
Monotone Submodular Maximization over a Matroid

Yuval Filmus∗

October 23, 2014

1 Introduction: Maximum Coverage

One of the classical NP-hard problems is Maximum Coverage, the problem dual to Set Cover. In this problem
we are given the following pieces of data:

• A universe U and an associated non-negative weight function w : U → R≥0.

• A collection F of subsets of U .

• A number r.

• Goal: choose r sets from F which together cover elements of U with maximal total weight (as measured
according to w).

We extend the definition of w to subsets of U linearly, and to subsets of F by defining w(S) = w(
⋃
S)

for S ⊆ F .
Already from Karp’s time it had been known that this problem is NP-hard, for the same reason that Set

Cover is. The classical greedy algorithm provides a 1− 1/e approximation for Maximum Coverage:

• Let S0 ← ∅.

• For i = 1, . . . , r, let Si ← Si−1 + xi, where xi maximizes w(Si).

• Return S = Sr.

It is a classical result that w(S) ≥ (1 − 1/e)w(O) for any collection O of r subsets from F , and so this
algorithm is a 1 − 1/e approximation. Feige showed in 1998 that this is best-possible: for any ε > 0, if
Maximum Coverage can be approximated within 1− 1/e+ ε in polynomial time then P = NP .

1.1 Monotone Submodular functions

The goal of Maximum Coverage is to choose a subset S of F of size r maximizing w(S). When analyzing
the greedy algorithm, we use the fact that w is a coverage function, that is it measures the total weight of
elements covered by the sets in its input. However, it turns out that a different analysis works given only
the following properties, all satisfied by coverage functions:

• Normalization: w(∅) = 0. (In fact, it is enough to assume w(∅) ≥ 0.)

• Monotonicity: if A ⊆ B ⊆ F then w(A) ≤ w(B).

• Submodularity: if A ⊆ B ⊆ F and x ∈ F then w(A+ x)− w(A) ≥ w(B + x)− w(B).

∗Joint work with Justin Ward.

1

We can think of submodularity as saying that the second discrete derivative is non-positive. Coverage
functions satisfy similar conditions for discrete derivatives of any order, but the properties of the first two
derivatives suffice to analyze the greedy algorithm. In other words, the greedy algorithm is provides a 1−1/e
approximation to the following problem, Max Monotone Submodular:

• An abstract universe F .

• An oracle to a normalized, monotone submodular set function f on F .

• A number r.

• Goal: choose a subset S of F of size r maximizing f(S).

Nemhauser, Fisher and Wolsey showed that any algorithm providing a 1 − 1/e + ε approximation for
Max Monotone Submodular must query the oracle exponentially (in r) many times; this is known as a value
oracle lower bound.

2 The Plot Thickens: Max SAT

Another well-known NP-hard optimization is Max SAT, which is one possible optimization version of SAT:

• A set U of clauses with associated non-negative weights w : U → R≥0.

• Goal: find a truth assignment maximizing the weight of satisfied clauses.

We can think of Max SAT as a constrained version of Maximum Coverage. The idea is as follows. For
each literal x±i , let C±i be the set of clauses satisfied by the assignment x, and let F be the collection of
all Cx. If there are r variables x1, . . . , xr, then each assignment corresponds to a subset of F of size r in
which out of C+

i , C
−
i exactly one set is chosen. The goal is to find such a subset S maximizing w(S). More

generally, consider the following problem, Partition Maximum Coverage:

• A universe U and an associated non-negative weight function w : U → R≥0.

• An integer r and subsets F1, . . . ,Fr of U .

• Goal: choose one set out of each Fi maximizing the total weight of elements covered.

How well does the greedy algorithm work in this setting? Consider the following instance:

x1 ∨ x̄2︸ ︷︷ ︸
1

∨ x̄1︸︷︷︸
1

∨ x1︸︷︷︸
ε

∨ x2︸︷︷︸
ε

.

