Lower Bounds for Cutting Planes Using Games

Yuval Filmus Toniann Pitassi University of Toronto

International Workshop on Logic and Computational Complexity 2011

Executive summary

New perspective on two old results:

- BPR: Lower bounds for cutting planes proofs with small coefficients (Bonet, Pitassi, Raz, 1997).
- K: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic (Krajíček, 1997).

ション 小田 マイビット ビー シックション

Hope is to extend results to arbitrary coefficients.

Semantic Cutting Planes.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

- Semantic Cutting Planes.
- Communication protocols.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).

ション 小田 マイビット ビー シックション

Proof of the lower bound.

- Semantic Cutting Planes.
- Communication protocols.
- The difficult proposition (BPR version).

- Proof of the lower bound.
- Extensions of the framework.

Semantic Cutting Planes

Refutation system with lines of the form

$$\sum_{i} a_{i} x_{i} \geq b$$

Variables x_i are implicitly assumed to be Boolean. Derivation rule: $\ell_1, \ell_2 \vdash \ell$ if every 0/1 assignment satisfying ℓ_1, ℓ_2 also satisfies ℓ .

ション 小田 マイビット ビー シックション

Two players cooperating to calculate f(x, y). Player 1 knows x.

- Player 2 knows y.
- Example: f(x, y) is $\langle a, x \rangle + \langle b, y \rangle \ge c$. Protocol P_{\ge} :
 - Player 1 sends $s_1 \triangleq \langle a, x \rangle$.
 - Player 2 sends $s_2 \triangleq \langle b, y \rangle$.
 - Now both can compute $\langle a, x \rangle + \langle b, y \rangle$.

Transcript (communicated bits): $s_1 s_2$.

Protocol dag is defined by:

- ▶ Set of states S (partial transcripts).
- Starting state $s_0 \in S$.
- Set of final states $F \subset S$.
- At non-final state s, player P(s) sends a bit b.

ション 小田 マイビット ビー シックション

- Protocol transitions to state t(s, b).
- At final state *s*, protocol output is $\varphi(s)$.

Protocol also includes:

- Strategy $\sigma_1(s, x)$ for Player 1.
- Strategy $\sigma_2(s, y)$ for Player 2.

Correctness:

If Player 1 uses σ_1 with her input xand Player 2 uses σ_2 with his input ythen $\varphi(s_{\text{final}}) = f(x, y)$.

ション 小田 マイビット ビー シックション

Protocol also includes:

- Strategy $\sigma_1(s, x)$ for Player 1.
- Strategy $\sigma_2(s, y)$ for Player 2.

Correctness:

If Player 1 uses σ_1 with her input xand Player 2 uses σ_2 with his input ythen $\varphi(s_{\text{final}}) = f(x, y)$.

Players don't have to use $\sigma_1, \sigma_2!$ When they do: *honest run* for *x*, *y*.

Informally:

A graph on *n* vertices both has an *m*-clique and is (m-1)-colorable.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

We take $m = \sqrt[3]{n}$.

Formally:

• x_{vi} : vertex v is *i*th vertex of clique

- ▶ y_{vc}: vertex v gets color c
- ▶ $v \in [n], i \in [m], c \in [m-1]$

Formally:

• x_{vi} : vertex v is *i*th vertex of clique

- ▶ y_{vc}: vertex v gets color c
- ▶ $v \in [n], i \in [m], c \in [m-1]$
- $\forall i: \sum_{v} x_{vi} \geq 1$
- $\forall v, i_1 \neq i_2 \colon x_{vi_1} + x_{vi_2} \leq 1$
- $\forall v_1 \neq v_2, i: x_{v_1i} + x_{v_2i} \leq 1$

Formally:

- x_{vi}: vertex v is ith vertex of clique
- ▶ y_{vc}: vertex v gets color c
- ▶ $v \in [n], i \in [m], c \in [m-1]$
- $\forall i: \sum_{v} x_{vi} \geq 1$
- $\forall v, i_1 \neq i_2 \colon x_{vi_1} + x_{vi_2} \leq 1$
- ► $\forall v_1 \neq v_2, i: x_{v_1i} + x_{v_2i} \leq 1$
- $\forall v: \sum_{c} y_{vc} \geq 1$
- $\forall v, c_1 \neq c_2 \colon y_{vc_1} + y_{vc_2} \leq 1$

Formally:

- x_{vi}: vertex v is ith vertex of clique
- ▶ y_{vc}: vertex v gets color c
- ▶ $v \in [n], i \in [m], c \in [m-1]$
- $\forall i: \sum_{v} x_{vi} \geq 1$
- $\forall v, i_1 \neq i_2 \colon x_{vi_1} + x_{vi_2} \leq 1$
- ► $\forall v_1 \neq v_2, i: x_{v_1i} + x_{v_2i} \leq 1$
- $\forall v: \sum_{c} y_{vc} \geq 1$
- $\forall v, c_1 \neq c_2 \colon y_{vc_1} + y_{vc_2} \leq 1$
- ► $\forall v_1 \neq v_2, i_1 \neq i_2, c: x_{v_1i_1} + x_{v_2i_2} + y_{v_1c} + y_{v_2c} \leq 3$

Plan of proof

Basic idea:

Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Plan of proof

Basic idea:

Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

Monotone circuit takes an input graph G, given as edge variables $G(v_1, v_2)$.

