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1 Introduction

1.1 Linearity testing

Let f : Zn
2 → Z2 satisfy the identity

f(x+ y) = f(x) + f(y)

for all x,y ∈ Zn
2 , where x + y is elementwise addition. This identity states that f is linear, that is, of the

form
f(x) =

!

i∈S

xi

for some subset S ⊆ [n]. This is easy to see directly:

f(x) =

n!

i=1

xif(ei),

where ei is the i’th basis vector.
What can we say if we only know that the identity holds most of the time? That is, suppose that

Pr
x,y∼Zn

2

[f(x+ y) = f(x) + f(y)] = 1− ε,

where x,y are chosen according to the uniform distribution. What can we say about f? A famous result in
theoretical computer science states that in this case, there is a linear function ℓ such that

Pr[f = ℓ] = 1−O(ε).

1.2 Arrow’s theorem

Consider a ranked ballot among three candidates A,B,C. That is, each voter has to submit a ranking of
the three candidates. We encode this ranking in the following way. Does the voter prefer A to B? B to C?
C to A? We thus associate with each voter a triplet of Boolean values. For these values to be consistent
with some ranking, they need to be not all equal (NAE).

Suppose that we want to aggregate the votes by aggregating each of the issues separately. That is, we
apply some function f only on the A vs B votes, to come up with a consensus value for this issue. Similarly,
we apply f to decide whether B is preferred over C, and whether C is preferred over A. We ask for f to
be symmetric: f(1− x) = 1− f(x). In order for the results to make sense, we want them to correspond to
some ranking, that is, to satisfy the NAE property.

We are thus led to the following question. Which symmetric functions f : {0, 1}n → {0, 1} satisfy the
following: whenever (x1, y1, z1), . . . , (xn, yn, zn) ∈ NAE, then (f(x), f(y), f(z)) ∈ NAE? Arrow [Arr50]
showed that the only admissible functions are dictators, that is, f(x) = xi and f(x) = 1− xi!

Kalai [Kal02] proved that even if f satisfies this criterion only with probability 1− ε over random votes,
then f is O(ε)-close to a dictator.
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1.3 Doctrinal paradox

Arrow’s paradox is only one of many paradoxes in social choice theory, more specifically, in judgment
aggregation theory. Another one is the doctrinal paradox. Let f : Zn

2 → Z2 satisfy the identity

f(x · y) = f(x) · f(y)

for all x,y ∈ {0, 1}n, where x · y denotes elementwise multiplication. Note first that f(x · y) ≤ f(x), and
this easily shows that f is monotone. If f ∕= 0, let y be a minterm of f . If x ∕≥ y then

f(x) = f(x) · f(y) = f(x · y) = 0,

since x · y < y. Conversely, if x ≥ y then

f(x) = f(x) · f(y) = f(x · y) = f(y) = 1.

We conclude that either f = 0, or

f(x) =
"

i∈S

xi

for some subset S ⊆ [n]. This is called the doctrinal paradox due to a judgement aggregation interpretation.
The solutions are known as oligarchies, but we will often call them ANDs instead.

Ilan Nehama [Neh13] asked what happens if we only know the following:

Pr
x,y

[f(x · y) = f(x) · f(y)] ≥ 1− ε.

He showed that f is 16(nε)1/3-close to an oligarchy. Our goal is to prove a similar result, but without any
dependence of n.

2 Approaches that fail

Perhaps one of the approaches used for linearity testing would generalize? How about Kalai’s proof of the
robust Arrow’s theorem?

Let us briefly go over these proofs, one by one.

Linearity testing via self-correction The first proof of linearity testing, due to Blum et al. [BLR93],
has as its starting point the following observation:

f(x+ y) = f(x) + f(y) ⇐⇒ f(x) = f(y) + f(x+ y).

In our case, this equation only holds with probability 1− ε. However, a good “guess” for f(x) would be the
majority value of f(y) + f(x + y). Amazingly, if ε is small enough (smaller than some constant), then the
majority value function is itself linear, and O(ε)-close to f !

In our case, the corresponding observation would be the nonsensical

f(x · y) = f(x) · f(y) ⇐⇒ f(x) = f(x · y)/f(y).

The problem is that we cannot divide by zero!
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Linearity testing via Fourier analysis Bellare et al. [BCH+96] rephrased the defining equation in a
different way. They replaced Z2 with {−1, 1}, transforming the premise to the following form:

Pr
x,y

[f(x+ y) = f(x) · f(y)] ≥ 1− ε,

which is the same as
E
x,y

[f(x)f(y)f(x+ y)] ≥ 1− ε.

