Sauer–Shelah–Perles Lemma for Lattices Joint work with Stijn Cambie, Bogdan Chornomaz, Zeev Dvir and Shay Moran

Yuval Filmus, 24 November 2020

VC dimension

The VC dimension of a family $\mathcal{F} \subseteq \{0,1\}^X$ is the maximal size of a shattered set.

Shattered

VC dimension = 2

VC dimension

Relation to learning: Hypothesis class is PAC-learnable iff it has finite VC dimension.

Sauer–Shelah–Perles lemma:

If $\mathscr{F} \subseteq \{0,1\}^X$ has VC dimension *d* then $|\mathscr{F}| \leq \binom{|X|}{< d}$.

Dichotomy theorem: Let $\mathcal{F} \subseteq \{0,1\}^X$, where *X* is infinite. If $VC(\mathcal{F}) < \infty$ then $|\operatorname{proj}(\mathcal{F}, S)| \leq \operatorname{poly}(|S|)$ for all $S \subseteq X$. If VC(\mathcal{F}) = ∞ then $|\operatorname{proj}(\mathcal{F}, S)| = 2^{|S|}$ for infinitely many *S*.

Can we define VC dimension for families of subspaces over some finite field \mathbb{F} ?

Alternative definition of VC dimension for sets: The VC dimension of family $\mathcal{F} \subseteq 2^X$ is the maximum size of a shattered set. A family $\mathcal{F} \subseteq 2^X$ shatters a set $S \subseteq X$ if $S \cap \mathcal{F}$ consists of all subsets of S.

q-analog of VC dimension

q-analog of VC dimension

Alternative definition of VC dimension for sets: The VC dimension of family $\mathcal{F} \subseteq 2^X$ is the maximum size of a shattered set. A family $\mathcal{F} \subseteq 2^X$ shatters a set $S \subseteq X$ if for $S \cap \mathcal{F}$ consists of all subsets of S.

Definition of VC dimension for vector spaces The VC dimension of family \mathcal{F} of subspaces of \mathbb{F}^n is the maximum dimension of a shattered subspace. A family \mathcal{F} shatters a subspace S of \mathbb{F}^n if $S \cap \mathcal{F}$ consists of all subspaces of S.

Sauer–Shelah–Perles lemma [Babai–Frankl]: If \mathcal{F} is a family of subspaces of \mathbb{F}^n that has V

$$C \text{ dimension } d \text{ then } |\mathcal{F}| \leq \begin{bmatrix} n \\ \leq d \end{bmatrix}_{|\mathbb{F}|}$$

Proving the Sauer–Shelah–Perles lemma

Sauer–Shelah–Perles lemma:

If $\mathscr{F} \subseteq \{0,1\}^X$ has VC dimension *d* then $|\mathscr{F}|$

Pajor's strengthening: If $\mathscr{F} \subseteq \{0,1\}^X$ then \mathscr{F} shatters at least $|\mathscr{F}|$ many sets.

Method 1: Induction on |X|. Decompose $\mathcal{F} = \{S \in \mathcal{F} : x \in S\} \cup \{S \in \mathcal{F} : x \notin S\}$ for an arbitrary $x \in X$.

Method 2: Monotonization.

Lemma trivial for downward-closed families. Monotonization increases number of shattered sets.

Method 3: Polynomial / linear algebra method.

$$\mathcal{F} \mid \leq \left(\begin{array}{c} |X| \\ \leq d \end{array} \right).$$

Linear algebra proof

Pajor's strengthening: If $\mathcal{F} \subseteq \{0,1\}^X$ then \mathcal{F} shatters at least $|\mathcal{F}|$ many sets.

Proof idea: Every function $\mathcal{F} \to \mathbb{R}$ can be expressed as linear combination of monomials corresponding to shattered sets.

Key observation:

If \mathcal{F} does not shatter S then x_S is expressible as linear combination of smaller monomials for inputs in \mathcal{F} .

Proof by example:

- If $\{1,2\} \notin \mathcal{F} \cap \{1,2\}$ then $x_1x_2 = 0$.
- If $\{1\} \notin \mathcal{F} \cap \{1,2\}$ then $x_1x_2 = x_1$.
- If $\emptyset \notin \mathcal{F} \cap \{1,2\}$ then $x_1x_2 = x_1 + x_2 1$.

Extends to vector spaces!

Sauer–Shelah–Perles lemma for lattices

Proof works for any lattice of flats in a matroid (geometric lattice).

- Complete uniform matroid: usual SSP lemma.
- Complete linear matroid: SSP lemma for vector spaces.
- Complete graphical matroid: SSP lemma for partitions.

More generally, proof holds whenever the Möbius function doesn't vanish.

- If $\{1,2\} \notin \mathcal{F} \cap \{1,2\}$ then $x_1x_2 = 0$.
- If $\{1\} \notin \mathcal{F} \cap \{1,2\}$ then $x_1x_2 = 1 \cdot x_1$.
- If $\emptyset \notin \mathscr{F} \cap \{1,2\}$ then $x_1x_2 = 1 \cdot x_1 + 1 \cdot x_2$

Negated Möbius function

$$x_2 - 1$$
.

When does Sauer–Shelah–Perles lemma hold?

Sauer–Shelah–Perles lemma for lattice \mathscr{L} :

If $\mathcal{F} \subseteq \mathcal{L}$ then \mathcal{F} shatters at least $|\mathcal{F}|$ many elements of \mathcal{L} .

Babai–Frankl: SSP holds for \mathscr{L} if $\mu(x, y) \neq 0$ for all $x \leq y$.

SSP doesn't hold: {1,2} only shatters 0

 $0 \land \{1,2\} = \{0\}$

When does Sauer–Shelah–Perles lemma hold?

Babai–Frankl: SSP holds for \mathscr{L} if $\mu(x, y) \neq 0$ for all $x \leq y$.

SSP holds for some lattices with vanishing Möbius function:

 $\mu(1, \mu(0, 2)) = \mu(0, 2)$

Doesn't hold if lattice *contains* 3-element interval, i.e., points x < z with exactly one solution to x < y < z.

Conjecture: SSP holds iff lattice contains no 3-element interval (lattice is relatively complemented).

Relative complementation

Björner: A lattice is relatively complemented iff it doesn't contain a 3-element interval.

Lattice is *relatively complemented* if for every x < y < z there exists y' such that $y \land y' = x$ and $y \lor y' = z$.

Partial results

Conjecture: SSP holds iff lattice is relatively complemented (RC).

Babai and Frankl: If Möbius function never vanishes, lattice is SSP.

Theorem 2: Product of SSP lattices is SSP.

- Theorem 1: If lattice is RC and $\mu(x, y) = 0$ only if x, y are minimal and maximal elements, then lattice is SSP.

Theorem 3: If lattice is RC then SSP holds for all families whose set of non-shattered elems contains a minimum.

Thanks!

