Triangle-Intersecting Families of Graphs

David Ellis¹ Yuval Filmus² Ehud Friedgut³

¹Cambridge University

²University of Toronto

³Hebrew University

Ontario Combinatorics Workshop 2011

Background

Fourier Analysis

Friedgut's Method

Constructing A

Extremal Combinatorics, EKR-style

What is largest intersecting family of k-subsets of [n]? (k ≤ n/2)

- Erdős, Ko, Rado (1961):
 Sunflower, relative size k/n
- Many generalizations

Triangle-Intersecting Families

- What is largest family of triangle-intersecting graphs?
- Simonovits, Sós (1976) conjectured: Sunflower, relative size 1/8
- Chung, Graham, Frankl, Shearer (1986): upper bound 1/4

ション 小田 マイビット ビー シックション

Proof Ingredients

- Fourier analysis
- Hoffman's bound (Friedgut's method)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Some graph theory

Background

Fourier Analysis

Friedgut's Method

Constructing A

Fourier Analysis on \mathbb{Z}_2^m

- $f: \mathbb{Z}_2^m \longrightarrow \mathbb{R}$
- Fourier expansion: $f(x) = \sum_{S \in [m]} \hat{f}(S) \chi_S(x)$

ション 小田 マイビット ビー シックション

• Fourier character: $\chi_{S}(x) = (-1)^{\sum_{i \in S} x_i}$

Fourier Analysis: Examples

•
$$\chi_{\emptyset}(...) = 1$$

• $\chi_{\{1\}}(0,...) = 1, \chi_{\{1\}}(1,...) = -1$
• If $f(x_1,...,x_m) = x_i$ then
 $f = \frac{1}{2}\chi_{\emptyset} + \frac{1}{2}\chi_{\{i\}}$
• If $g(x_1,...,x_m) = x_i \wedge x_j$ then
 $g = \frac{1}{4}\chi_{\emptyset} - \frac{1}{4}\chi_{\{i\}} - \frac{1}{4}\chi_{\{j\}} + \frac{1}{4}\chi_{\{i,j\}}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Fundamental Properties

• Recall
$$\chi_{\mathcal{S}}(x) = (-1)^{\sum_{i \in \mathcal{S}} x_i}$$

- Fourier characters form orthonormal basis wrt ⟨f, g⟩ = E_xf(x)g(x)
 - Fourier transform: $\hat{f}(S) = \langle f, \chi_S \rangle$

• Parseval:
$$\langle f, g \rangle = \sum_{S} \hat{f}(S) \hat{g}(S)$$

- χ_{\varnothing} is constant 1 so $\hat{f}(\varnothing) = \mathbb{E}_{x}f(x)$
- *f* boolean implies $f^2 = f$, so by Parseval

$$\sum_{S} \hat{f}(S)^2 = \mathbb{E}_x f(x)$$

ション 小田 マイビット ビー シックション

Why Use Fourier Transform?

- f: Z₂⁽ⁿ⁾ → {0, 1}: characteristic function of family of graphs on *n* vertices
- $\hat{f}(\emptyset) = \sum_{S} \hat{f}(S)^2 = \mathbb{E}_x f(x)$ is relative size
- Sunflowers have simple expansions
- Problem: express being triangle-intersecting in a useful way

- コン・1日・1日・1日・1日・1日・

Background

Fourier Analysis

Friedgut's Method

Constructing A

Friedgut's Method

Developed by Friedgut following Hoffman (1969)

- \mathcal{F} is disjoint from co-bipartite "shifts" $\mathcal{F} \triangle \overline{H}$
- Shifts are linear, ev's are Fourier characters

ション 小田 マイビット ビー シックション

- Combine shifts to a linear operator A with nice eigenvalues
- Apply Hoffman's bound

Lemma

\mathcal{F} triangle-intersecting, H bipartite \Longrightarrow

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

 \mathcal{F} disjoint from $\mathcal{F} \triangle \overline{H}$.