The left-hand side has an expression in terms of the Fourier coefficients of f :

1− ε ≤
!

S

f̂(S)3.

Since
#

S f̂(S)2 = 1, we see that some Fourier coefficient must be close to 1, and so f has correlation close
to 1 with the corresponding character, implying that f is close to that character.

We can try to do the same in our case, but unfortunately the formula for E[f(x)f(y)f(x·y)] is not as nice.
Moreover, whereas linear functions happen to coincide with Fourier characters, the same is unfortunately
not true for oligarchies.

Linearity testing via induction David et al. [DDG+17] came up with a new proof of linearity testing,
using induction. Here is their idea in a nutshell. Suppose that

Pr
x,y

[f(x+ y) = f(x) + f(y)] ≥ 1− ε.

We can find a setting of xn, yn for which

Pr
x−n,y−n

[f(x−n + y−n, xn + yn) = f(x−n, xn) + f(y−n, yn)] ≥ 1− ε.

Now, let us define a new function g : Zn−1
2 → Z2:

g(z) = f(z, xn) + f(z, yn) + f(z, xn + yn) = f(z, xn · yn).

It turns out that
Pr
z,w

[g(z+w) = g(z) + g(w)] ≥ 1−O(ε),

and so g is O(ε)-close to a linear function (by induction). From here, one can deduce that f is O(ε)-close to
a linear function.

Once again, the construction of g from f relies on the fact that + is a group operation.

Kalai’s proof Let f : {−1, 1}n → {−1, 1} be the function used to aggregate votes on the relative ranking
of two candidates. Kalai [Kal02] calculated the probability that random votes produce a valid ranking: it is

3

4
− 3

4

!

S

(−1/3)|S|f̂(S)2.

Since
#

S f̂(S)2 = 1 and f̂(∅) = 0, this can only be 1 if all of the Fourier mass of f lies on Fourier coefficients
of size 1, which easily implies that f is a dictator, thus recovering Arrow’s theorem. Similarly, if this
probability is 1 − ε then almost all of the Fourier mass lies on the first level, and so f is O(ε)-close to a
dictator by the FKN theorem [FKN02] (proved simultaneously).

As already commented above, the expression we get in our case is not as nice.
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3 Reduction to an eigenfunction problem

Suppose that we know that
Pr
x,y

[f(x · y) = f(x) · f(y)] ≥ 1− ε.

It will be slightly more convenient to write this as follows:

E
x,y

[|f(x · y)− f(x) · f(y)|] ≤ ε.

Applying the triangle inequality to move the absolute value outside of Ey, we get

E
x

$$E
y
[f(x · y)]− E

y
[f(x) · f(y)]

$$ ≤ ε.

Let us try to make sense of the two inner expectations. On the right-hand side we have

E
y
[f(x)f(y)] = f(x) · E

y
[f(y)].

On the left-hand side, we have a kind of averaging of f over all vectors below x:

E
y
[f(x · y)] = E

z≤x
[f(z)].

Let us denote the right-hand side of the last equation by T↓f ; we call T↓ a one-sided noise operator, to
differentiate it from the more usual operator Tρ, which is two-sided (can change zeros to ones and vice
versa). Then altogether, denoting µ = E[f ], we get

‖T↓f − µf‖1 ≤ ε.

In other words, f is an approximate eigenfunction of T↓!

Two-sided noise Let’s imagine for a moment replacing T↓ with Tρ, the standard two-sided noise operator
given by

Tρf =
!

S

ρ|S|f̂(S)χS .

Suppose that we are given a function f : {0, 1}n → {0, 1} such that

‖Tρf − µf‖1 ≤ ε.

Since ‖Tρf − f‖∞ ≤ 1, this implies
‖Tρf − µf‖22 ≤ ε.

Applying Parseval’s identity, !

S

(ρ|S| − µ)2f̂(S)2 ≤ ε.

This shows that µ ≈ ρd for some d, and f is concentrated on the d’th level.
Unfortunately, in the case of the one-sided noise operator we don’t have a “Parseval’s identity”, since T↓

is not normal, and so its eigenfunctions are not orthogonal! Still, it does make sense to compute the exact
eigenfunctions of T↓.

Exact eigenfunctions Let ANDS =
%

i∈S xi. It is not hard to check that

T↓ANDS = 2−|S|ANDS .