The greedy algorithm starts by setting x1 = >, satisfying clauses of total weight 1 + ε. It then sets x2 = >,
resulting in a solution of value 1 + 2ε. However, the optimal assignment x1 = x2 = ⊥ has value 2. So the
approximation ratio of the greedy algorithm is at most 1/2. It turns out that the approximation ratio is also
always at least 1/2.

Another approach which doesn’t work is local search:

• Start with some feasible solution S, say the greedy solution.

• Repeat: Find some A ⊆ S and B ∩ S = ∅ of size |A| = |B| ≤ k such that w(S \ A ∪ B) > w(S), and
put S → S \A ∪B.

• Eventually no such improvement (A,B) exists. Return S.

Here k is a parameter of the algorithm. If |F| = n, then the running time of each step is O(nk), so
for this to be polynomial time, k needs to be constant. Considering our former example, for k = 1 the
assignment x1 = x2 = > is locally optimal, that is no exchange (A,B) with |A| = |B| ≤ 1 improves the
weight of satisfied clauses. More generally, it can be shown that the approximation ratio of this algorithm is
(r − 1)/(2r − k − 1) = 1/2 +O(k/r), so for constant k this does not result in a constant improvement.

2

2.1 Continuous Greedy algorithm

Vondrák et al. came up with an algorithm which gives the optimal approximation ratio 1− 1/e for Partition
Maximum Coverage. In fact, their algorithm works in a more general setting. First of all, again we can
replace the coverage function w with an arbitrary normalized monotone submodular function f given by an
oracle. Second, the partition constraint can be replaced by a more general type of constraint known as a
matroid constraint. A matroid m on a set F is a non-empty collection of subsets of F satisfying the following
two properties:

• Hereditarity: If B ∈ m and A ⊆ B then A ∈ m.

• Exchange property: if A,B ∈ m and |A| < |B| then A+ x ∈ m for some x ∈ B \A.

The sets in m are known as independent sets, and maximal independent sets are known as bases. All
bases in a matroid have the same size called the rank. For example, in a partition matroid corresponding
to the partition F = F1 ∪ · · · ∪ Fr a set is independent if it contains at most one set out of each Fi, and a
base contains exactly one set out of each Fi; the rank is r. The general problem solved by Vondrák et al. is
Matroid Max Monotone Submodular:

• An abstract universe F .

• An oracle to a normalized, monotone submodular set function f on F .

• An oracle to a matroid m on F .

• Goal: choose an independent set S ∈ m maximizing f(S). (Due to monotonicity, we can assume that
S is in fact a base.)

One general idea behind the continuous greedy algorithm is to consider a continuous relaxation of the
original problem. Starting with the function f on F , we define its multilinear relaxation F on [0, 1]F as
follows: F (X) = f(x), where x is sampled by putting α ∈ F inside with probability Xα. Written explicitly,
the function F is multilinear in its inputs. The properties of monotonicity and submodularity translate
to F being monotone and concave (having non-positive second derivatives). Next, consider the matroid
polytope P ⊆ [0, 1]F , which is the convex hull of the characteristic vectors of all independent sets in m. In
the special case of a partition matroid, P is given by the constraints

∑
α∈Fi

Xα ≤ 1 for all i, in addition to
non-negativity Xα ≥ 0. The continuous greedy algorithm is composed of two steps:

• Continuous greedy (proper): find X ∈ P satisfying F (X) ≥ (1 − 1/e)F (O), where O is the optimal
solution vector (in P).

• Rounding: find a subset x ∈ m such that f(x) ≥ F (X).

In the case of a partition matroid, the rounding step is very easy: if we choose x according to X (like in
the definition of F), then E f(x) ≥ EF (X). The general case is more complicated, and requires the use of
either pipage rounding or the more efficient swap rounding, which we don’t describe. As for the first stage,
it is a discretized version of the following algorithm running in continuous time:

• Start with X(0) = 0 ∈ P .

• At time t ∈ [0, 1], let X(t)′ = 1B for the base B maximizing F (X(t))′.

