󰀴

󰁄 .
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Therefore the columns of this matrix are the eigenvectors of M1, with eigenvalues 2,−1,−1. In particular,
the matrix M := Mn/2

n satisfies all constraints of Hoffman’s bound (Lemma 2), with λmin(M) = −1/2.
Applying the bound, we get that

|F |
3n

≤ 1/2

1 + 1/2
=

1

3
.

This is true also for the sets of states leading to yellow and green lights, and since together these must cover
all states, we conclude that |F | = 3n−1.

According to Hoffman’s bound, this means that 1F − 1/3 lies in the eigenspace of λmin(M), which is
spanned by all functions depending on a single coordinate. That is, we can write

1F (x1, . . . , xn) =
1

3
+

n󰁛

i=1

φi(xi).

At most one of the functions φi can be non-constant, since otherwise 1F would not be Boolean. Hence F
depends on a single coordinate i. Since F has measure 1/3, it is of the form {x : xi = j}.

The families corresponding to the other two colors have a similar shape. Since they must form a partition
of the domain, it is not hard to check that they have to depend on the same coordinate.

3 Triangle-intersecting families

The Hoffman bound can be used to prove various intersection theorems. Here we will concentrate on one
example: triangle-intersecting families of graphs.

Let I ⊆ 2[n]. A family F ⊆ 2[n] is I-intersecting if the intersection of any two sets in F contains an
element of I. It is I-agreeing if the agreement ·△· of any two sets in F contains an element of I.

Lemma 4. The maximum size of an I-intersecting family is the same as the maximum size of an I-agreeing
family.

Proof. For the proof, it suffices to show that if F is I-agreeing then there is an I-intersecting family of the
same size. We prove this by shifting.

An upshift along the i’th coordinate is the following operation. Consider all pairs of sets {(S, S+i) : i /∈ S}.
We modify F to a new family F ′ in the following way: if S ∈ F but S + i /∈ F , then we replace S with
S + i. We claim that F ′ is still I-agreeing. Indeed, suppose A,B ∈ F ′. For every set A ∈ F , either A ∈ F ′

or i ∈ A and A − i ∈ F . If A,B ∈ F or i ∈ A,B and A − i, B − i ∈ F , then this is clear, so suppose i ∈ A
and A− i, B ∈ F . If i ∈ B then A△B = (A− i)△B + i. If i /∈ B then by construction B + i ∈ F , and then
A△B = (A− i)△(B + i).

Each upshift increases the total size of sets in the family, so if we perform upshifts, eventually we will
reach an upshifted family G which is I-agreeing. For every S ∈ G and i /∈ S, we have S + i ∈ G, and so G
is monotone. For every two sets A,B ∈ G, we also have B ∪ A ∈ G. The agreement of A and B ∪ A is the
same as A ∩B, and so the latter contains an element of I. In other words, G is I-intersecting.

This motivates studying I-agreeing families. Let G be the graph on [n] in which two sets are connected
if their agreement doesn’t contain any set in I, and let M be any matrix satisfying the conditions of
Hoffman’s bound. For set z, we can form a new matrix Mz(x, y) = M(x△z, y△z). Since Mz1 = 1 and
(x△z)△(y△z) = x△y, the matrix Mz also satisfies the conditions of Hoffman’s bound. Furthermore, Mz is
similar toM (apply the involution corresponding to XORing with z), and so has the same minimal eigenvalue.
It follows that M ′ = Ez[Mz] also satisfies the conditions of Hoffman’s bound, with a possibly large minimal
eigenvalue (this can be seen by the von Neumann formula for the minimal eigenvalue, as minimizing x′Mx
over x′x = 1). So if we are interested in applying Hoffman’s bound to the problem, we might as well consider
the matrix M ′ instead. By construction, M ′

z = M ′, and so M ′(x, y) = φ(x△y). Later we will learn that M ′

belongs to the Bose–Mesner algebra of the Hamming association scheme.
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Let us use the notationM instead ofM ′. The fact thatM is symmetric implies that the Fourier characters
are its eigenvectors:

(MχS)(x) =
󰁛

y

φ(x△y)χS(y) =
󰁛

y

φ(y)χS(x△y) = χS(x)
󰁛

y

φ(y)χS(y).

In fact, we get MχS = 2nφ̂(S)χS . This reduces computing the Hoffman bound from a semidefinite program
to a linear program.

Concretely, we can consider the matrix Xz defined by (Xzv)(x) = v(x + z). This matrix satisfies
Xz(x, y) = [x△y = z] and has eigenvalues XzχS = χS(z).

