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Yesterday we have described classical Boolean function analysis on the Boolean cube. Today we will de-
scribe some other domains, focusing mainly on association schemes and related structures, but also discussing
differential posets.

1 Association schemes

A graph G is distance-regular if for every i, j, the size of the set

{z : d(x, z) = i and d(y, z) = j}

depends only on d(x, y). Here d(x, y) is the distance between x and y in G.
A metric or P -polynomial association scheme is the same thing as a connected distance-regular graph.
Here is a simple example: the Boolean cube. The distance between two vertices is the Hamming distance

of the corresponding Boolean vectors. The group Sn acts transitively on the Boolean cube in the natural
way. The orbits of its action on pairs of vertices are {(x, y) : d(x, y) = d}. This implies that the Boolean
cube is distance-regular. We can also give an explicit formula for the number of z such that d(x, z) = i and
d(y, z) = j if d(x, y) = k:

Nijk :=


k

k−i+j
2


n− k
i−k+j

2


.

The Bose–Mesner algebra of an association scheme consists of all V × V matrices A in which A(x, y)
depends only on d(x, y), say A(x, y) = α(d(x, y)). If A,B are in the algebra then

(AB)(x, y) =


z

A(x, z)B(z, y) =


i,j

Nijd(x,y)α(i)β(j),

and so the algebra is closed under multiplication. Moreover, clearly Nijk = Njik (since d(y, x) = d(x, y)),
and so the algebra is commutative. Its dimension is 1 + diam(G).

Since the Bose–Mesner algebra is commutative, all matrices in the algebra have the same 1 + diam(G)
eigenspaces. For example, let us examine the Boolean cube once again, which we identify with {±1}n. Let
χS(x) =


i∈S xi. If A is in the Bose–Mesner algebra of the cube, then

(AχS)(x) =


y

A(x, y)χS(y) =


y

A(xy,1)χS(y) =


y

A(y,1)χS(xy) = χS(x)


y

A(y,1)χS(y).

This shows that χS is an eigenvector of A. Furthermore, the symmetry of the Boolean cube under the action
of Sn guarantees that the eigenvalue associated with χS depends only on |S|. Thus A has n+1 eigenspaces.
The dth eigenspace is spanned by {χS : |S| = d}, and consists of all homogeneous degree d multilinear
polynomials.
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Let us denote the dth common eigenspace by Vd, and the projection of a function f on the Boolean cube
to Vd by f=d. Notice that the degree of f is the maximal d such that f=d ∕= 0. This notion of degree satisfies
the property of subadditivity:

deg(fg) ≤ deg f + deg g.

An association scheme which satisfies this property for some ordering of the common eigenspaces is known
as cometric or Q-polynomial.

1.1 Some examples

There are four standard examples of association schemes which are both metric and cometric (there are
other examples as well, such as polar spaces).

Hamming scheme The Hamming scheme H(n, d) is the graph on Zn
d in which two points (x, y) are

connected if they differ in one coordinate. When d = 2, this is just the Boolean cube. When d > 2, we get
the multicube. The Hamming scheme can be studied as an association scheme, but a more refined analysis
follows from using Fourier analysis on the group Zn

d .

Johnson scheme The Johnson scheme J(n, k) (also known as the slice) is the graph on

[n]
k


in which

two sets S, T are connected if |S△T | = 2 or, equivalently, if |S ∩ T | = k − 1. More generally, d(S, T ) =
|S△T |/2 = k − |S ∩ T |. Boolean function analysis on the Johnson scheme has been thoroughly studied, as
we explain in some detail later on.

Grassmann scheme The Grassmann scheme Jq(n, k), where q is a prime power, is the graph of all k-
dimensional subspaces of an Fq-vector space of dimension n. Two subspaces U, V are connected if dim(U ∩
V ) = k − 1, and more generally d(U, V ) = k − dim(U ∩ V ). The number of points in the scheme is given by
the q-binomial coefficient


n
k


q
.

The definition of the Grassmann scheme is very similar to that of the Johnson scheme, and it is known as
the q-analog of the Grassmann scheme; the Johnson scheme is the case q = 1. For example, limq→1


n
k


q
=


n
k


.

However, the two schemes have different qualitative behavior, for various reasons. One example is the
dimensions of the eigenspaces: for the Johnson scheme they grow polynomially, while for the Grassmann
scheme they grow exponentially.

Bilinear scheme The bilinear scheme Hq(n, d), where q is a prime power, is the graph of all n×d matrices
over Fq. Two matrices A,B are connected if rank(A−B) = 1. and more generally d(A,B) = rank(A−B).
This is the q-analog of the Hamming scheme.

