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1 Judgement aggregation

Social choice theory abounds in paradoxes. Arrow’s theorem and the Gibbard–Satterthwaite
theorem are well-known. Here is another example. Suppose that I survey a group of people
about their opinion of various types of chocolates:

Count Like white chocolate? Like dark chocolate? Like both?

60 Yes No No
50 No Yes No
40 Yes Yes Yes

Total Yes 100 90 40
Total No 50 60 110

Although a majority of people like white chocolate and a majority of people like dark
chocolate, only a minority of people like both. This shows that the majority function is not
an admissible judgement aggregation function in this setting.

Which functions f : {0, 1}n → {0, 1} are admissible? Such functions have to satisfy

f(x) ∧ f(y) = f(x ∧ y)

for all x, y ∈ {0, 1}n. In contrast to the impossibility results mentioned above, in this case
dictatorships are not the only examples. But the additional examples are not too helpful: a
non-constant function f satisfies the equation above (“has AND as a polymorphism”) iff it
is a conjunction of some of the coordinates. The same situation holds if we allow different
aggregation functions for different columns: if f(x) ∧ g(y) = h(x ∧ y) for all x, y ∈ {0, 1}n
then necessarily f = g = h.

Ilan Nehama asked whether we can enlarge the class of admissible functions by allowing
aggregation functions which are only approximately admissible, in the sense that f(x) ∧
f(y) = f(x∧y) only holds for most inputs, say 99% with respect to the uniform distribution
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over x, y (while this is not the most realistic input distribution, it is the one most commonly
considered in social choice theory).

Gil Kalai famously proved (using Fourier analysis) an approximate version of Arrow’s
theorem, which states that if an aggregation function approximately satisfies Arrow’s axioms,
then it is an approximate dictatorship. Falik and Friedgut extended this to the Gibbard–
Satterthwaite theorem. Does the same hold in our case?

Ilan Nehama gave an affirmative answer to this question. He showed that if f(x)∧f(y) =
f(x ∧ y) holds with probability 1 − , then f is δ-close to an AND, where δ is polynomial
in n, 1/. (He also showed a similar result for the three-function version.) His result is a bit
unsatisfying, since in the results of Kalai and Falik–Friedgut, the error δ is independent of n.
Our main result rectifies this deficiency, albeit at the price of getting a worse dependence
on .

2 Linearity testing

In the chocolate example above, the answer to the third question was the conjunction of
the first two questions. If instead the third question was “do you like exactly one of the
two types?”, then instead of conjunction we would get exclusive or, and so an admissible
aggregation function would have to satisfy

f(x)⊕ f(y) = f(x⊕ y).

Once again, dictatorships are not the only examples: every XOR satisfies this equation, and
these are the only solutions. Moreover, Blum, Luby and Rubinfeld famously showed that
if f passes this “test” with high probability, then it must be close to an XOR. Their proof
used the technique of self-correction. Later Bellare, Coppersmith, H̊astad, Kiwi and Sudan
gave a completely different proof, using Fourier analysis.

The self-correction proof is based on the fact that XORs satisfy f(x) = f(y)⊕ f(x⊕ y).
If we choose y at random, then both y and x ⊕ y are individually random, and this allows
us to self-correct an approximate XOR by taking its value at x to be the majority vote of
f(y) ⊕ f(x ⊕ y). This kind of technique seems not available when replacing XORs with
ANDs.

The Fourier-based proof uses the happy coincidence that the XORs are essentially the
same as the Fourier characters, and so XORs (or approximate XORs) have a particularly
simple Fourier expansion. In contrast, ANDs are not orthogonal, and so it is not clear how
to extend this kind of proof from XORs to ANDs.

3 One-sided noise formulation

Suppose that a function f : {0, 1}n → {0, 1} satisfies f(x ∧ y) = f(x) ∧ f(y) = f(x)f(y). If
we take expectation over y, then we get

E
y∼µ1/2

[f(x ∧ y)] = E
µ1/2

[f ] · f(x).
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This suggests defining an operator T↓ which maps the function f to the left-hand side of this
equation:

(T↓f)(x) = E
y∼µ1/2

[f(x ∧ y)].