This shows that the functions ANDS are eigenfunctions of T↓. Since they form a basis, these are in fact all
the eigenfunctions. However, they are not orthogonal (as mentioned above). For example, 〈x1, x2〉 = 1/4.
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4 Towards a junta

One step which does apply to T↓ is the one where we replace L1 norm with L2 norm:

‖T↓f − µf‖22 ≤ ε.

Does this tell us anything about f?
Here we make a crucial observation: when computing the L2 norm, we are feeding inputs of weight

roughly n/2 to µf and to T↓f . In the latter case, this translates to feeding inputs of weight roughly n/4 to
f . This hints that we should look at the Fourier expansion of f with respect to µ1/4.

The 1/4-biased Fourier expansion of f is the representation of f in a tensorial basis ωS which is orthonor-
mal with respect to the µ1/4 measure. It turns out that

ωS =
"

i∈S

xi − 1/4√
3/4

.

The T↓ operator has the following effect on this basis:

T↓
xi − 1/4√

3/4
=

1

2

&
xi − 1/4√

3/4
+

−1/4√
3/4

'
=

1√
3

xi − 1/2

1/2
.

In other words,

T↓ωi =
1√
3
χi,

where χS is the usual Fourier basis. Consequently, if we denote by f̃ the 1/4-biased Fourier expansion of f ,
then

T↓f =
!

S

√
3
−|S|

f̃(S)χS .

Since f is Boolean,
#

f̃(S)2 ≤ 1. This means that T↓f is concentrated on the low levels. More precisely,

‖f>d‖2 ≤ 2(‖(T↓f)
>d‖2 + ε)

µ
= O

&
3−d/2 + ε

µ

'
.

We can assume that µ is not too small, since otherwise we can approximate f by zero. Let us therefore
ignore µ. So ‖f>d‖2 is “small”. Since f is Boolean, this means that f is close to a junta, by a theorem of
Bourgain [Bou02], perfected by Kindler, Kirshner and O’Donnell [KKO18]. In other words, there exists a
“small” set J , whose size depends only on ε, and a Boolean function g : {0, 1}J → {0, 1}, such that

Pr
x∈{0,1}J

y∈{0,1}J

[f(x,y) ∕= g(x)] is small.

Let us try to use this function g to simplify our situation. The idea is to average the inequality ‖T↓f −
µf‖22 ≤ ε over J . If we denote by A1/2f the function from {0, 1}J → R given by

A1/2f(x) = E
y∈{0,1}J

[f(x,y)],

then since A1/2 is contracting,

‖A1/2T↓f − µA1/2f‖22 ≤ ε.

We can replace A1/2f by g using the L2
2 triangle inequality:

‖A1/2T↓f − µg‖22 is small.
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What about A1/2T↓f? On an input x ∈ {0, 1}J , it is equal to

E
y∈{0,1}J

[T↓f(x,y)] = E
z≤x

y∈{0,1}J

w≤y

[f(z,w)] = T↓A1/4f(x),

where A1/4f is defined just as above, but with respect to the µ1/4 measure. In total, we get

‖T↓A1/4f − µg‖22 is small.

Note that whereas g is Boolean-valued, we are only guaranteed that A1/4f is [0, 1]-valued.

5 The generalized eigenfunction problem

The foregoing suggests studying the following generalized eigenvalues problem. Which functions f : {0, 1}m →
[0, 1] and g : {0, 1}m → {0, 1} satisfy the following equation?

T↓f = λg.

We are actually interested in approximate solutions of this equation, but it is prudent to first consider the
exact version of the problem.

We already know of some solutions: T↓ANDS = 2−|S|ANDS . Are there any others? Here are two
examples.

Example 1 Suppose that g(x) = x1 ∨ x2 and f(x) = x1 ⊕ x2. I claim that T↓f = 1
2g. Indeed:

• If x1 = 1 (or x2 = 1) then g(x) = 1, and for y ≤ x, f(y) = 1 with probability exactly 1/2 (since this
is the XOR of one or two random bits).

• If x1 = x2 = 0 then clearly g(x) = f(x) = 0.

Example 2 Take g ≡ 1 and f ≡ λ. Clearly T↓f = λg.

General case It turns out that the two examples generate, in a sense, all solutions to the equation
T↓f = λg. The general solutions is

g =

s(

i=1

)

j∈Si

xj ,

f = 2sλ

s(

i=1

*

j∈Si

xj ,

where 2sλ ≤ 1 and the sets S1, . . . , Ss are disjoint. A mild generalization of the arguments above shows that
indeed T↓f = λg. The other direction is more challenging, and we will only outline it.

