Property Testing meets Universal Algebra: Oligarchy testing
 Yuval Filmus (Technion)
 Noam Lifshitz (HUJI)
 Dor Minzer (IAS)
 Elchanan Mossel (MIT)

Introduction

The accused should be convicted if they have both the means and the motive. Here is what the three judges had to say:

Introduction

- This shows that Majority is not admissible for AND.
- A judgment aggregation function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is admissible for $A N D$ if for all $x, y \in\{0,1\}^{n}$, we have $f(x \wedge y)=f(x) \wedge f(y)$.
- Which functions are admissible?
- Dictators: $f(x)=x_{i}$
- Constants: $f(x)=0, f(x)=1$
- Oligarchies (ANDs): $f(x)=x_{1} \wedge \cdots \wedge x_{m}$

Introduction

Theorem: ANDs and constants are only functions admissible for AND.

Are there other solutions which are admissible whp?

$$
\text { (i.e., } \operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)] \approx 1)
$$

Theorem (Nehama): If f is approx admissible, it is approx an AND:
$\operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)] \geq 1-\varepsilon \Longrightarrow f$ is $O(n \varepsilon)$-close to an AND
Want to remove dependence on $n!$

Arrow's theorem

An election is being held using ranked ballots. The outcome has to be a ranking as well. The final relative ranking of two candidates should depend only on the voters' relative rankings of these two candidates (IIA).

Linearity testing

The patient should be declared sane if the sandwich has chocolate or pickles, but not both. Here is what three psychiatrists had to say, based on their observations:

Universal Algebra

- In universal algebra, a function admissible for AND is called an AND polymorphism.
- Similarly, a function admissible for Arrow is an NAE polymorphism (NAE = Not All Equal), and a function admissible for linearity testing is an XOR polymorphism.
- Only polymorphisms of NAE are dictators.
- Only polymorphisms of XOR are XORs.

Universal Algebra

- A set of allowed rows is called truth-functional if the last column is a function of the previous ones, and this is the only constraint.
- Both AND and XOR are truth-functional. NAE isn't.
- Dokow and Holzman showed that in the binary truthfunctional setting, AND and XOR (on any number of inputs) are the only interesting cases.
- In all other cases, the only polymorphisms are dictators and, sometimes, constants.

Schaefer's theorem

- If $\mathrm{P} \neq \mathrm{NP}$ then there are NP-intermediate problems (Ladner's theorem, proved by diagonalization). Yet most problems we encounter in real life are either in P or are NP-hard.
- Schaefer's theorem states that this is the case for all CSPs (constraint-satisfaction problems): for each type of allowed constraints, the problem is either easy (in P) or hard (NP-complete).
- 3SAT corresponds to the constraints $x \vee y \vee z$, with possibly negated inputs (eight possible constraints).
- 3XOR-SAT corresponds to $x \oplus y \oplus z$ and its negation. Easy!
- Many generalizations: optimization problems, non-binary domains.

Property Testing

- You are giving me a function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ as a black box (think D-Wave), and claiming that f is an XOR ("linear"). I want to test this by querying the function at only a few places.
- Natural test: pick x, y at random, and verify $f(x \oplus y)=f(x) \oplus f(y)$.
- If f is linear, test always passes ("completeness").
- If test passes w.p. $1-\varepsilon, f$ is $O(\varepsilon)$-close to an XOR ("soundness").
- Note no dependence on n. In other cases (e.g. monotonicity testing), dependence on n is necessary.

Linearity testing

How do we prove soundness?

- Method 1: Self-correction
- For most $x, y: f(x)=f(y) \oplus f(x \oplus y)$.
- "Guess" correct value at x is majority of $f(y) \oplus f(x \oplus y)$.
- BLR: This works for $\varepsilon<$ const!
- Method 2: Fourier analysis
- Express success probability of test using Fourier expansion of f.

Fourier analysis

- Change notation to $f:\{-1,1\}^{n} \longrightarrow\{-1,1\}$.
- f can be expressed uniquely as a multilinear polynomial.
- Each monomial is an XOR of a subset $S \subseteq[n]$ of variables.
- Denote coefficient by $\hat{f}(S)$ ("Fourier coefficient").
- $\operatorname{Pr}[f(x y)=f(x) f(y)]=1 / 2+1 / 2 \int \hat{f}(S)^{3}$.
- If $\operatorname{Pr}[f(x y)=f(x) f(y)] \approx 1$ then some Fourier coefficient is close to 1 .
- f is close to the corresponding XOR.

Oligarchy testing

Given $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ s.t. $f(x y)=f(x) f(y)$ whp, want to deduce that f is close to an AND.

- Method 1: Self-correction
- Cannot express $f(x)$ in terms of $f(y), f(x y)$. "Information is lost."
- Method 2: Fourier analysis
- Formula for $\operatorname{Pr}[f(x y)=f(x) f(y)]$ isn't nice any more. For linearity testing, lucky that XORs=monomials.

Our approach

Suppose $f(x y)=f(x) f(y)$ w.p. ≈ 1.

- Fix x, and take expectation over y :
- $T_{\downarrow} f(x) \approx \lambda f(x)$, where $\lambda=\mathbb{E}[f]$.
- $T_{\downarrow} f(x)$ is average of $f(z)$ on all values $z \leq x$.
- In total, $T_{\downarrow} f \approx \lambda f$ (in appropriate norm).
- So need to determine approximate eigenvectors of T_{\downarrow}.