Lemma

\mathcal{F} triangle-intersecting, H bipartite \implies

 \mathcal{F} disjoint from $\mathcal{F} \triangle H$.

Proof.

$$G \cap (G \land \overline{H}) \subset \overline{G \land (G \land \overline{H})} = H.$$

П

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma For some linear operator S_H ,

$$\mathcal{G} = \mathcal{F} \triangle \overline{H} \Rightarrow g = S_H f.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Also, $S_{H\chi_K} = (-1)^{|K \cap \overline{H}|} \chi_K$.

Lemma For some linear operator S_H ,

$$\mathcal{G} = \mathcal{F} \triangle \overline{H} \Rightarrow g = S_H f.$$

Also, $S_{H\chi_K} = (-1)^{|K \cap \overline{H}|} \chi_K$. Proof.

$$(\mathcal{S}_{\mathcal{H}\mathcal{X}\mathcal{K}})(x) = \chi_{\mathcal{K}}(x \triangle \overline{\mathcal{H}}) = \chi_{\mathcal{K}}(x)\chi_{\mathcal{K}}(\overline{\mathcal{H}}).$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Lemma For some linear operator S_H ,

$$\mathcal{G} = \mathcal{F} \triangle \overline{H} \Rightarrow g = S_H f.$$

Also, $S_{H\chi_K} = (-1)^{|K \cap H|}\chi_K$. Proof.

$$(\mathcal{S}_{\mathcal{H}\mathcal{X}\,\mathcal{K}})(x)=\chi_{\mathcal{K}}(x riangle \overline{\mathcal{H}})=\chi_{\mathcal{K}}(x)\chi_{\mathcal{K}}(\overline{\mathcal{H}}).$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

If *H* bipartite & *f* triangle-intersecting, $\langle f, S_H f \rangle = 0$.

Ellis function $q_i(G)$ is probability that a random bipartition cuts *exactly i* edges of *G*.

Lemma

∃ linear combination of co-bipartite shifts Q_i s.t. $Q_i\chi_G = (-1)^{|G|}q_i(G)\chi_G$.

Ellis function $q_i(G)$ is probability that a random bipartition cuts *exactly i* edges of *G*.

Lemma

∃ linear combination of co-bipartite shifts Q_i s.t. $Q_i\chi_G = (-1)^{|G|}q_i(G)\chi_G$.

Proof.

For each bipartition B, construct $Q_{i,B}$.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• Q_i is convex combination of $Q_{i,B}$.

Ellis function $q_i(G)$ is probability that a random bipartition cuts *exactly i* edges of *G*.

Lemma

∃ linear combination of co-bipartite shifts Q_i s.t. $Q_i\chi_G = (-1)^{|G|}q_i(G)\chi_G$.

Proof.

For each bipartition B, construct $Q_{i,B}$.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

► *Q_i* is convex combination of *Q_{i,B}*.

A is some linear combination of Q_i .

Lemma (Hoffman's Bound) Suppose $A\chi_S = \lambda_S\chi_S$, $\lambda_{\varnothing} = 1$, $\lambda_S \ge \frac{-\mu}{1-\mu}$. If $\langle f, Af \rangle = 0$ then $\mathbb{E}_x f(x) \le \mu$.

Lemma (Hoffman's Bound) Suppose $A_{\chi S} = \lambda_{S\chi S}, \lambda_{\emptyset} = 1, \lambda_{S} \ge \frac{-\mu}{1-\mu}$. If $\langle f, Af \rangle = 0$ then $\mathbb{E}_{x}f(x) \le \mu$.

Proof.

$$0 = \langle f, Af \rangle = \sum_{S} \lambda_{S} \hat{f}(S)^{2}.$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Algebra.

Putting It Together

Theorem

If \mathcal{F} is triangle-intersecting then $|\mathcal{F}| \leq 1/8$.

Proof.