The equation above then reads

T↓f = λf, where λ = E
µ1/2

[f ].

That is, if f is an admissible aggregation function, then it is an eigenvector of T↓.
The operator T↓ is a one-sided analog of the more familiar two-sided noise operator

common in Fourier analysis. Whereas the two-sided noise operator flips each bit with some
probability, the one-sided noise operator only changes coordinates from 1 to 0 (in this case,
with probability 1/2).

It is not hard to check that T↓ has n + 1 eigenspaces, corresponding to the eigenvalues
1, . . . , 2−n, the kth eigenspace spanned by the k-ANDs. Furthermore, any Boolean eigenvec-
tor must be an AND (rather than just a linear combination of ANDs of the same width). This
suggests a possible avenue for understanding approximate solutions to f(x∧y) = f(x)∧f(y):
understand approximate eigenvectors of T↓.

Understanding the approximate eigenvectors of the usual two-sided noise operator Tρ is
relatively easy, since the eigenspaces are orthogonal: starting with

Tρf =


d

ρdf=d,

we immediately obtain that if Tρf ≈ λf then


d

|λ− ρd|f=d2 ≈ 0,

and so λ ≈ ρd for some d and f ≈ f=d. It follows that f must be close to a homoge-
neous degree d Boolean function (not necessarily an XOR!). The same kind of argument
unfortunately fails for the one-sided noise operator, since its eigenspaces are not orthogonal.

4 Phantom solutions

A worse problem is that stability actually fails: there are approximate eigenvectors of T↓
that are not close to eigenvectors! Here is the simplest example:

f(x) =


x1 ∨ x2 if |x| ≥ n/3,

x1 ⊕ x2 if |x| < n/3.

If we sample x ∼ µ1/2, then it is highly likely to be in the first case, so almost all x satisfy
f(x) = x1 ∨ x2. In contrast, if we sample x, y ∼ µ1/2, then x ∧ y is highly likely to be in the
second case, and so almost all x satisfy

T↓f(x) ≈ E
y1,y2

[(x1 ∧ y1)⊕ (x2 ∧ y2)].
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If x1 = x2 = 0 then T↓f(x) ≈ 0. In all other cases, the probability that (x1∧y1)⊕(x2∧y2) = 1
is 1/2, and so T↓f(x) ≈ 1/2. In total,

T↓f ≈ 1

2
f.

Here is an even more striking example. Let λ ∈ (0, 1) be arbitrary. We construct a
function f by taking f(x) = 1 whenever |x| ≥ n/3, and letting f(x) = 1 with probability λ
for all other x. With high probability, the resulting function will satisfy T↓f ≈ λf .

In both examples, the approximate eigenvalue is quite far from the expectation: in the
first example E[f ] ≈ 3/4 whereas λ ≈ 1/2, and in the second one E[f ] ≈ 1 whereas λ could
be arbitrary. Therefore, while these are “phantom” eigenvectors, they do not correspond to
solutions of the original problem.

A second feature of these examples is that the function f is defined one way for inputs
with “large” weight and another way for inputs with “small” weight. In fact, if we separate
the two parts, then the approximate equation becomes an exact equation:

T↓(x1 ⊕ x2) =
1

2
(x1 ∨ x2).

Similarly, in the second example we have

T↓λ = λ · 1,

although the function λ is no longer Boolean. All of this suggests considering the equation

T↓f = λg,

where f : {0, 1}n → [0, 1], g : {0, 1}n → {0, 1}, and λ ∈ (0, 1).
As further motivation, let us note that any such solution naturally corresponds to an

approximate solution T↓h ≈ λh, given by

h(x) =


g(x) if |x| ≥ n/3,

1 w.p. f(x) if |x| < n/3,

in the sense that with high probability, T↓h is extremely close to λh.

5 Solving the fundamental equation

As a first step towards our eventual goal, we consider the equation

T↓f = λg,

where f : {0, 1}n → [0, 1] and g : {0, 1}n → {0, 1}. It turns out that the non-zero solutions
are

g =
m

i=1



j∈Ai

xj, f = 2mλ
m

i=1



j∈Ai

xj,
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where m ≤ log2(1/λ) and A1, . . . , Am are disjoint.
It is not too hard to check that indeed T↓f = λg. The proof of the other direction is

more complicated. We will explain the first step in some detail, and then outline the rest of
the argument.

