Triangle-Intersecting Families of Graphs

David Ellis ${ }^{1} \quad$ Yuval Filmus ${ }^{2}$ Ehud Friedgut ${ }^{3}$
${ }^{1}$ Cambridge University
${ }^{2}$ University of Toronto
${ }^{3}$ Hebrew University
Ontario Combinatorics Workshop 2011

Outline

Background

Fourier Analysis

Friedgut's Method

Constructing A

Extremal Combinatorics, EKR-style

- What is largest intersecting family of k-subsets of [n]? $(k \leq n / 2)$
- Erdős, Ko, Rado (1961): Sunflower, relative size k / n
- Many generalizations

Triangle-Intersecting Families

- What is largest family of triangle-intersecting graphs?
- Simonovits, Sós (1976) conjectured: Sunflower, relative size 1/8
- Chung, Graham, Frankl, Shearer (1986): upper bound 1/4

Proof Ingredients

- Fourier analysis
- Hoffman's bound (Friedgut's method)
- Some graph theory

Outline

Background

Fourier Analysis

Friedgut's Method

Constructing A

Fourier Analysis on \mathbb{Z}_{2}^{m}

- $f: \mathbb{Z}_{2}^{m} \longrightarrow \mathbb{R}$
- Fourier expansion: $f(x)=\sum_{S \subset[m]} \hat{f}(S) \chi_{s}(x)$
- Fourier character: $\chi_{S}(x)=(-1)^{\sum_{i \in S} x_{i}}$

Fourier Analysis: Examples

- $\chi_{\varnothing}(\ldots)=1$
- $\chi_{\{1\}}(0, \ldots)=1, \chi_{\{1\}}(1, \ldots)=-1$
- If $f\left(x_{1}, \ldots, x_{m}\right)=x_{i}$ then

$$
f=\frac{1}{2} \chi_{\varnothing}+\frac{1}{2} \chi_{\{i\}}
$$

- If $g\left(x_{1}, \ldots, x_{m}\right)=x_{i} \wedge x_{j}$ then

$$
g=\frac{1}{4} \chi_{\varnothing}-\frac{1}{4} \chi_{\{i\}}-\frac{1}{4} \chi_{\{j\}}+\frac{1}{4} \chi_{\{i, j\}}
$$

Fundamental Properties

- Recall $\chi_{S}(x)=(-1)^{\sum_{i \in S} x_{i}}$
- Fourier characters form orthonormal basis wrt $\langle f, g\rangle=\mathbb{E}_{x} f(x) g(x)$
- Fourier transform: $\hat{f}(S)=\left\langle f, \chi_{s}\right\rangle$
- Parseval: $\langle f, g\rangle=\sum_{s} \hat{f}(S) \hat{g}(S)$
- χ_{\varnothing} is constant 1 so $\hat{f}(\varnothing)=\mathbb{E}_{x} f(x)$
- f boolean implies $f^{2}=f$, so by Parseval

$$
\sum_{S} \hat{f}(S)^{2}=\mathbb{E}_{x} f(x)
$$

Why Use Fourier Transform?

- $f: \mathbb{Z}_{2}^{\binom{n}{2}} \rightarrow\{0,1\}$: characteristic function of family of graphs on n vertices
- $\hat{f}(\varnothing)=\sum_{S} \hat{f}(S)^{2}=\mathbb{E}_{x} f(x)$ is relative size
- Sunflowers have simple expansions
- Problem: express being triangle-intersecting in a useful way

Outline

Background

Fourier Analysis

Friedgut's Method

Constructing A

Friedgut's Method

Developed by Friedgut following Hoffman (1969)

- \mathcal{F} is disjoint from co-bipartite "shifts" $\mathcal{F} \Delta \bar{H}$
- Shifts are linear, ev's are Fourier characters
- Combine shifts to a linear operator A with nice eigenvalues
- Apply Hoffman's bound

Step 1

Lemma
\mathcal{F} triangle-intersecting, H bipartite \Longrightarrow
\mathcal{F} disjoint from $\mathcal{F} \Delta \bar{H}$.

