European Research Council

 הקרן הלאומית למדע

Information Complexity Dagstuhl seminar 22301

$\overline{\mathrm{V}}$ technion 1

The Henry and Marilyn Taub
Faculty of Computer Science

Information Theory

Communication Complexity

$\sqrt{5}$

$f(x, y)$

Communication Complexity

Variants Deterministic: output always correct
Randomized: output correct w.p. 1- ε
Distributional: output correct on $1-\varepsilon$ of inputs
Minimax: randomized = worst distributional
Cost: CC = maximum number of bits transmitted

Equality of n-bit strings

Equality of n-bit strings

Equality of n-bit strings

random $\log (1 / \varepsilon)$ bit

Randomized: $O(\log (1 / \varepsilon))$
(with public coins)
Randomized: $O(\log (n / \varepsilon))$
(with only private coins)

Greater than on n-bit strings (randomized, constant ε)

Using binary search, find maximal common prefix of x, y Following bit reveals which input is larger
Cost per round: O(1)
Number of rounds: logn
$x 01101011$
$y 01100110$

Total cost: O(logn)

Some hard functions

 (randomized)Inner product: $x_{1} y_{1} \oplus \cdots \oplus x_{n} y_{n}$
Randomized cost: $n+1$

Set (non-)disjointness: $x_{1} y_{1} \vee \cdots \vee x_{n} y_{n}$
Randomized cost: ©(n)
Trivial protocol can be improved by constant factor

Why are they hard?

(randomized)
Inner product: $x_{1} y_{1} \oplus \cdots \oplus x_{n} y_{n}$
Hard since involves computing n many ANDs
Set (non-)disjointness: $x_{1} y_{1} v \cdots \vee x_{n} y_{n}$ Hard since involves computing n many ANDs where answer is almost always 0

How to turn this intuition into a proof?

Direct product

 (randomized)
Easier question:

Cost of computing $f\left(x_{1}, y_{1}\right), \ldots, f\left(x_{n}, y_{n}\right) \approx n \times$ cost of computing f ?

Information theory:

Cost of sending n samples of $X \approx n H(X)$
Information complexity:
Cost of computing n copies of $f \approx n \operatorname{IC}(f)$

Information complexity

Goal: Cost of computing n copies of $f \approx n$ IC(f)

Information complexity of protocol P wrt distribution μ :
$\mathrm{IC}(P, \mu)=\mathrm{I}(\Pi ; \mathrm{Y} \mid \mathrm{X})+\mathrm{I}(\Pi ; \mathrm{X} \mid \mathrm{Y})$, where $X, Y=$ inputs, $\Pi=$ transcript of P
"What Alice learns about Bob's input from transcript" + "What Bob learns about Alice's input from transcript"

Information complexity

Goal: Cost of computing n copies of $f \approx n$ IC(f)

Information complexity of protocol P wrt distribution μ :
$\mathrm{IC}(P, \mu)=\mathrm{I}(\Pi ; \mathrm{Y} \mid \mathrm{X})+\mathrm{I}(\Pi ; \mathrm{X} \mid \mathrm{Y})$, where $X, Y=$ inputs, $\Pi=$ transcript of P
"What Alice learns about Bob's input from transcript" +
"What Bob learns about Alice's input from transcript"
IC of function f wrt distribution μ and error ε :
$\operatorname{IC}(f, \mu, \varepsilon)=\min \operatorname{IC}(\mathrm{P}, \mu)$ over all P computing f with error ε wrt μ

Information complexity

Goal: Cost of computing n copies of $f \approx n$ IC(f)

Information complexity of protocol P wrt distribution μ :
$\mathrm{IC}(P, \mu)=\mathrm{I}(\Pi ; \mathrm{Y} \mid \mathrm{X})+\mathrm{I}(\Pi ; \mathrm{X} \mid \mathrm{Y})$, where $X, Y=$ inputs, $\Pi=$ transcript of P
"What Alice learns about Bob's input from transcript" +
"What Bob learns about Alice's input from transcript"
IC of function f wrt distribution μ and error ε :
$\operatorname{IC}(f, \mu, \varepsilon)=\min \operatorname{IC}(\mathrm{P}, \mu)$ over all P computing f with error ε wrt μ IC of function f with error ε :
$\operatorname{IC}(f, \varepsilon)=\max \operatorname{IC}(f, \mu, \varepsilon)$ over all distributions μ

Properties of information complexity

$I C(P, \mu)=I(\Pi ; Y \mid X)+I(\Pi ; X \mid Y)$, where $X, Y=$ inputs, $\Pi=$ transcript of P $\operatorname{IC}(f, \mu, \varepsilon)=\min \operatorname{IC}(P, \mu)$ over all P computing f with error ε wrt μ $\operatorname{IC}(f, \varepsilon)=\max \operatorname{IC}(f, \mu, \varepsilon)$ over all distributions μ