Let *f* be characteristic function of \mathcal{F} . Construct linear combination of shifts *A* satisfying $\lambda_{\emptyset} = 1$ and for all *G*, $\lambda_G \ge -\frac{1}{7}$. We have $\langle f, Af \rangle = 0$.

Hoffman's bound implies $\mathbb{E}_x f(x) \le 1/8$.

Background

Fourier Analysis

Friedgut's Method

Constructing A

Some Experimentation

	q_0	q 1	q 2	q_3	q_4
Ø	1				
_	$\frac{1}{2}$	<u>1</u> 2			
Λ	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$	1 2 1 4	1 2 3 4		
Δ	$\frac{1}{4}$	0	<u>3</u> 4		
$\wedge \wedge$	<u>1</u> 16	$\frac{4}{16}$	<u>6</u> 16	<u>4</u> 16	<u>1</u> 16
	1 8	0	$\frac{1}{4}$	<u>1</u> 2	<u>1</u> 8

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Implications

- Looking for $A = \sum_{i=0}^{4} c_i Q_i$, $c_0 = 1$
- Need $(-1)^{|G|} \sum_{i=0}^{4} c_i q_i(G) \ge -\frac{1}{7}$
- Constraints must be tight for $-, \land, \triangle$
- Table determines $c_1, c_2, 4c_3 + c_4$:

$$A = Q_0 - \frac{5}{7}Q_1 - \frac{1}{7}Q_2 + \frac{3}{28}Q_3.$$

Implications

- Looking for $A = \sum_{i=0}^{4} c_i Q_i$, $c_0 = 1$
- Need $(-1)^{|G|} \sum_{i=0}^{4} c_i q_i(G) \ge -\frac{1}{7}$
- Constraints must be tight for $-, \land, \vartriangle$
- Table determines $c_1, c_2, 4c_3 + c_4$:

$$A = Q_0 - rac{5}{7}Q_1 - rac{1}{7}Q_2 + rac{3}{28}Q_3.$$

► Have to show that for all G, $\lambda_G \ge -\frac{1}{7}$, i.e. $(-1)^{|G|}(q_0(G) - \frac{5}{7}q_1(G) - \frac{1}{7}q_2 + \frac{3}{28}q_3(G)) \ge -\frac{1}{7}$.

Cut Statistics

Let $\mathfrak{Q}_G(t) = \sum_{i=0}^{\infty} q_i(G)t^i$. Block: bridge or biconnected component. Lemma

If G decomposes into blocks G_1,\ldots,G_ℓ then

$$\mathfrak{Q}_{\mathsf{G}} = \prod_{j=1}^{\ell} \mathfrak{Q}_{\mathsf{G}_{\ell}}.$$

Some Graph Theory

Lemma

- $q_0(G) = 2^{cc(G)-v(G)}$.
- $q_1(G) = br(G)q_0(G)$.
- $q_k(G) \le 1/2$ if G has odd-degree vertex.

- $q_k(G) \leq 1/2$ for odd k.
- $q_2(G) \le 3/4$.

Proof that A works

Theorem $A_{\chi_G} = \lambda_G \chi_G$ where $\lambda_G \ge -\frac{1}{7}$. Proof.

- Two cases, |G| odd and |G| even.
- Enumerate over number of bridges *m*.

- If m or |G| is big, result holds.
- Check all small graphs.

Summary of Results

- \mathcal{F} triangle-intersecting family, relative size $|\mathcal{F}|$.
 - Upper bound: $|\mathcal{F}| \leq 1/8$.
 - Uniqueness: $|\mathcal{F}| = 1/8 \Rightarrow$ sunflower.
 - Stability: $|\mathcal{F}| \approx 1/8 \Rightarrow \approx$ sunflower.
 - Generalizations ($p \le 1/2$, Schur triplets).

ション 小田 マイビット ビー シックション

Also works for odd-cycle-intersecting families!

Open Questions

- What about cycle-intersecting?
- What happens for other graphs?
 Sunflower not best for path of length 3! (Christofides)

- What happens when p > 1/2?
- Lots of other EKR-like questions!