• Return X(1).

3

The optimization in the second step can be done since F (X(t))′ is linear in X(t)′, and linear functionals
can be maximized exactly using the greedy algorithm. The idea behind the analysis of the algorithm is
showing that F (X(t))′ ≥ f(O) − F (X(t)), by considering the choice O for B. This shows that F (X(t))
dominates the solution to the differential equation y′ ≥ f(O)− y with initial value y(0) = 0, whose solution
is y(t) = (1− et)f(O). Putting t = 1, we obtain y(1) = (1− 1/e)f(O).

In practice, the continuous-time algorithm is discretized in order to obtain a polynomial-time algorithm.
One problem, however, is that the function F cannot be evaluated exactly in polynomial time, unless f
has some known structure (for example, f is a coverage function). Instead, F has to be approximated by
sampling. As a result, the algorithm is randomized.

A recent fast variant of the continuous greedy algorithm, due to Vondrák and Ashwinkumar Badanidiyuru
runs in time essentially O(n2 log2 n).

There are a few reasons to be unhappy with the continuous greedy algorithm:

1. The original implementation of the algorithm was complicated, especially the rounding procedure for
general matroids (pipage rounding).

2. The original implementation of the algorithm was slow.

3. The algorithm is not combinatorial: its intermediate objects are fractional.

4. The algorithm is randomized (randomization is needed to estimate F).

As we mentioned, Vondrák and Ashwinkumar fixed the first two problems. Regarding the second problem,
Filmus and Feldman have independently come up with a combinatorial version which applies swap rounding
at each step to reduce the fractional solution to a multiple of a single basis. Even the remaining goal,
derandomizing the algorithm, has not been achieved, but the resulting algorithm is still interesting.

3 Our algorithm: Maximum Coverage

The greedy algorithm for Maximum Coverage is simple and combinatorial. In contrast, the continuous
greedy algorithm uses a continuous relaxation, and as a result it is randomized rather than deterministic.
Is there a different, combinatorial algorithm that solves the problem instead? This is the motivation behind
our algorithm. Our main idea is to use the paradigm of non-oblivious local search, due to Alimonti and to
Khanna, Motwani, Sudan and U. Vazirani. In this paradigm, we use a local search algorithm, pretending to
optimize some auxiliary objective function g instead of the actual function f :

• Start with some feasible solution S, say the greedy solution.

• Repeat: Find some a ∈ S and b /∈ S such that g(S −A+B) > g(S), and put S → S −A+B.

• Eventually no such improvement (A,B) exists. Return S.

The hope is that for a proper choice of g, the resulting solution is a good approximate solution in terms
of f .

Consider again our bad example:

x1 ∨ x̄2︸ ︷︷ ︸
1

∨ x̄1︸︷︷︸
1

∨ x1︸︷︷︸
ε

∨ x2︸︷︷︸
ε

.

The greedy solution is x1 = x2 = >. If we set x1 = ⊥ then we lose the third clause, while if we set
x2 = ⊥ then we lose the fourth clause; however, in that case we do gain something else: the first clause is
now doubly satisfied. This is advantageous in terms of local search, since whatever happens in the following
step, this clause will remain satisfied. This suggests giving more weight to clauses satisfied more than once.
More generally, we consider the auxiliary objective function

4

g(S) =
∑
x∈

⋃
S

w(x)αN(x,S),

where N(x, S) is the number of times that x appears in sets in S, i.e. the number of times x is covered.
How do we choose the weights αi, and what is the resulting approximation ratio? Suppose that the algorithm
produces the output S = {S1, . . . , Sn}, where Si belongs to the ith partition, and let O = {O1, . . . , On} be
an optimal solution. The approximation ratio is given by the following linear program:

min f(S)

s.t.f(O) = 1

f(S) ≥ f(S − Si +Oi) for i = 1, . . . , r

The variables in this program are the weights of all areas in the Venn diagram of the underlying set cover
instance. In fact, a symmetrization argument shows that the following linear program has the same solution:

min f(S)

s.t.f(O) = 1
r∑
i=1

[f(S)− f(S − Si +Oi)] ≥ 0

This allows us to reduce the number of variables: now it is enough to know, for each `, c, g, the total weight
in areas belonging to exactly sets of the following form: S1, . . . , S`, O`+1, . . . , O`+g, S`+g+1, O`+g+1, . . . , S`+g+c, O`+g+c.

