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Executive summary

New perspective on two old results:
I BPR: Lower bounds for cutting planes proofs

with small coefficients (Bonet, Pitassi, Raz,
1997).

I K: Interpolation theorems, lower bounds for
proof systems, and independence results for
bounded arithmetic (Krajı́ček, 1997).

Hope is to extend results to arbitrary coefficients.
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I The difficult proposition (BPR version).
I Proof of the lower bound.
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Semantic Cutting Planes

Refutation system with lines of the form∑
i

aixi ≥ b

Variables xi are implicitly assumed to be Boolean.
Derivation rule: `1, `2 ` ` if every 0/1 assignment
satisfying `1, `2 also satisfies `.



Communication protocols

Two players cooperating to calculate f(x, y).
Player 1 knows x.
Player 2 knows y.

Example: f(x, y) is 〈a, x〉+ 〈b , y〉 ≥ c.
Protocol P≥:

I Player 1 sends s1 , 〈a, x〉.
I Player 2 sends s2 , 〈b , y〉.
I Now both can compute 〈a, x〉+ 〈b , y〉.

Transcript (communicated bits): s1s2.



Communication protocols

Protocol dag is defined by:
I Set of states S (partial transcripts).
I Starting state s0 ∈ S.
I Set of final states F ⊂ S.
I At non-final state s, player P(s) sends a bit b.
I Protocol transitions to state t(s, b).
I At final state s, protocol output is ϕ(s).



Communication protocols

Protocol also includes:
I Strategy σ1(s, x) for Player 1.
I Strategy σ2(s, y) for Player 2.

Correctness:

If Player 1 uses σ1 with her input x
and Player 2 uses σ2 with his input y

then ϕ(sfinal) = f(x, y).

Players don’t have to use σ1, σ2!
When they do: honest run for x, y.
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The difficult contradiction

Informally:

A graph on n vertices both has an m-clique and is
(m − 1)-colorable.

We take m = 3
√

n.



The difficult contradiction

Formally:
I xvi: vertex v is ith vertex of clique
I yvc : vertex v gets color c
I v ∈ [n], i ∈ [m], c ∈ [m − 1]

I ∀i :
∑

v xvi ≥ 1
I ∀v , i1 , i2 : xvi1 + xvi2 ≤ 1
I ∀v1 , v2, i : xv1i + xv2i ≤ 1
I ∀v :

∑
c yvc ≥ 1

I ∀v , c1 , c2 : yvc1 + yvc2 ≤ 1
I ∀v1 , v2, i1 , i2, c : xv1i1 + xv2i2 + yv1c + yv2c ≤ 3
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Plan of proof

Basic idea:

Transform a refutation to a monotone circuit
of comparable size.

Use a monotone circuit lower bound.

Monotone circuit takes an input graph G, given as
edge variables G(v1, v2).

I Returns 1 if G has an m-clique.
I Returns 0 if G is (m − 1)-colorable.

Lower bound (Alon/Boppana): 2Ω( 3√n).
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Plan of reduction

I Two players (clique player and coclique
player) play a game on the proof dag.

I Game starts at the final line, proceeds toward
the axioms.

I Game ends at an axiom

xv1i1 + xv2i2 + yv1c + yv2c ≤ 3.

I If G(v1, v2) = 1, clique player wins.
I If G(v1, v2) = 0, coclique player wins.



Rules of the game

Suppose game is at a line ` deduced from `1, `2.
I Players use protocol P≥ to determine which of
`1, `2 are falsified.

I Clique player is Player 1.
I Coclique player is Player 2.

I Record transcripts τ(`1), τ(`2).
I Local consistency: τ(`), τ(`1), τ(`2) must

correspond to some legal honest run jointly.
I Enforced by limiting what bits players can send.

I If `1 is falsified, proceed to `1, otherwise
proceed to `2.



Winning strategy for the clique player
If G has an m-clique:

I Fix an encoding x̃ of an m-clique.
I Clique player plays honestly using x̃:

at state s, she outputs σ1(s, x̃).
I Local consistency implies:

each visited line is falsfied by x̃ and some y.
I Game ends at an axiom

xv1i1 + xv2i2 + yv1c + yv2c ≤ 3

I Must have x̃v1i1 = x̃v2i2 = 1.
I Since x̃ encodes a clique, G(v1, v2) = 1.



From game to circuit
Convert the game to a monotone circuit:

I Construct the state dag of the game.
I Each time it is the clique player’s turn to

speak, put an ∨ gate.
I Each time it is the coclique player’s turn to

speak, put an ∧ gate.
I Replace a (v1, v2) leaf with G(v1, v2).

I Clique player has a winning strategy:
circuit outputs 1.

I Coclique player has a winning strategy:
circuit outputs 0.
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Size of circuit

Game states: 〈`, τ(`), τ(`1), τ(`2)〉

I Current node `
I Transcript τ(`) from previous step
I Partial transcripts τ(`1), τ(`2)

Size of circuit: L23C

I L : number of lines in proof
I C: communication complexity of P≥

(number of communicated bits)
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Wrapping up

Protocol P≥ involves sending 〈a, x〉, 〈b , y〉.

If coefficients ai, bi are of size 2C ,
communication complexity is roughly O(C).

So L = Ω
(
2

3√n−O(C)
)
.

Only interesting if C = o( 3
√

n).



Extensions

Can add random public coin tosses to the game:
I Convert game to a monotone real circuit.
I Replace ∨ gates by max gates.
I Replace ∧ gates by min gates.
I Coin tosses correspond to average gates.
I Output is probability that clique player wins.

Pudlák extended the lower bound to this case.



Open questions

Pudlák (1997) proved lower bound for syntactic
Cutting Planes with arbitrary coefficients, using
monotone real circuits.
Can BPR/K be extended to arbitrary coefficients?

I Use a randomized “greater than” protocol.
I Allow circuit to err on some inputs.

Is semantic Cutting Planes stronger than syntactic
Cutting Planes?
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