

European Research Council

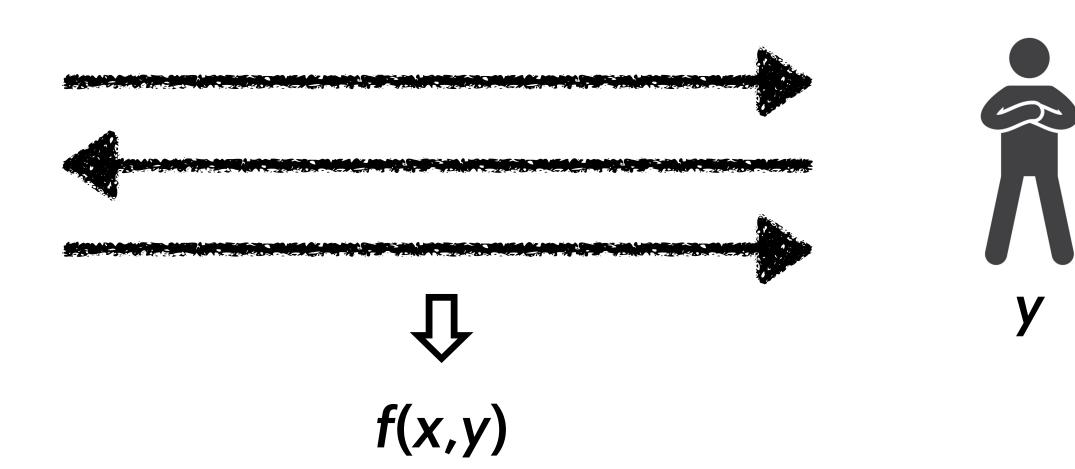
Established by the European Commission

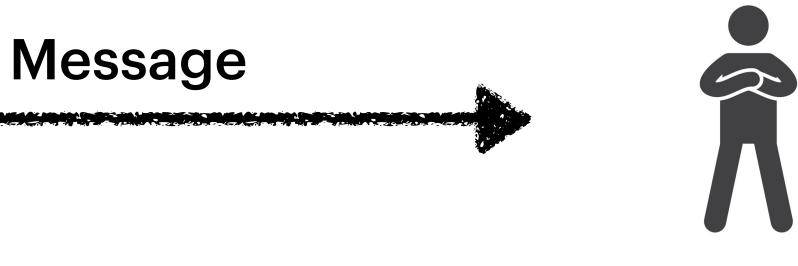
Information Complexity Dagstuhl seminar 22301