In order to find the optimal weights α1, . . . , αr, we need to maximize over α1, . . . , αr. Dualizing the inner
linear program and setting arbitrarily the value of one of the dual variables (which corresponds to a scaling
of the αi sequence), we obtain the following linear program:

max θ

s.t.1g+c≥1θ + ((`+ g)α`+c − `α`+c−1 − gα`+c+1) ≤ 1`+c≥1 for 1 ≤ `+ c+ g ≤ r

Here α0 = 0. For each reasonably small value of r, we can solve this program on a computer, and find the
optimal θ and α1, . . . , αr. When doing that, we were astonished to find out that θ → 1− 1/e! It is natural
to consider the corresponding infinite linear program, in which the constraints for all `, c, g are present. By
considering the tight constraints for each r, it is not difficult to come up with the solution for the infinite
linear program: θ = 1− 1/e and

α0 = 0, α1 = 1− 1

e
, , αi+1 = (i+ 1)αi − iαi−1 −

1

e
.

Asymptotically, αi ≈ (1/e) log i. Moreover, the sequence αi is increasing, and its difference sequence is
decreasing. These two facts allow us to show that the sequence is feasible for the infinite linear program. It-
erated difference sequences are alternatingly increasing and decreasing, mirroring the properties of successive
derivatives of the logarithm function.

3.1 More details

Let w(`, c, g) be the total weight in areas belonging to exactly ` sets Si, g sets Oi, and c sets Si, Oi (all
indices being disjoint). In terms of these variables, we can write the linear program for the approximation
ratio as

5

min
∑
`+c≥1

w(`, c, g)

s.t.
∑
g+c≥1

w(`, c, g) ≥ 1

∑
`,c,g

w(`, c, g)[`(α`+c − α`+c−1) + g(α`+c − α`+c+1)] ≥ 0

For brevity, we define β` = α`+1 − α`. Calculting the dual, we associate a variable θ ≥ 0 with the first
equation, and a variable ζ ≥ 0 with the second, obtaining

max θ

s.t.ζ(`β`+c−1 − gβ`+c) + θ[g + c ≥ 1] ≤ [`+ c ≥ 1] for all `, c, g ≥ 0

We can choose ζ = 1 arbitrarily, since this just amounts to some particular scaling of the weights.
Combining this with the outer maximization, we obtain a linear program for the αi (in the guise of the βi;
we choose α0 = 0 arbitrarily):

max θ

s.t.`β`+c−1 − gβ`+c + θ[g + c ≥ 1] ≤ [`+ c ≥ 1] for all `, c, g ≥ 0

For any particular rank r, it is enough to consider ` + c + g ≤ r, but we will solve the infinite linear
program. The solution is θ = 1 − 1/e. The tight constraints are those corresponding to (`, 0, 1), which are
β0 = 1− 1/e for ` = 0 and β` = `β`−1 − 1/e for ` > 0. Easy induction gives a closed-form expression for β`:

β` = e−1
∑
t≥1

`!

(`+ t)!
.

This shows in particular that 0 < β` < e−1/`, since
∑
t≥1 1/(` + 1)t = 1/`. Also, it shows that β` is

decreasing and so β` ≤ 1− 1/e.
It remains to show that the program is feasible. Since β` > 0, it is enough to consider the cases g = 0

and g = 1. When g = c = 0 (and so ` > 0) we have `β`−1 = β` + e−1 < 1. When c ≥ 1 we have
`β`+c−1 + 1− e−1 < e−1`/`+ 1− e−1 = 1. When g = 1 it is enough to consider c ≥ 1 (since otherwise the
constraint is tight). Since β`+c = (`+ c)β`+c−1 − e−1, we get `β`+c−1 − β`+c + θ = −cβ`+c−1 + 1 < 1.

