Lower Bounds for Cutting Planes Using Games

Yuval Filmus Toniann Pitassi University of Toronto

International Workshop on
Logic and Computational Complexity 2011

Executive summary

New perspective on two old results:

- BPR: Lower bounds for cutting planes proofs with small coefficients (Bonet, Pitassi, Raz, 1997).
- K: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic (Krajíček, 1997).
Hope is to extend results to arbitrary coefficients.

Plan of talk

- Semantic Cutting Planes.

Plan of talk

- Semantic Cutting Planes.
- Communication protocols.

Plan of talk

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).

Plan of talk

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).
- Proof of the lower bound.

Plan of talk

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).
- Proof of the lower bound.
- Extensions of the framework.

Semantic Cutting Planes

Refutation system with lines of the form

$$
\sum_{i} a_{i} x_{i} \geq b
$$

Variables x_{i} are implicitly assumed to be Boolean. Derivation rule: $\ell_{1}, \ell_{2} \vdash \ell$ if every $0 / 1$ assignment satisfying ℓ_{1}, ℓ_{2} also satisfies ℓ.

Communication protocols

Two players cooperating to calculate $f(x, y)$. Player 1 knows x.
Player 2 knows y.
Example: $f(x, y)$ is $\langle a, x\rangle+\langle b, y\rangle \geq c$.
Protocol P_{\geq}:

- Player 1 sends $s_{1} \triangleq\langle a, x\rangle$.
- Player 2 sends $s_{2} \triangleq\langle b, y\rangle$.
- Now both can compute $\langle a, x\rangle+\langle b, y\rangle$.

Transcript (communicated bits): $s_{1} s_{2}$.

Communication protocols

Protocol dag is defined by:

- Set of states S (partial transcripts).
- Starting state $s_{0} \in S$.
- Set of final states $F \subset S$.
- At non-final state s, player $P(s)$ sends a bit b.
- Protocol transitions to state $t(s, b)$.
- At final state s, protocol output is $\varphi(s)$.

Communication protocols

Protocol also includes:

- Strategy $\sigma_{1}(s, x)$ for Player 1.
- Strategy $\sigma_{2}(s, y)$ for Player 2.

Correctness:
If Player 1 uses σ_{1} with her input x and Player 2 uses σ_{2} with his input y
then $\varphi\left(s_{\text {final }}\right)=f(x, y)$.

Communication protocols

Protocol also includes:

- Strategy $\sigma_{1}(s, x)$ for Player 1.
- Strategy $\sigma_{2}(s, y)$ for Player 2.

Correctness:
If Player 1 uses σ_{1} with her input x and Player 2 uses σ_{2} with his input y then $\varphi\left(s_{\text {final }}\right)=f(x, y)$.

Players don't have to use σ_{1}, σ_{2} !
When they do: honest run for x, y.

The difficult contradiction

Informally:
A graph on n vertices both has an m-clique and is
($m-1$)-colorable.
We take $m=\sqrt[3]{n}$.

The difficult contradiction

Formally:

- $x_{v i}$: vertex v is ith vertex of clique
- $y_{v c}$: vertex v gets color c
- $v \in[n], i \in[m], c \in[m-1]$

The difficult contradiction

Formally:

- $x_{v i}$: vertex v is ith vertex of clique
- $y_{v c}$: vertex v gets color c
- $v \in[n], i \in[m], c \in[m-1]$
- $\forall i: \sum_{v} x_{v i} \geq 1$
- $\forall v, i_{1} \neq i_{2}: x_{v i_{1}}+x_{v i_{2}} \leq 1$
- $\forall v_{1} \neq v_{2}, i: x_{v_{1} i}+x_{v_{2} i} \leq 1$

The difficult contradiction

Formally:

- $x_{v i}$: vertex v is th vertex of clique
- $y_{v c}$: vertex v gets color c
- $v \in[n], i \in[m], c \in[m-1]$
- $\forall i: \sum_{v} x_{v i} \geq 1$
- $\forall v, i_{1} \neq i_{2}: x_{v i_{1}}+x_{v i_{2}} \leq 1$
- $\forall v_{1} \neq v_{2}, i: x_{v_{1} i}+x_{v_{2} i} \leq 1$
- $\forall v: \sum_{c} y_{v c} \geq 1$
- $\forall v, c_{1} \neq c_{2}: y_{v c_{1}}+y_{v c_{2}} \leq 1$

The difficult contradiction

Formally:

- $x_{v i}$: vertex v is th vertex of clique
- $y_{v c}$: vertex v gets color c
- $v \in[n], i \in[m], c \in[m-1]$
- $\forall i: \sum_{v} x_{v i} \geq 1$
- $\forall v, i_{1} \neq i_{2}: x_{v i_{1}}+x_{v i_{2}} \leq 1$
- $\forall v_{1} \neq v_{2}, i: x_{v_{1} i}+x_{v_{2} i} \leq 1$
- $\forall v: \sum_{c} y_{v c} \geq 1$
- $\forall v, c_{1} \neq c_{2}: y_{v c_{1}}+y_{v c_{2}} \leq 1$
- $\forall v_{1} \neq v_{2}, i_{1} \neq i_{2}, c: x_{v_{1} i_{1}}+x_{v_{2} i_{2}}+y_{v_{1} c}+y_{v_{2} c} \leq 3$

Plan of proof

Basic idea:

Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

Plan of proof

Basic idea:
Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

Monotone circuit takes an input graph G, given as edge variables $G\left(v_{1}, v_{2}\right)$.