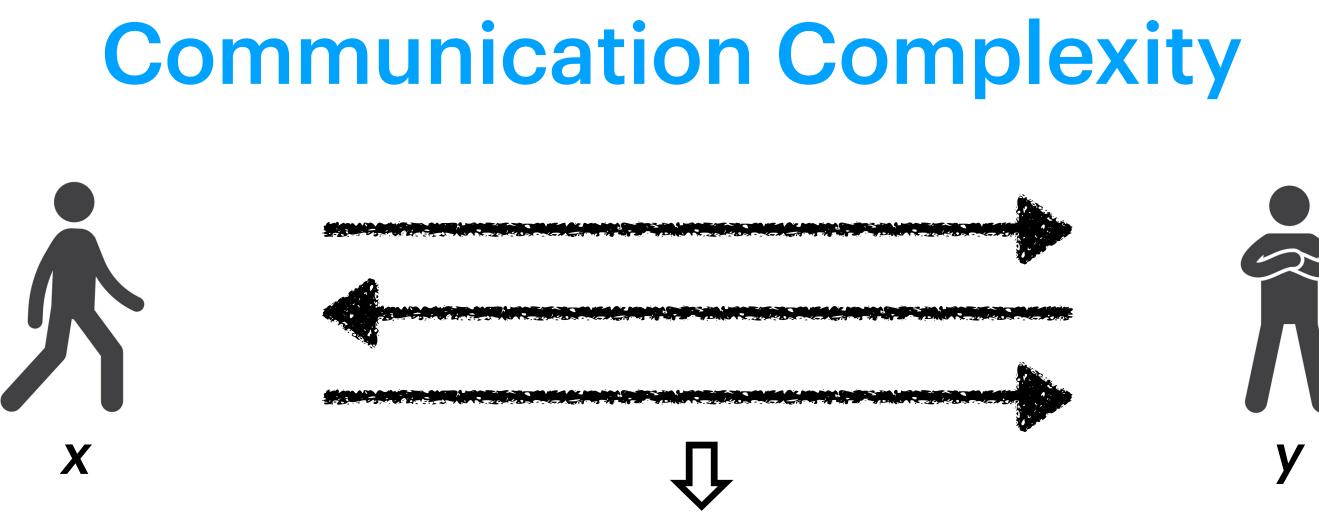
Yuval Filmus, 28 July 2022

Information Theory

Communication Complexity





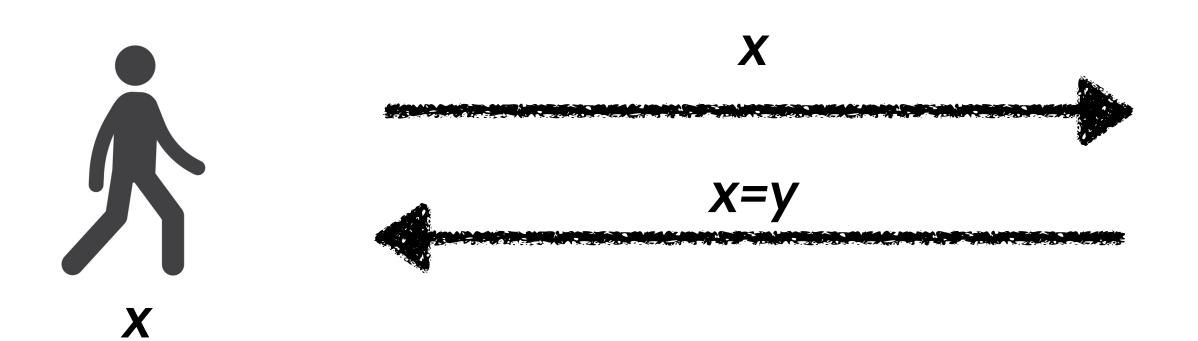


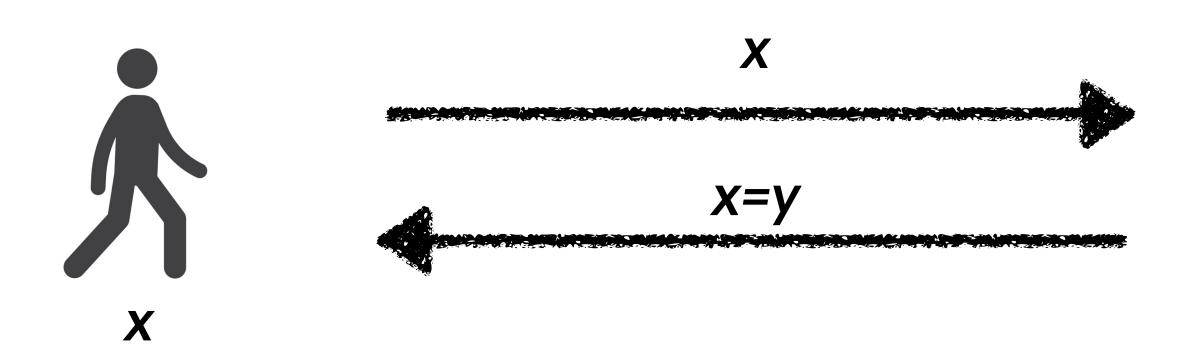
Variants

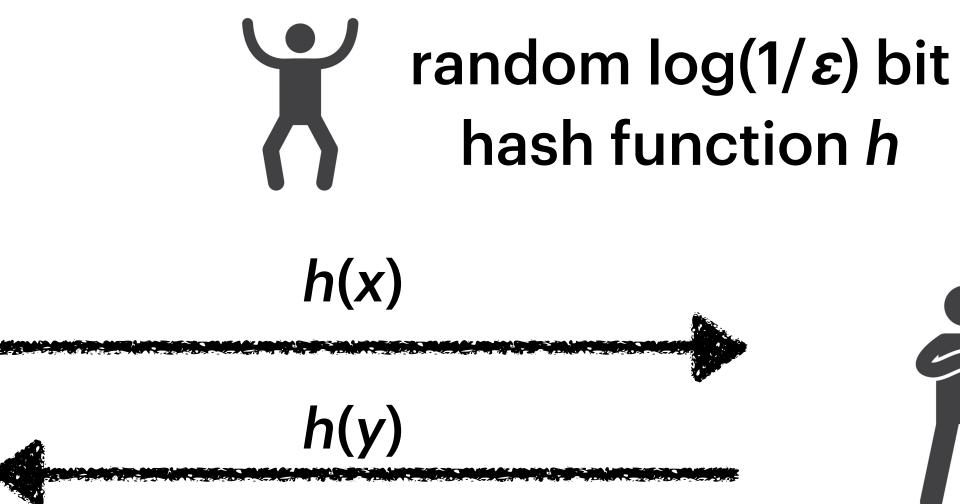
Deterministic: output always correct Randomized: output correct