3.2 Polynomial-time algorithm?

The algorithm as stated is not quite polynomial time, since it might take many swaps to reach a local
optimum. In fact, there is an explicit example involving a counter in which there is a sequence of exponentially
many local improvements leading to a local optimum, for oblivious local search. (It might be, however, that
if you start with the greedy solution and always choose the best improvement, then the algorithm always
converges quickly.) In order to solve this potential problem, we modify our algorithm to perform an exchange
only if it results in a relative (1 + ε)-improvement, for some appropriately chosen, polynomially small ε. The
algorithm thus terminates at an approximate local maximum, and we have to generalize slightly the former
analysis. The end result is that the algorithm is a 1 − 1/e − O(ε/n log n) approximation. By choosing ε
small enough, we can obtain a 1 − 1/e − O(1/n) approximation, which can be boosted to a clean 1 − 1/e
approximation by “guessing” a constant number of sets from the optimal solution.

6

3.3 General matroids

So far we have described and analyzed the algorithm only for partition matroids. However, it turns out
that partition matroids are the general case as far as our algorithm is concerned. Indeed, a simple result of
Brualdi shows that given any two bases S,O of a matroid, it is always possible to find a bijection π : S → O
such that for all x ∈ S, S − x + π(x) is a base. This is exactly the condition we needed in the analysis of
our algorithm.

4 Our algorithm: general case

We can repeat the same analysis we did in the special case for this general case. Instead, consider some
monotone submodular function f given as a value oracle, but secretly being a coverage function. Using
inclusion-exclusion, we can calculate w(A1 ∩ · · ·Ak ∩ B1 ∩ · · · ∩ Bl) given the value of f on subsets of
{A1, . . . , Ak, B1, . . . , Bl}, and through that, we get an expression for g(S) which mirrors the previous one:

g(S) =
∑
T⊆S

r∑
i=r−|T |

(−1)r+i+|T |+1 |T |!
(r − i)!(i+ |T | − r)!

αif(T).

If we choose the same αi sequence as before divided by 1 − 1/e, then amazingly enough we get the
following alternative expression for g:

g(S) =
∑
∅6=T⊆S

∫ 1

0

p|T |−1(1− p)|S|−|T | ep

e− 1
dpf(T).

The expression becomes nicer if we consider instead the marginals fA(x) = f(A+x)−f(A) and gA(x) =
g(A+ x)− g(A), and further assume that f(∅) = 0:

gS(x) =
∑
T⊆S

∫ 1

0

(
p|T |−1[(1− p)|S|+1−|T | − (1− p)|S|−|T |]f(T) + p|T |(1− p)|S|−|T |f(T + x)

) ep

e− 1
dp

=
∑
T⊆S

∫ 1

0

p|T |(1− p)|S|−|T | ep

e− 1
dpfT (x).

In other words, if we let p ∼ P , where P is the distribution supported on [0, 1] with density ep/(e − 1),
and let T ⊆ S be chosen by putting in each element with probability p (a distribution we denote by Bp(S)),
then gS(x) = E fT (x). The corresponding distribution of T we denote by µS . We come back later to this
particular form of g.