IC lower bounds communication: IC $(f, \mu, \varepsilon) \leq C C(f, \mu, \varepsilon)$
Direct product: $\operatorname{IC}\left(f \otimes g, \mu \otimes v, \varepsilon^{*}\right)=\|C(f, \mu, \varepsilon)+\| C(g, v, \varepsilon)$
"Source coding theorem": CC($\left.f n, \mu n, \varepsilon^{*}\right) \approx n$ IC (f, μ, ε)

Properties of information complexity

$I C(P, \mu)=I(\Pi ; Y \mid X)+I(\Pi ; X \mid Y)$, where $X, Y=$ inputs, $\Pi=$ transcript of P $\operatorname{IC}(f, \mu, \varepsilon)=\min \operatorname{IC}(P, \mu)$ over all P computing f with error ε wrt μ $\operatorname{IC}(f, \varepsilon)=\max \operatorname{IC}(f, \mu, \varepsilon)$ over all distributions μ

IC lower bounds communication: $\| C(f, \mu, \varepsilon) \leq C C(f, \mu, \varepsilon)$
Direct product: $\operatorname{IC}\left(f \otimes g, \mu \otimes v, \varepsilon^{*}\right)=\|C(f, \mu, \varepsilon)+\| C(g, v, \varepsilon)$
"Source coding theorem": $C C\left(f n, \mu n, \varepsilon^{*}\right) \approx n \| C(f, \mu, \varepsilon)$
No analog of Shannon-Fano:
Gap between IC and CC can be exponential!
(True even when measuring average number of bits communicated)

Exact complexity of set disjointness

"Source coding theorem": $\operatorname{CC}\left(f n, \mu^{n}, \varepsilon^{*}\right) \approx n \operatorname{IC}(f, \mu, \varepsilon)$
Version for OR: CC(\vee of n copies of $f, \circ(1)) \approx n \operatorname{IC} 0(f, 0)$ where $\operatorname{IC}^{\circ}(f, 0)=\max \operatorname{IC}(f, \mu, 0)$ over μ supported on $f^{-1}(0)$

Example: $I^{\circ}{ }^{\circ}(A N D, 0)=0.4827 . .$.
Conclusion: CC(set-disjointness,o(1)) $\approx 0.4827 . .$. n
No explicit protocol is known!

Buzzer protocol

Optimal protocol for AND (for symmetric distributions)

Alice gets a bit x, Bob gets a bit y
Alice chooses a random $t_{a} \in[0,1]$
Bob chooses a random $t_{b} \in[0,1]$

Buzzer protocol

Optimal protocol for AND (for symmetric distributions)

Alice gets a bit x, Bob gets a bit y
Alice chooses a random $t_{a} \in[0,1]$
Bob chooses a random $t_{b} \in[0,1]$
A timer counts from 0 to 1 continuously

Buzzer protocol

Optimal protocol for AND (for symmetric distributions)

Alice gets a bit x, Bob gets a bit y
Alice chooses a random $t_{a} \in[0,1]$
Bob chooses a random $t_{b} \in[0,1]$
A timer counts from 0 to 1 continuously
$\left\{\right.$ At time t_{a} : if $x=0$, Alice presses buzzer, protocol outputs 0
At time t_{b} : if $y=0$, Bob presses buzzer, protocol outputs 0

Buzzer protocol

Optimal protocol for AND (for symmetric distributions)

Alice gets a bit x, Bob gets a bit y
Alice chooses a random $t_{a} \in[0,1]$
Bob chooses a random $t_{b} \in[0,1]$
A timer counts from 0 to 1 continuously
$\left\{\right.$ At time t_{a} : if $x=0$, Alice presses buzzer, protocol outputs 0
At time t_{b} : if $y=0$, Bob presses buzzer, protocol outputs 0
At time 1: protocol outputs 1

Generalized protocols

The buzzer protocol is not a real protocol!
It can be discretized to a real protocol with r rounds whose information complexity is OPT $+\Theta\left(1 / r^{2}\right)$. OPT cannot be achieved using any real protocol!

Challenge:
Define a generalized notion of protocols which achieves the optimal information complexity exactly for every f.

More open questions

Amortized communication complexity for zero error?
Information complexity for multiple parties?
Is $C C(f)$ polynomial in $I C(P) \log \operatorname{CC}(P)$?

Bibliography

Monographs

Anup Rao and Amir Yehudayoff, Communication Complexity: And Applications, 2020

Surveys

Mark Braverman, Communication and information complexity, Proc. ICM 2022
Omri Weinstein, Information Complexity and the Quest for Interactive Compression, 2015

Papers

Barak, Braverman, Chen, Rao, How to compress interactive communication, 2013
Braverman, Rao, Information equals amortized communication, 2014
Braverman, Garg, Pankratov, Weinstein, From information to exact communication, 2013