w.p. $1-\varepsilon$ Distributional: output correct on $1-\varepsilon$ of inputs Minimax: randomized = worst distributional Cost: CC = maximum number of bits transmitted

f(x,y)

Equality of *n*-bit strings

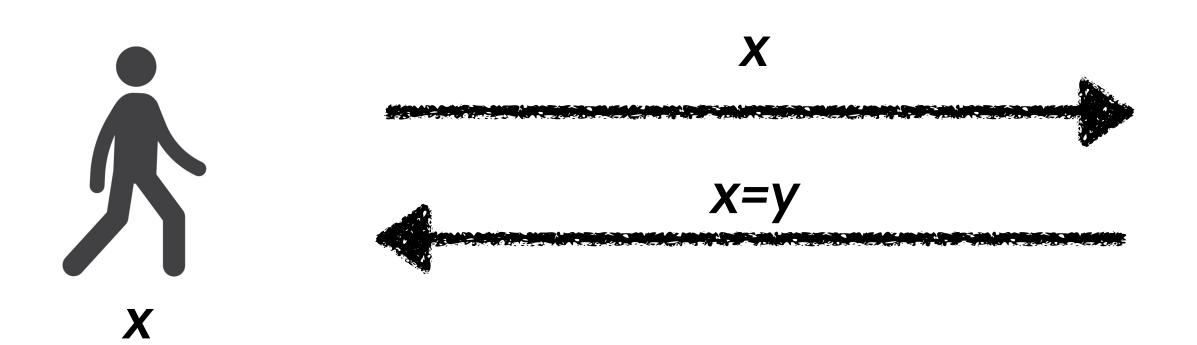






Randomized: $O(\log(1/\varepsilon))$ (with public coins)