As in the case of the greedy algorithm, although now we have obtained the “same” algorithm, its proof
of correctness in the general case is different from the proof of correctness in the case of Maximum Coverage.
We start by establishing some simple properties of the function g. Since f is monotone, gS(x) = E fT (x) ≥ 0,
showing that g is also monotone. Submodularity of f shows that if S1 ⊆ S2 then

gS2(x) = E
p∼P

E
T∼Bp(S1)

E
U∼Bp(S2\S1)

fT∪U (x) ≤ E
p∼P

E
T∼Bp(S1)

fT (x) = gS1
(x),

showing that g is also submodular. In the same way, one can show that higher-order properties of f carry
over to g. The analysis of the algorithm then rests on the following fundamental inequality:

e

e− 1
f(S) ≥ f(O) +

r∑
i=1

[g(S)− g(S − Si +Oi)]. (1)

7

The idea of the proof is to consider the quantity X =
∑r
i=1 gS−Si(Si). We start by showing that

r∑
i=1

gS−Si
(Si) ≥

r∑
i=1

[g(S)− g(S − Si +Oi)] + E
T∼µS

r∑
i=1

fT−Oi
(Oi)

≥
r∑
i=1

[g(S)− g(S − Si +Oi)] + f(O)− E
T∼µS

f(T).

On the other hand,
r∑
i=1

gS−Si(Si) =
e

e− 1
f(S)− E

T∼µS

f(T).

Putting these things together completes the proof.
The proofs of the first two inequalities use the monotonicity and submodularity of g. The proof of the

formula for X, in turn, requires properties of the distributions µ. Specifically, the coefficient of f(T) in X is
exactly |T |µr−1(|T |−1)− (r−|T |)µr−1(|T |), where we replaced µA(B) with µ|A|(|B|) since the probabilities
indeed depend only on these cardinalities. This expression satisfies the following formula:

µa(b) = (a− b)µa−1(b)− bµa−1(b− 1) +

−1/(e− 1) if b = 0,

0 if 0 < b < a,

e/(e− 1) if b = a.

(2)

Where does the form of g come from? When proving that g is monotone, we made use of the fact that
gS(x) =

∑
T⊆S µS(T)fT (x) for some µS(T) ≥ 0. When proving that g is submodular, we used the fact

that µS1
(T) =

∑
U⊆S2\S1

µS2
(T ∪ U). In particular, this implies that

∑
T⊆S µS(T) is constant. Choosing

this arbitrary constant to be 1, we obtain a probability distribution µS . When S1 ⊆ S2 then we have
µS2 ∩ S1 = µS1 , and so the distribution of µS1 can be obtained from that of µS2 . In this way we can define
a probability distribution µU on some countable set U . This probability distribution is exchangeable, and
so de Finetti’s theorem shows that µU is obtained by choosing p ∼ P (for some distribution P on [0, 1]) and
then T ∼ Bp(U), which explains the form of g. The distribution P is determined by formula (2).

As in the case of the continuous greedy algorithm, the function g cannot be evaluated exactly and has
to be sampled. For this reason, our algorithm is randomized.

4.1 More details on the proof

For the proof we will need the following two easy results. The first result concerns the definition of submod-
ularity, which can be stated as fA(x) ≥ fB(x) whenever A ⊆ B. We claim that we can replace x by a set
X. Indeed, if X = {x1, . . . , x`} then

fA(X) =
∑̀
i=1

fA∪{x1,...,xi−1}(xi) ≥
∑̀
i=1

fB∪{x1,...,xi−1}(xi) = fB(X).

The second result states that the marginal value is sublinear: fA(X) + fA(Y) ≥ fA(X ∪ Y). Indeed,

fA(X) + fA(Y) ≥ fA∪Y (X) + fA(Y) = fA(X ∪ Y).

Here are some more details regarding the proofs of (1) and (2). We start with the proof of (1). The
proof is divided into three parts:

1. For all i: gS−Si
(Si) ≥ g(S)− g(S − Si +Oi) + ET∼µS

fT−Oi
(Oi).

2. For all T ⊆ S:
∑r
i=1 fT−Oi(Oi) ≥ f(O)− f(T).

3.
∑r
i=1 gS−Si

(Si) = e/(e− 1)f(S)− 1/(e− 1)f(∅)− ET∼µS
f(T).