Let us consider a pair of inputs z ≤ x (this means that zi ≤ xi for all i). If g(x) = 0 then
T↓f(x) = λg(x) = 0. Since T↓f(x) is the average of f(y) for all y ≤ x and f is non-negative,
necessarily f(y) = 0 for all y ≤ x. In particular, f(y) = 0 for all y ≤ z, and so g(z) = 0 as
well. In other words, we have shown that g is monotone.

The second step is characterizing the possible options for g, using only the non-negativity
of f . An elementary (but not immediate) argument shows that g must be an “AND-OR”,
that is, a function which is the conjunction of monotone disjunctions on disjoint sets of
variables. Since T↓ is injective, we can infer that f is the corresponding “AND-XOR”, up
to multiplying by 2mλ (where m is the number of ORs). Since f ≤ 1, we can bound m by
log2(1/λ).

More on the second step Since g is monotone, we can consider its minterms. A simple
calculation shows that if x is a minterm of g, then f(x) = 2|x|λ, where |x| is the Hamming
weight of x.

The crucial observation, driving the entire proof, is that if g(x) = 1 and z is “disjoint”
from x (meaning that xi ∧ zi = 0 for all i) then



y≤x

f(y ∨ z) = 2|x|λ,

where y ∨ z is the bitwise OR of y, z; the proof uses Möbius inversion. This immediately
implies that all minterms of g have the same size m.

A simple induction shows that f(x) ∈ {0, 2mλ} for all x, allowing us to rephrase the
crucial observation: if g(x) = 1 and z is disjoint from x, then there is exactly one y ≤ x such
that f(y ∨ z) ∕= 0.

At this point we can unravel the structure of g. For each minterm x of g, we define a
coloring χx : [n] → {0, . . . ,m} as follows. Let i1, . . . , im be the indices of the ones of x. We
define χx(ij) = j. If i ∕= i1, . . . , im, then the crucial observation implies that f(y ∨ 1i) ∕= 0
for a single y ≤ x, which can either be x itself, in which case we set χx(i) = 0, or x|ij=0, in
which case we set χx(i) = j.

It turns out that (up to permutation) the functions χx coincide for all minterms, so we
let χ = χx for an arbitrary minterm x. A short argument shows that g =

m
j=1


i∈χ−1(j) xi.

It easily follows that f is of the required form, since T↓g = λf , and T↓ is invertible.

6 Deducing stability

Suppose now that we only know that T↓f ≈ λg. Carefully modifying the argument char-
acterizing the exact solutions to handle approximate solutions, we can deduce that f, g are
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close to an AND-XOR,AND-OR pair, but the parameters are quite bad: we take an ex-
ponential hit in the number of coordinates n. A different argument is needed in order to
eliminate the dependence on n. This argument will eventually involve an application of the
“naive argument” just mentioned, for a constant value of n.

The main observation driving our approach is that T↓ is a “low-pass” operator, in the
sense that the “high-degree” parts of g must be small. Our model here is the corresponding
property of the two-sided noise operator: since Tρf =


d ρ

df=d, Parseval’s identity shows
that bounded f satisfy (Tρf)

≥d2 ≤ ρd. A similar, but more subtle, property holds for T↓.
If we are interested in the properties of Tρf around the middle slice, then the relevant

values of f are also around the middle slice. In contrast, if we are interested in the properties
of T↓f around the middle slice, then the relevant values of f are around the quarter slice.
This suggests that the (usual) Fourier expansion of T↓f might depend on the biased Fourier
expansion of f with respect to µ1/4. Indeed, a simple (but eye-opening) calculation shows
that

T↓f(S) = (1/
√
3)|S|f̂(S),

where the Fourier coefficient on the left is with respect to µ1/2, and the one on the right is
with respect to µ1/4. Since f is bounded in our case, this implies that the high-degree parts
of T↓f , and so of g, are exponentially small.

At this point we appeal to the junta theorem of Bourgain (reproved by Kirshner, Kindler
and O’Donnell with better parameters), which states that a Boolean function whose Fourier
mass drops fast enough must be close to a junta. Applied with the proper parameters,
Bourgain’s theorem implies that g is close to some (Boolean) junta G.