Equality of *n*-bit strings

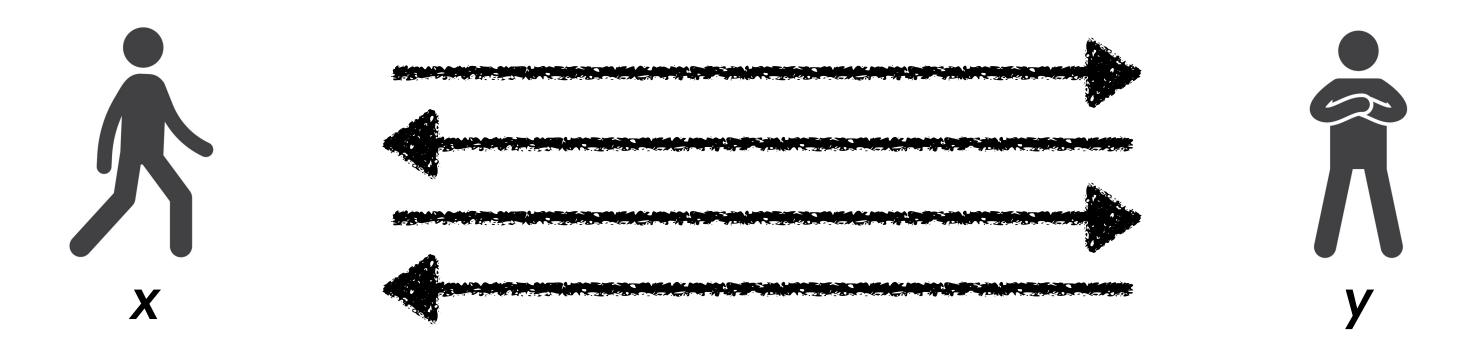


random $log(1/\varepsilon)$ bit hash function h h, h(x) h(y)

Randomized: $O(\log(1/\varepsilon))$

(with only private coins)

Greater than on *n***-bit strings** (randomized, constant ε)



Following bit reveals which input is larger Cost per round: O(1) Number of rounds: logn Total cost: O(logn)

Using binary search, find maximal common prefix of x,y

Some hard functions (randomized)

Inner product: $x_1y_1 \oplus \cdots \oplus x_ny_n$ Randomized cost: n+1

Set (non-)disjointness: $x_1y_1 \vee \cdots \vee x_ny_n$ Randomized cost: $\Theta(n)$ Trivial protocol can be improved by constant factor

Why are they hard? (randomized)

Inner product: $x_1y_1 \oplus \cdots \oplus x_ny_n$ Hard since involves computing n many ANDs

Set (non-)disjointness: $x_1y_1 \vee \cdots \vee x_ny_n$ Hard since involves computing *n* many ANDs where answer is almost always O

How to turn this intuition into a proof?

Easier question:

Information theory: Cost of sending *n* samples of $X \approx n H(X)$

Information complexity: Cost of computing *n* copies of $f \approx n \text{ IC}(f)$

Direct product (randomized)

Cost of computing $f(x_1, y_1), \dots, f(x_n, y_n) \approx n \times \text{cost of computing } f$?

Information complexity

Goal: Cost of computing *n* **copies of** *f* ≈ *n* **IC(***f* **)**

Information complexity of protocol P wrt distribution μ :

"What Alice learns about Bob's input from transcript" + "What Bob learns about Alice's input from transcript"

- $IC(P,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$, where X,Y=inputs, Π =transcript of P

Information complexity

Goal: Cost of computing *n* copies of *f* ≈ *n* IC(*f*)

Information complexity of protocol P wrt distribution μ :

"What Alice learns about Bob's input from transcript" + "What Bob learns about Alice's input from transcript"

IC of function f wrt distribution μ and error ϵ :

- $IC(P,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$, where X,Y=inputs, Π =transcript of P
- $IC(f,\mu,\varepsilon) = \min IC(P,\mu)$ over all P computing f with error ε wrt μ

Information complexity

Goal: Cost of computing *n* copies of *f* ≈ *n* IC(*f*)

Information complexity of protocol P wrt distribution μ :

"What Alice learns about Bob's input from transcript" + "What Bob learns about Alice's input from transcript"

IC of function f wrt distribution μ and error ϵ :

IC of function f with error ε : $IC(f,\varepsilon) = max IC(f,\mu,\varepsilon)$ over all distributions μ

- $IC(P,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$, where X,Y=inputs, Π =transcript of P
- $IC(f,\mu,\varepsilon) = \min IC(P,\mu)$ over all P computing f with error ε wrt μ

Properties of information complexity

 $IC(P,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$, where X,Y=inputs, Π =transcript of P $IC(f,\mu,\varepsilon) = \min IC(P,\mu)$ over all P computing f with error ε wrt μ $IC(f,\varepsilon) = \max IC(f,\mu,\varepsilon)$ over all distributions μ