Step 1

Lemma
\mathcal{F} triangle-intersecting, H bipartite \Longrightarrow
\mathcal{F} disjoint from $\mathcal{F} \Delta \bar{H}$.
Proof.

$$
G \cap(G \Delta \bar{H}) \subset \overline{G \Delta(G \Delta \bar{H})}=H .
$$

Step 2

Lemma
For some linear operator S_{H},

$$
\mathcal{G}=\mathcal{F} \Delta \bar{H} \Rightarrow g=S_{H} f
$$

Also, $S_{H} \chi_{K}=(-1)^{\mid K \cap \overline{H \mid}} \chi_{K}$.

Step 2

Lemma
For some linear operator S_{H},

$$
\mathcal{G}=\mathcal{F} \Delta \bar{H} \Rightarrow g=S_{H} f .
$$

Also, $S_{H} X_{K}=(-1)^{\mid K \cap \bar{H}} X_{K}$.
Proof.

$$
\left(S_{H} \chi_{K}\right)(x)=\chi_{K}(x \Delta \bar{H})=\chi_{\kappa}(x) \chi_{\kappa}(\bar{H}) .
$$

Step 2

Lemma
For some linear operator S_{H},

$$
\mathcal{G}=\mathcal{F} \Delta \bar{H} \Rightarrow g=S_{H} f .
$$

Also, $S_{H} X_{K}=(-1)^{\mid K \cap H_{H}} X_{K}$.
Proof.

$$
\left(S_{H} \chi_{K}\right)(x)=\chi_{K}(x \Delta \bar{H})=\chi_{K}(x) \chi_{K}(\bar{H}) .
$$

If H bipartite \& f triangle-intersecting, $\left\langle f, S_{H} f\right\rangle=0$.

Step 3

Ellis function $q_{i}(G)$ is probability that a random bipartition cuts exactly i edges of G.
Lemma
\exists linear combination of co-bipartite shifts Q_{i} s.t. $Q_{i} \chi_{G}=(-1)^{|G|} q_{i}(G) \chi_{G}$.

Step 3

Ellis function $q_{i}(G)$ is probability that a random bipartition cuts exactly i edges of G.
Lemma
\exists linear combination of co-bipartite shifts Q_{i} s.t. $Q_{i} \chi_{G}=(-1)^{|G|} q_{i}(G) \chi_{G}$.

Proof.

- For each bipartition B, construct $Q_{i, B}$.
- Q_{i} is convex combination of $Q_{i, B}$.

Step 3

Ellis function $q_{i}(G)$ is probability that a random bipartition cuts exactly i edges of G.
Lemma
\exists linear combination of co-bipartite shifts Q_{i} s.t. $Q_{i} \chi_{G}=(-1)^{|G|} q_{i}(G) \chi_{G}$.

Proof.

- For each bipartition B, construct $Q_{i, B}$.
- Q_{i} is convex combination of $Q_{i, B}$.

A is some linear combination of Q_{i}.

Step 4

Lemma (Hoffman's Bound)
Suppose $A_{\chi_{S}}=\lambda_{S} \chi_{S}, \lambda_{\varnothing}=1, \lambda_{S} \geq \frac{-\mu}{1-\mu}$. If $\langle f, A f\rangle=0$ then $\mathbb{E}_{x} f(x) \leq \mu$.

Step 4

Lemma (Hoffman's Bound)
Suppose $A \chi_{s}=\lambda_{S} \chi_{S}, \lambda_{\varnothing}=1, \lambda_{S} \geq \frac{-\mu}{1-\mu}$. If $\langle f, A f\rangle=0$ then $\mathbb{E}_{x} f(x) \leq \mu$.
Proof.

$$
0=\langle f, A f\rangle=\sum_{S} \lambda_{S} \hat{f}(S)^{2} .
$$

Algebra.