At this point it is tempting to observe that T↓F ≈ λG for a proper averaging F of f ,
and apply the naive argument. Unfortunately, the size of the junta and the quality of the
approximation in Bourgain’s result are tied together in such a way that we cannot really
conclude anything using the naive argument (this is because of the exponential dependence
on the size of the junta).

Consider, however, the functions gz obtained by fixing the inputs outside the junta to
some values z, and the corresponding functions fz, defined so that on average T↓fz ≈ λgz,
with closeness comparable to the original closeness parameter (this is the essential difference
between this argument and the failed attempt, in which the error is a function of the size
of the junta). If we choose z, w ∼ µ1/2 then on average gz ≈ G ≈ gw, and so we can find a
value of z such that both T↓fz ≈ λgz, and on average gw ≈ gz. The former property implies
that gz is close to an AND-OR, and the latter property implies that g ≈ gz. In total, we
have shown that g is close to an AND-OR.

A further argument (which involves “trimming” the gz by removing large clauses) shows
that f is close to the corresponding AND-XOR, in the sense that if we average f over all
variables outside the AND-OR (using the µ1/4 measure!), then we get a function which is
close to the appropriate constant multiple of the corresponding AND-XOR. (We cannot
expect closeness without averaging, as the second phantom example demonstrates.)

Finally, let us go back to the original motivation. Consider a function f satisfying
f(x ∧ y) = f(x) ∧ f(y) on most inputs x, y. Then T↓f ≈ λf , for λ = E[f ]. If λ is small
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then f ≈ 0. Otherwise, we can apply the preceding argument (which has a dependence on
λ) to conclude that f is close to an AND-OR of width at most log2(1/λ) (plus a bit). Since
E[f ] = λ, this is only possible if f is close to an AND.

7 Extensions

Our argument works more or less the same if closeness is with respect to µp rather that with
respect to µ1/2, for an arbitrary constant p. More interesting is what happens when the
one-sided noise is larger or smaller.

If the noise is larger, then the only solutions to T↓f = λg are conjunctions, and we can
also prove a robust version of this statement.

In contrast, if the noise is smaller, then new solutions appear; in fact, any monotone g is
a solution for small enough noise. We can still characterize the solutions to T↓f ≈ λg: in all
of them, g must be close to a junta which is part of an exact solution, the size of the junta
depending on both λ and the amount of noise. (Curiously, we cannot say quite the same
about f .)

8 Monomial testing

Parnas, Ron and Samorodnitsky (Testing basic Boolean formulae) considered property test-
ing for monomials (which are conjunctions of literals). In particular, they considered the
following natural test for membership in {x1, . . . , xn}, which they were unable to analyze:

1. Sample a few values of f , and check that their average is close to 1/2.

2. Sample a few pairs x, y, and check that f(x ∧ y) = f(x) ∧ f(y).

Our analysis implies that this test is sound.
(In their paper, they suggest adding linearity testing as a third step: sample a few pairs

x, y, and check that f(x⊕ y) = f(x)⊕ f(y). Since linearity testing is known to be sound, a
function passing the test must be an XOR. For XORs one can explicitly calculate the success
probability of the test f(x ∧ y) = f(x) ∧ f(y), and deduce that a function passing the test
must be of the form xi.)

9 Open questions

Our work leaves many questions open. The most interesting one is to improve the dependence
between the failure probability of the test and the closeness of f to an AND. We conjecture
that the correct dependence is polynomial, but our arguments only show an exponential (or
worse) dependence.

More generally, we can consider judgement aggregation in other scenarios. Consider a
general situation in which there are m issues, and several “corollaries” which depend only on
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these m issues (this is called the truth-functional setting). Dokow and Holzman showed that
non-dictatorship solutions arise only in three scenarios: all the corollaries are conjunctions
(or their negations); all of them are disjunctions (or their negations); all of them are affine.
Can we prove a robust version of this result?

Even more generally, one can consider an arbitrary set of allowed values. The valid
judgement aggregation functions depend on universal-algebraic properties of the set of al-
lowed values. Are these results robust?
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