The matrix Xz satisfies the condition of Hoffman’s bound for I-intersecting families if and only if z̄
doesn’t contain any element of I. This shows that the matrices satisfying Hoffman’s bound are of the form

M =
󰁛

z∈Z

αzXz̄,

where Z consists of all sets not containing any element of I. Furthermore,
󰁓

z∈Z αz = 1. The eigenvalue
corresponding to χS is

󰁛

z∈Z

αzχS(z̄) =
󰁛

z∈Z

αz(−1)|z̄∩S| = (−1)|S|
󰁛

z∈Z

αz(−1)|z∩S|.

We call such matrices admissible, and the corresponding spectrum an admissible spectrum.
It is well-known that {(−1)|w∩S| : w ⊆ z} spans the set of all functions on z ∩ S. Since the set Z is

downward-closed, the following spectrum is admissible for all z ∈ Z, as long as
󰁓

z∈Z αzφz(∅) = 1:

(−1)|S|
󰁛

z∈Z

φz(S ∩ z).

In fact, these are all admissible spectra.

3.1 Triangle-intersecting families of graphs

We now apply the forgoing to triangle-intersecting families of graphs. These are families of subsets of Kn in
which the intersection of any two graphs contains a triangle. One way to construct such a family is to take
a fixed triangle and all the graphs containing it. This family contains 1/8 of all graphs. Can we do better?

We will show that we can’t do better even if we consider the class of non-bipartite-agreeing families of
graphs. In this case, the set Z consists of all bipartite graphs. Let qk(G) be the probability that a random
partition of G cuts exactly k edges. Since the number of edges cut by a specific partition depends only on
the intersection with the corresponding complete bipartite graph, we see that the following is an admissible
spectrum, assuming

󰁓
k ck = 1:

(−1)|G|
󰁛

k

ckqk(G).

Since the upper bound in Hoffman’s bound gets better as −λmin gets smaller, we would like to minimize
−λmin. We can do so by considering the following graphs: empty graph, one edge, two connected edges,
triangle, 4-matching, K−

4 . We get that the best −λmin is 1/7, and this is achieved by

(−1)|G|
󰀕
q0(G)− 5

7
q1(G)− 1

7
q2(G) +

3

28
q3(G)

󰀖
.

If this quantity were always at least −1/7, it would follow that any non-bipartite-agreeing family of graphs

contains at most a fraction of 1/7
1+1/7 = 1/8 of graphs.
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Here is what happens for the small graphs mentioned above:

G q0(G) q1(G) q2(G) q3(G) q4(G)
∅ 1 0 0 0 0
| 1/2 1/2 0 0 0
|| 1/4 1/2 1/4 0 0
||| 1/8 3/8 3/8 1/8 0
|||| 1/16 1/4 3/8 1/4 1/16
△ 1/4 0 3/4 0 0
󰌏 1/8 0 1/4 1/2 1/8

Actually, the uniqueness condition in Hoffman’s bound shows that for subgraphs of the triangle, the eigen-
value must be exactly −1/7. Together with the condition for the empty graph, we can deduce the coefficients
c0, c1, c2 of q0, q1, q2. We also get the value of c3 + c4/4 by considering |||| and 󰌏. For simplicity, we choose
c4 = 0.

To show that all eigenvalues are at least −1/7, note that if G contains many edges, then it is unlikely
that a random cut will cut few edges. Therefore as |G| → ∞, the eigenvalue will tend to 0. Quantitatively,
we can find some edge threshold m beyond which the eigenvalue is at least −1/7. We can then in principle
check all graphs with at most m edges. All eigenvalues will be at least −1/7.

With a bit more work, we can design a function (which also includes qH(G), functions which measure
the probability that a random cut results exactly in a graph H) in which the eigenspace of λmin consists of
all graphs with one, two or three edges. It follows that a non-bipartite-agreeing family of measure 1/8 must
be a degree three function, and so a 3-junta, and so a triangle-junta. This function is obtained from the
preceding one by adding a small enough positive multiple of the following:

(−1)|G| (qF4(G)− q□(G)) ,

where qF4(G) is the probability that a random partition of G cuts exactly 4 edges arranged as a forest, and
q□(G) is the probability that it cuts exactly 4 edges arranged as a C4.

4 Planted clique

• The problem.

• Cliques of size
√
n log n using a degree argument.

• Boosting by guessing vertices.

• Feige–Krauthgamer.
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