IC lower bounds communication: $IC(f,\mu,\varepsilon) \leq CC(f,\mu,\varepsilon)$ Direct product: $IC(f \otimes g, \mu \otimes v, \varepsilon^*) = IC(f, \mu, \varepsilon) + IC(g, v, \varepsilon)$ "Source coding theorem": $CC(f^n, \mu^n, \varepsilon^*) \approx n IC(f, \mu, \varepsilon)$

Properties of information complexity

 $IC(P,\mu) = I(\Pi;Y|X) + I(\Pi;X|Y)$, where X,Y=inputs, Π =transcript of P $IC(f,\mu,\varepsilon) = \min IC(P,\mu)$ over all P computing f with error ε wrt μ $IC(f,\varepsilon) = \max IC(f,\mu,\varepsilon)$ over all distributions μ

IC lower bounds communication: $IC(f,\mu,\varepsilon) \leq CC(f,\mu,\varepsilon)$ Direct product: $IC(f \otimes g, \mu \otimes v, \varepsilon^*) = IC(f, \mu, \varepsilon) + IC(g, v, \varepsilon)$

"Source coding theorem": $CC(f^n, \mu, \varepsilon^*) \approx n IC(f, \mu, \varepsilon)$

No analog of Shannon–Fano: Gap between IC and CC can be exponential!

- - *error per copy
- (True even when measuring average number of bits communicated)

Exact complexity of set disjointness

"Source coding theorem": $CC(f^n, \mu, \varepsilon^*) \approx n IC(f, \mu, \varepsilon)$ Version for OR: CC(\lor of *n* copies of *f*,*o*(1)) \approx *n* IC⁰(*f*,O)

Example: $IC^{0}(AND, 0) = 0.4827...$ Conclusion: CC(set-disjointness,o(1)) $\approx 0.4827...n$

No explicit protocol is known!

- where IC⁰(f,0)=max IC(f, μ ,0) over μ supported on f⁻¹(0)

Alice gets a bit x, Bob gets a bit y Alice chooses a random $t_a \in [0,1]$ Bob chooses a random $t_b \in [0,1]$

Optimal protocol for AND (for symmetric distributions)

Optimal protocol for AND (for symmetric distributions) Alice gets a bit x, Bob gets a bit y Alice chooses a random $t_a \in [0,1]$ Bob chooses a random $t_b \in [0,1]$ A timer counts from 0 to 1 continuously

Optimal protocol for AND (for symmetric distributions) Alice gets a bit x, Bob gets a bit y Alice chooses a random $t_a \in [0,1]$ Bob chooses a random $t_b \in [0,1]$ A timer counts from 0 to 1 continuously

- At time t_a : if x=0, Alice presses buzzer, protocol outputs 0 At time t_b : if y=0, Bob presses buzzer, protocol outputs 0

Optimal protocol for AND (for symmetric distributions) Alice gets a bit x, Bob gets a bit y Alice chooses a random $t_a \in [0,1]$ Bob chooses a random $t_b \in [0,1]$ A timer counts from 0 to 1 continuously At time 1: protocol outputs 1

- At time t_a : if x=0, Alice presses buzzer, protocol outputs 0 At time t_b : if y=0, Bob presses buzzer, protocol outputs 0

Generalized protocols

The buzzer protocol is not a real protocol! It can be discretized to a real protocol with *r* rounds whose information complexity is $OPT+O(1/r^2)$. OPT cannot be achieved using any real protocol!

Challenge: Define a generalized notion of protocols which achieves the optimal information complexity **exactly** for every *f*.

More open questions

Amortized communication complexity for zero error?

Information complexity for multiple parties?

Is CC(f) polynomial in IC(P) log CC(P)?

Monographs

Surveys

Mark Braverman, Communication and information complexity, Proc. ICM 2022 Papers

Braverman, Rao, Information equals amortized communication, 2014

Anup Rao and Amir Yehudayoff, Communication Complexity: And Applications, 2020

Omri Weinstein, Information Complexity and the Quest for Interactive Compression, 2015

- Barak, Braverman, Chen, Rao, How to compress interactive communication, 2013
- Braverman, Garg, Pankratov, Weinstein, From information to exact communication, 2013

2022 Abacus Medal awarded to Mark Braverman