Putting It Together

Theorem
If \mathcal{F} is triangle-intersecting then $|\mathcal{F}| \leq 1 / 8$.
Proof.
Let f be characteristic function of \mathcal{F}.
Construct linear combination of shifts A satisfying $\lambda_{\varnothing}=1$ and for all $G, \lambda_{G} \geq-\frac{1}{7}$. We have $\langle f, A f\rangle=0$.
Hoffman's bound implies $\mathbb{E}_{x} f(x) \leq 1 / 8$.

Outline

Background

Fourier Analysis

Friedgut's Method

Constructing A

Some Experimentation

	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}
\varnothing	1				
-	$\frac{1}{2}$	$\frac{1}{2}$			
\wedge	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2}$		
\triangle	$\frac{1}{4}$	0	$\frac{3}{4}$		
$\wedge \wedge$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$
\square	$\frac{1}{8}$	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$

Implications

- Looking for $A=\sum_{i=0}^{4} c_{i} Q_{i}, c_{0}=1$
- $\operatorname{Need}(-1)^{|G|} \sum_{i=0}^{4} c_{i} q_{i}(G) \geq-\frac{1}{7}$
- Constraints must be tight for $-, \wedge, \Delta$
- Table determines $c_{1}, c_{2}, 4 c_{3}+c_{4}$:

$$
A=Q_{0}-\frac{5}{7} Q_{1}-\frac{1}{7} Q_{2}+\frac{3}{28} Q_{3}
$$

Implications

- Looking for $A=\sum_{i=0}^{4} c_{i} Q_{i}, c_{0}=1$
- Need $(-1)^{|G|} \sum_{i=0}^{4} c_{i} q_{i}(G) \geq-\frac{1}{7}$
- Constraints must be tight for $-, \wedge, \Delta$
- Table determines $c_{1}, c_{2}, 4 c_{3}+c_{4}$:

$$
A=Q_{0}-\frac{5}{7} Q_{1}-\frac{1}{7} Q_{2}+\frac{3}{28} Q_{3}
$$

- Have to show that for all $G, \lambda_{G} \geq-\frac{1}{7}$, i.e.

$$
(-1)^{|G|}\left(q_{0}(G)-\frac{5}{7} q_{1}(G)-\frac{1}{7} q_{2}+\frac{3}{28} q_{3}(G)\right) \geq-\frac{1}{7} .
$$

Cut Statistics

Let $\mathfrak{Q}_{G}(t)=\sum_{i=0}^{\infty} q_{i}(G) t^{i}$.
Block: bridge or biconnected component.
Lemma
If G decomposes into blocks G_{1}, \ldots, G_{ℓ} then

$$
\mathfrak{Q}_{G}=\prod_{j=1}^{\ell} \mathfrak{Q}_{G_{\ell}} .
$$

Some Graph Theory

Lemma

- $q_{0}(G)=2^{c c(G)-v(G)}$.
- $q_{1}(G)=\operatorname{br}(G) q_{0}(G)$.
- $q_{k}(G) \leq 1 / 2$ if G has odd-degree vertex.
- $q_{k}(G) \leq 1 / 2$ for odd k.
- $q_{2}(G) \leq 3 / 4$.

Proof that A works

Theorem
$A_{X_{G}}=\lambda_{G} \chi_{G}$ where $\lambda_{G} \geq-\frac{1}{7}$.
Proof.

- Two cases, $|G|$ odd and $|G|$ even.
- Enumerate over number of bridges m.
- If m or $|G|$ is big, result holds.
- Check all small graphs.

Summary of Results

\mathcal{F} triangle-intersecting family, relative size $|\mathcal{F}|$.

- Upper bound: $|\mathcal{F}| \leq 1 / 8$.
- Uniqueness: $|\mathcal{F}|=1 / 8 \Rightarrow$ sunflower.
- Stability: $|\mathcal{F}| \approx 1 / 8 \Rightarrow \approx$ sunflower.
- Generalizations ($p \leq 1 / 2$, Schur triplets).

Also works for odd-cycle-intersecting families!

Open Questions

- What about cycle-intersecting?
- What happens for other graphs?

Sunflower not best for path of length 3! (Christofides)

- What happens when $p>1 / 2$?
- Lots of other EKR-like questions!