- Returns 1 if G has an m-clique.
- Returns 0 if G is $(m-1)$-colorable.

Plan of proof

Basic idea:
Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

Monotone circuit takes an input graph G, given as edge variables $G\left(v_{1}, v_{2}\right)$.

- Returns 1 if G has an m-clique.
- Returns 0 if G is $(m-1)$-colorable.

Lower bound (Alon/Boppana): $2^{\Omega(\sqrt[3]{n})}$.

Plan of reduction

- Two players (clique player and coclique player) play a game on the proof dag.
- Game starts at the final line, proceeds toward the axioms.
- Game ends at an axiom

$$
x_{v_{1} i_{1}}+x_{v_{2} i_{2}}+y_{v_{1} c}+y_{v_{2} c} \leq 3 .
$$

- If $G\left(v_{1}, v_{2}\right)=1$, clique player wins.
- If $G\left(v_{1}, v_{2}\right)=0$, coclique player wins.

Rules of the game

Suppose game is at a line ℓ deduced from ℓ_{1}, ℓ_{2}.

- Players use protocol P_{\geq}to determine which of ℓ_{1}, ℓ_{2} are falsified.
- Clique player is Player 1.
- Coclique player is Player 2.
- Record transcripts $\tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)$.
- Local consistency: $\tau(\ell), \tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)$ must correspond to some legal honest run jointly.
- Enforced by limiting what bits players can send.
- If ℓ_{1} is falsified, proceed to ℓ_{1}, otherwise proceed to ℓ_{2}.

Winning strategy for the clique player

If G has an m-clique:

- Fix an encoding \tilde{x} of an m-clique.
- Clique player plays honestly using \tilde{x} : at state s, she outputs $\sigma_{1}(s, \tilde{x})$.
- Local consistency implies: each visited line is falsfied by \tilde{x} and some y.
- Game ends at an axiom

$$
x_{v_{1} i_{1}}+x_{v_{2} i_{2}}+y_{v_{1} c}+y_{v_{2} c} \leq 3
$$

- Must have $\tilde{x}_{v_{1} i_{1}}=\tilde{x}_{v_{2} i_{2}}=1$.
- Since \tilde{x} encodes a clique, $G\left(v_{1}, v_{2}\right)=1$.

From game to circuit

Convert the game to a monotone circuit:

- Construct the state dag of the game.
- Each time it is the clique player's turn to speak, put an \vee gate.
- Each time it is the coclique player's turn to speak, put an \wedge gate.
- Replace a $\left(v_{1}, v_{2}\right)$ leaf with $G\left(v_{1}, v_{2}\right)$.

From game to circuit

Convert the game to a monotone circuit:

- Construct the state dag of the game.
- Each time it is the clique player's turn to speak, put an \vee gate.
- Each time it is the coclique player's turn to speak, put an \wedge gate.
- Replace a $\left(v_{1}, v_{2}\right)$ leaf with $G\left(v_{1}, v_{2}\right)$.
- Clique player has a winning strategy: circuit outputs 1.
- Coclique player has a winning strategy: circuit outputs 0.

Size of circuit

Game states: $\left\langle\ell, \tau(\ell), \tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)\right\rangle$

- Current node ℓ
- Transcript $\tau(\ell)$ from previous step
- Partial transcripts $\tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)$

Size of circuit

Game states: $\left\langle\ell, \tau(\ell), \tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)\right\rangle$

- Current node ℓ
- Transcript $\tau(\ell)$ from previous step
- Partial transcripts $\tau\left(\ell_{1}\right), \tau\left(\ell_{2}\right)$

Size of circuit: $L 2^{3 C}$

- L: number of lines in proof
- C: communication complexity of P_{\geq} (number of communicated bits)

Wrapping up

Protocol P_{\geq}involves sending $\langle a, x\rangle,\langle b, y\rangle$.
If coefficients a_{i}, b_{i} are of size 2^{C},
communication complexity is roughly $O(C)$.
So $L=\Omega\left(2^{\sqrt[3]{n}-O(C)}\right)$.
Only interesting if $C=O(\sqrt[3]{n})$.

Extensions

Can add random public coin tosses to the game:

- Convert game to a monotone real circuit.
- Replace \vee gates by max gates.
- Replace \wedge gates by min gates.
- Coin tosses correspond to average gates.
- Output is probability that clique player wins.

Pudlák extended the lower bound to this case.

Open questions

Pudlák (1997) proved lower bound for syntactic
Cutting Planes with arbitrary coefficients, using monotone real circuits.
Can BPR/K be extended to arbitrary coefficients?

- Use a randomized "greater than" protocol.
- Allow circuit to err on some inputs.

Open questions

Pudlák (1997) proved lower bound for syntactic
Cutting Planes with arbitrary coefficients, using monotone real circuits.
Can BPR/K be extended to arbitrary coefficients?

- Use a randomized "greater than" protocol.
- Allow circuit to err on some inputs.

Is semantic Cutting Planes stronger than syntactic Cutting Planes?