ション 小田 マイビット ビー シックション

- ▶ Returns 1 if *G* has an *m*-clique.
- Returns 0 if G is (m 1)-colorable.

Plan of proof

Basic idea:

Transform a refutation to a monotone circuit of comparable size. Use a monotone circuit lower bound.

Monotone circuit takes an input graph G, given as edge variables $G(v_1, v_2)$.

ション 小田 マイビット ビー シックション

- ▶ Returns 1 if *G* has an *m*-clique.
- Returns 0 if G is (m 1)-colorable.

Lower bound (Alon/Boppana): $2^{\Omega(\sqrt[3]{n})}$.

Plan of reduction

- Two players (clique player and coclique player) play a game on the proof dag.
- Game starts at the final line, proceeds toward the axioms.
- Game ends at an axiom

$$x_{v_1i_1} + x_{v_2i_2} + y_{v_1c} + y_{v_2c} \le 3.$$

- If $G(v_1, v_2) = 1$, clique player wins.
- If $G(v_1, v_2) = 0$, coclique player wins.

Rules of the game

Suppose game is at a line ℓ deduced from ℓ_1, ℓ_2 .

- Players use protocol P_{\geq} to determine which of ℓ_1, ℓ_2 are falsified.
 - Clique player is Player 1.
 - Coclique player is Player 2.
- Record transcripts $\tau(\ell_1), \tau(\ell_2)$.
- Local consistency: τ(ℓ), τ(ℓ₁), τ(ℓ₂) must correspond to some legal honest run *jointly*.
 - Enforced by limiting what bits players can send.
- If l₁ is falsified, proceed to l₁, otherwise proceed to l₂.

Winning strategy for the clique player

- If G has an *m*-clique:
 - Fix an encoding \tilde{x} of an *m*-clique.
 - Clique player plays honestly using x

 at state s, she outputs σ₁(s, x).
 - Local consistency implies:
 each visited line is falsfied by x̃ and some y.
 - Game ends at an axiom

$$x_{v_1i_1} + x_{v_2i_2} + y_{v_1c} + y_{v_2c} \le 3$$

- Must have $\tilde{x}_{v_1 i_1} = \tilde{x}_{v_2 i_2} = 1$.
- Since \tilde{x} encodes a clique, $G(v_1, v_2) = 1$.

From game to circuit

Convert the game to a monotone circuit:

- Construct the state dag of the game.
- Each time it is the clique player's turn to speak, put an v gate.
- Each time it is the coclique player's turn to speak, put an
 A gate.

ション 小田 マイビット ビー シックション

• Replace a (v_1, v_2) leaf with $G(v_1, v_2)$.

From game to circuit

Convert the game to a monotone circuit:

- Construct the state dag of the game.
- Each time it is the clique player's turn to speak, put an ∨ gate.
- Each time it is the coclique player's turn to speak, put an
 A gate.
- Replace a (v_1, v_2) leaf with $G(v_1, v_2)$.
- Clique player has a winning strategy: circuit outputs 1.
- Coclique player has a winning strategy: circuit outputs 0.

Size of circuit

Game states: $\langle \ell, \tau(\ell), \tau(\ell_1), \tau(\ell_2) \rangle$

- ► Current node ℓ
- Transcript $\tau(\ell)$ from previous step

ション 小田 マイビット ビー シックション

• Partial transcripts $\tau(\ell_1), \tau(\ell_2)$

Size of circuit

Game states: $\langle \ell, \tau(\ell), \tau(\ell_1), \tau(\ell_2) \rangle$

- ► Current node ℓ
- Transcript $\tau(\ell)$ from previous step
- Partial transcripts $\tau(\ell_1), \tau(\ell_2)$

Size of circuit: L2^{3C}

- L: number of lines in proof
- C: communication complexity of P_≥ (number of communicated bits)

ション 小田 マイビット ビー シックション

Protocol P_{\geq} involves sending $\langle a, x \rangle, \langle b, y \rangle$. If coefficients a_i, b_i are of size 2^C , communication complexity is roughly O(C). So $L = \Omega \left(2^{\sqrt[3]{n} - O(C)} \right)$.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Only interesting if $C = o(\sqrt[3]{n})$.

Can add random public coin tosses to the game:

- ► Convert game to a monotone *real* circuit.
- ▶ Replace ∨ gates by max gates.
- Coin tosses correspond to average gates.
- Output is probability that clique player wins.

ション 小田 マイビット ビー シックション

Pudlák extended the lower bound to this case.

Open questions

Pudlák (1997) proved lower bound for *syntactic* Cutting Planes with arbitrary coefficients, using monotone real circuits.

Can BPR/K be extended to arbitrary coefficients?

Use a randomized "greater than" protocol.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Allow circuit to err on some inputs.

Open questions

Pudlák (1997) proved lower bound for *syntactic* Cutting Planes with arbitrary coefficients, using monotone real circuits.

Can BPR/K be extended to arbitrary coefficients?

- Use a randomized "greater than" protocol.
- Allow circuit to err on some inputs.

Is semantic Cutting Planes stronger than syntactic Cutting Planes?

ション 小田 マイビット ビー シックション