Our approach

- T_{\downarrow} is one-sided variant of more familiar noise operator:
- $\operatorname{Tf}(x)=\mathbb{E}[f(x \oplus y)]$, where y is biased.
- Eigenvectors of T are XORs; form an orthogonal basis.
- Implies that approx eigenvectors are close to eigenvectors.
- In contrast, eigenvectors of T_{\downarrow} are ANDs; not orthogonal!
- Same approach cannot work.

Some examples

$$
f(x)=\left\{\begin{array}{lll}
x_{1} \vee x_{2} & \text { if } & |x| \geq n / 3 \\
x_{1} \oplus x_{2} & \text { if } & |x|<n / 3
\end{array}\right.
$$

For random $x, y,|x| \geq n / 3$ while $|x \wedge y|<n / 3$, so:

- $f(x)=x_{1} \vee x_{2} \quad$ while $T_{\downarrow} f(x) \approx \mathbb{E}\left[\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{2} \wedge y_{2}\right)\right]$
- If $x_{1}=x_{2}=0$ then $x_{1} \wedge y_{1}=x_{2} \wedge y_{2}=0$, so $f(x)=0$ and $T_{\downarrow} f(x) \approx 0$. (In fact, $T_{\downarrow} f(x)=0$.)
- If (e.g.) $x_{1}=1$ then $x_{1} \wedge y_{1}=y_{1}$ is a random bit, so $f(x)=1$ and $T_{\downarrow} f(x) \approx 1 / 2$.
- In total, $T_{\downarrow} f \approx 1 / 2 f$.

$$
f(x)= \begin{cases}1 & \text { if } \\ \operatorname{Ber}(\lambda) & \text { if } \\ |x|<n / 3\end{cases}
$$

This time, $T_{\downarrow} f \approx \lambda \approx \lambda f$.

Some examples

$$
\begin{aligned}
g(x) & =x_{1} \vee x_{2} \\
f(x) & =x_{1} \oplus x_{2}
\end{aligned}
$$

For all x, y :

- $g(x)=x_{1} \vee x_{2} \quad$ while $T_{\downarrow} f(x)=\mathbb{E}\left[\left(x_{1} \wedge y_{1}\right) \oplus\left(x_{2} \wedge y_{2}\right)\right]$
- If $x_{1}=x_{2}=0$ then $x_{1} \wedge y_{1}=x_{2} \wedge y_{2}=0$, so $g(x)=0$ and $T_{\downarrow} f(x)=0$.
- If (e.g.) $x_{1}=1$ then $x_{1} \wedge y_{1}=y_{1}$ is a random bit, so $g(x)=1$ and $T_{\downarrow} f(x)=1 / 2$.
- In total, $T_{\downarrow} f=1 / 2 g$.

$$
\begin{aligned}
& g(x)=1 \\
& f(x)=\lambda
\end{aligned}
$$

This time, $T_{\downarrow} f=\lambda=\lambda g$.

Generalized eigenfunctions

- It turns out that we will need to solve the following "generalized eigenfunction problem":
- $T_{\downarrow} f=\lambda g$, where $g:\{0,1\}^{n} \longrightarrow\{0,1\}$ and $f:\{0,1\}^{n} \longrightarrow[0,1]$.
- The solution is a generalization of both examples:
- g is an AND of disjoint ORs.
- f is an AND of disjoint XORs (on same variables), multiplied by the appropriate constant factor.
- Proof is a nice combinatorial exercise.

Generalized eigenfunctions

Solving $T_{\downarrow} f=\lambda g$:

- Step 1: g has to be monotone.
- Step 2: all minterms of g have same size.
- Step 3: minterms constitute "complete multipartite graph".

Solving $T_{\downarrow} f \approx \lambda g$:

- Apply linear programming duality to get "robust" version of same conclusion.
- Exponential dependence on n.

Noise is low-pass filter

- Recall the Fourier expansion of a function.
- Contribution of degree d monomials constitutes " d "th level".
- Classical noise operator has diminishing effect on high levels.
- Same holds for T_{\downarrow}, with a caveat: It translates "skewed" Fourier expansion to classical Fourier expansion, while diminishing high levels.
- Upshot is that if $T_{\downarrow} f \approx \lambda g$ then g is concentrated on low levels.
- This implies that g is close to a "junta" (depends on few coords).

Finishing the proof

Suppose $T_{\downarrow} f \approx \lambda g$.

- g is close to a junta G on variables J.
- Average f on fibers of J (with respect to appropriate distribution!) to obtain a function F such that $T_{\downarrow} F \approx \lambda G$.
- Apply robust characterization of generalized eigenfunctions.

Final result: same as robust characterization, but:

- No dependence on n.
- Bad dependence on ε (doubly exponential).

Finishing the proof

Suppose $f(x y)=f(x) f(y)$ with high probability.

- Then $T_{\downarrow} f \approx \lambda f$, where $\lambda=\mathbb{E}[f]$.
- Apply previous result.
- Value of λ forces f to be an AND (rather than an AND-OR).

Open problems

1. Improve dependence on ε from double exp to poly.
2. Generalize to general truth-functional setting.

- In all remaining cases, answer should be dictator.
- Known for Arrow's theorem using Fourier analysis (Kalai).

3. "List-decoding" version:

- What if $\operatorname{Pr}[f(x \wedge y)=f(x) \wedge f(y)]$ is better than random?
- If $\operatorname{Pr}[f(x \oplus y)=f(x) \oplus f(y)]>1 / 2$ then f correlates with some XOR.