The first step is to show that g has to be monotone. Indeed, if y ≤ x and g(x) = 0 then f(z) = 0 for all
z ≤ x, and in particular f(z) = 0 for all z ≤ y, showing that g(y) = 0.

Since g is monotone, it can be expressed as a disjunction of minterms. One shows that all minterms have
the same width s, and that the hypergraph of the minterms is a complete s-partite hypergraph, giving the
form of g. We deduce the form of f since T↓ is invertible.
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Approximate solutions Suppose that we only know that Tf ≈ λg. If g is not of the form above (“AND-
OR”) then linear programming duality gives us a “proof” that this cannot happen for f which is [0, 1]-valued,
given that Tf = λg. Using this proof, we can rule out such g whenever the approximation is good enough
(as a function of m). (A direct argument gives better bounds.)

Having shown that g is an AND-OR, we can conclude that f is approximately equal to the corresponding
“AND-XOR” by bounding the norm of T−1

↓ .

6 Finishing the proof

Let us recap what has happened so far. We start with a function f satisfying

Pr
x,y

[f(x · y) = f(x) · f(y)] = 1− ε.

This implies that f is close to some junta g on some set of variables J , and furthermore

T↓A1/4f ≈ µg,

where µ = E[f ]. This, in turn, implies that g is close to some AND-OR, and A1/4f to the corresponding
AND-XOR.1 It remains to show that g is actually an AND.

Suppose that g is an AND of s many ORs. Then µ ≲ 2−s (otherwise f won’t be bounded in [0, 1]). On
the other hand, since µ = E[f ] ≈ E[g], we have µ ≳ 2−s, with (approximate) equality only if g is an AND.
We conclude that g is indeed an AND, and so f is close to an AND.

Other noise rates So far we have considered only the equation f(x · y) = f(x) · f(y). What about the
following more general equation?

f(x1 · · ·xℓ) = f(x1) · · · f(xℓ).

It is easy to check that the exact solutions are still ANDs. If all we know is that the equation holds with
probability 1−ε, then we can apply the preceding argument, reaching similar conclusions, with one difference:
the operator T↓ is replaced by an operator T that zeroes a coordinate with probability 1−1/2ℓ−1 (and A1/4f
is replaced by A1/2ℓf). The only solutions of Tf = λg are ANDs, simplifying the proof.

Multiple functions Does the picture change if we replace f with three different functions? That is,
suppose

Pr
x,y

[f(x · y) = fx(x) · fy(y)] ≥ 1− ε.

What can we say about f, fx, fy? It turns out that we essentially get no new interesting solutions (other
than f = fx = 0 or f = fy = 0 and their approximate counterparts).

7 Future work

Our work leaves several interesting open questions for future research.

Quantitative aspects Our work shows that if Pr[f(x · y) = f(x) · f(y)] ≥ 1 − ε then f is δ-close to an
AND, where δ → 0 as ε → 0. Unfortunately, the dependence of δ on ε is super-polynomial. We conjecture
that a polynomial dependence is possible (and this is what Ilan Nehama gets).

1We’re actually cheating here: the parameters don’t work out. The argument in the paper is more subtle.
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Other functions Linearity testing and “AND testing” both generalize to φ-testing, which is the following
problem. Given φ : {0, 1}ℓ → {0, 1}, which we think of as fixed, characterize all functions f : {0, 1}n → {0, 1}
satisfying

Pr
x1,...,xℓ

[f(φ(x1, . . . ,xℓ)) = φ(f(x1), . . . , f(xℓ))] ≥ 1− ε.

The case ε = 0 was solved by Dokow and Holzman [DH09]: if φ is not equivalent to XOR or AND, then
the only possible functions f are dictators and, possibly, constants. We conjecture that in the latter case,
all approximate solutions are close to exact solutions. We have been able to prove this in some cases, like
Majority and Anti-majority.

List-decoding version If f : Zn
2 → Z2 is a random function, then the probability that f(x + y) =

f(x) + f(y) is 1/2. Hence if

Pr
x,y

[f(x+ y) = f(x) + f(y)] ≥ 1

2
+ ε

then f is not random. How does this manifest itself? Bellare et al. [BCH+96] shows that f must have
nontrivial correlation with some linear function. Can we say something similar in our case?
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