8

Combining all three parts, we get:

e

e− 1
f(S)− 1

e− 1
f(∅)− E

T∼µS

f(T)

(3)
=

r∑
i=1

gS−Si
(Si)

(1)

≥
r∑
i=1

[g(S)− g(S − Si +Oi)] + E
T∼µS

r∑
i=1

fT−Oi(Oi)

(2)

≥
r∑
i=1

[g(S)− g(S − Si +Oi)] + f(O)− E
T∼µS

f(T).

We deduce (1) by cancelling ET∼µS
f(T) and using f(∅) ≥ 0.

For the proof of Lemma 1, we consider two cases: Si /∈ O and Si ∈ O (in which case Si = Oi). In the
first case, we have

gS−Si(Si) ≥ gS−Si+Oi(Si)

= g(S +Oi)− g(S − Si +Oi)

= gS(Oi) + g(S)− g(S − Si +Oi)

= g(S)− g(S − Si +Oi) + E
T∼µS

fT (Oi).

In the second case, we actually have equality:

gS−Si
(Si) = E

T∼µS−Si

fT (Si)

= E
T∼µS

fT−Si(Si)

= g(S)− g(S − Si +Oi) + E
T∼µS

fT−Si(Si).

Lemma 2 relies only on the submodularity of f :

r∑
i=1

fT−Oi(Oi) ≥
∑
Oi /∈T

fT (Oi) ≥ fT (O \ T) = f(O ∪ T)− f(T) ≥ f(O)− f(T).

Lemma 3 essentially follows from (2). Indeed,

r∑
i=1

gS−Si
(Si) =

r∑
i=1

∑
T⊆S−Si

µS−Si
(T)[f(T + Si)− f(T)].

The coefficient of f(T) in this sum is∑
Si∈T

µS−Si(T − Si)−
∑
Si /∈T

µS−Si(T) = |T |µr−1(|T | − 1)− (r − |T |)µr−1(|T |).

According to (2), this is equal to

[|T | = r]e− [|T | = 0]1

e− 1
− µr(|T |),

which gives the lemma.

9

We now turn to the proof of (2). The proof is a simple application of integration by parts:

µa(b) =

∫ 1

0

pb(1− p)a−b ep

e− 1
dp

= pb(1− p)a−b ep

e− 1

∣∣∣∣1
0

−
∫ 1

0

(bpb−1(1− p)a−b − (a− b)pb(1− p)a−b−1)
ep

e− 1
dp

=
[b = a]e− [b = 0]1

e− 1
− bµa−1(b− 1) + (a− b)µa−1(b).

4.2 Relation to Maximum Coverage

We claimed that this algorithm reduces to the one for maximum coverage when f is a coverage function. To
show this, notice first that if f is a coverage function then g(S) =

∑
x∈

⋃
S w(x)αN(x,S) for some coefficients

α`. In fact, to find these coefficients it will be simpler to consider an element x of unit weight and

gS({x}) = αN(x,S)+1 − αN(x,S) = βN(x,S).

When S = ∅ we get β0 = g∅({x}) = f∅({x}) = 1. Now consider a set S containing ` copies of {x}. Then
β` = gS({x}) = ET∼µS

fT ({x}) = PrT∼µS
[T = ∅] = µ`−1(0). Formula (2) then shows that β`+1 = µ`(0) =

`µ`−1(0)− 1/(e− 1). To recover our original definition, multiply everything by 1− 1/e = (e− 1)/e.

5 Deterministic vs. randomized

Both the continuous algorithm and our algorithm are randomized. In constrast, the best deterministic algo-
rithms known, greedy and local search, both have an approximation ratio of 1/2. A similar situation arises in
the case of unconstrained submodular maximization (for functions which are not necessarily monotone): the
double greedy algorithm of Buchbinder, Feldman, Naor and Schwartz has a randomized variant giving the
optimal 1/2 approximation ratio, and a deterministic variant giving an approximation ratio of 1/3, matching
the approximation ratio of the deterministic local search algorithm of Feige, Mirrokni and Vondrák. Can it
be the case that randomized algorithms outperform deterministic algorithms in the value oracle setting?

10