Relation between Grassmann and bilinear schemes It turns out that the bilinear scheme Hq(n, d)
can be realized as a subset of the Grassmann scheme Jq(n + d, n) consisting of all subspaces having trivial
intersection with a fixed subspace of degree d. This construction is called an attenuated space.

The recent work of Khot, Minzer and Safra uses a relation in the opposite direction: If d ≪ n, then the
rows of an n × d matrix have full rank with high probability, and so define a point of Jq(n, d). This allows
analyzing Jq(n, k) through Hq(n, k), which turns out to be simpler to handle.

Spatial degree We have described above how to define degree for a cometric association scheme. For the
examples given above, this notion coincides with a spatial definition via juntas: a function has degree d if it
is a linear combination of d-juntas. The definition of d-junta depends on the scheme:

• Hamming scheme: A function is a d-junta if it depends on d inputs.

• Johnson scheme: We think of the Johnson scheme as a subset of the Hamming scheme, and then use
the same definition.
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• Grassmann scheme: A function f is a d-junta if f(V ) depends on whether or not x1 ∈ V, . . . , xd ∈ V
for some vectors x1, . . . , xd.

(For the bilinear scheme the definition seems less natural.)

Other examples An interesting example of an association scheme which is neither metric not cometric
is the perfect matching scheme, in which the points are perfect matchings on 2n points, and the notion of
distance is the cycle structure of the union of two matchings.

1.2 More on the Johnson scheme

Let us think of the points of the Johnson scheme as 0, 1-vectors of length n containing exactly k many 1s.
When considering functions on the scheme, we think of them as having n 0, 1 inputs x1, . . . , xn.

Dunkl proved the following fundamental theorem concerning the Johnson scheme J(n, k):

Theorem. Every function on J(n, k) has a unique representation as a multilinear polynomial P of degree
at most min(k, n− k) which satisfies

n

i=1

∂P

∂xi
= 0.

We call such a polynomial harmonic.

Some examples of harmonic polynomials are 1, x1 − x2, (x1 − x2)(x3 − x4), and so on. In fact, these
examples span the space of all harmonic multilinear polynomials.

This representation is not only unique, but also allows us to give a simple description of the common
eigenspaces of the scheme: they consist of homogeneous degree d harmonic multilinear polynomials, where
0 ≤ d ≤ min(k, n− k).

The first to consider the Johnson scheme from a Boolean function analysis perspective were O’Donnell
and Wimmer, who generalized the KKL theorem to the scheme. They utilized a result of Lee and Yau, who
proved hypercontractivity for the Johnson scheme when 0 ≪ k/n ≪ 1 (what they actually did was calculate
the log Sobolev constant for all values of k, n).

Here is a list of some results on the Johnson scheme:

• KKL (O’Donnell–Wimmer).

• Friedgut’s junta theorem (Wimmer, F.).

• FKN (F.).

• Kindler–Safra (Keller–Klein).

• Explicit orthogonal basis (F.).

• Invariance principle and its consequences (F.–Kindler–Mossel–Wimmer, F.–Mossel).

• Tight bound on number of relevant variables in a bounded degree Boolean function, à la Nisan–Szegedy
(F.–Ihringer).

Perhaps the most interesting result here is the invariance principle. It shows that when 0 ≪ k/n ≪ 1,
an o(

√
n)-degree harmonic multilinear polynomial has similar distribution on J(n, k) and on µk/n({0, 1}n).

In contrast to classical invariance principle, which only works when all influences are small, this invariance
principle only requires the degree to be small.

The invariance principle suggests that the correct way to extend a function from a slice to the entire
Boolean cube is via its unique harmonic multilinear representation.
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1.3 More on the Grassmann scheme

Not much is known on Boolean function analysis on the Grassmann scheme. The analysis of the Grassmann
agreement test, due to Khot, Minzer, and Safra, is a Kindler–Safra-like theorem. F. and Ihringer charac-
terized all Boolean degree 1 functions. To the best of my knowledge, there are no other results on this
scheme.

1.4 Beyond association schemes

Boolean function analysis has been considered on domains beyond association schemes. The most prominent
example is the symmetric group.

We can define the concept of degree on the symmetric group in two different ways: spectrally and
specially. Spectrally, a function on Sn has degree at most d if its Fourier transform is supported by irreps
with at most d squares beyond the first line.

Spatially, a function on Sn has degree at most d if it is a linear combination of d-juntas, where a d-junta
is a function that depends on d entries of the permutation matrix representation of the input. Ellis, F. and
Friedgut proved FKN and Kindler–Safra theorems for Sn, and Ellis, Friedgut and Pilpel characterized all
Boolean degree 1 functions.

The slice can be realized as the set of left cosets of Sk × Sn−k inside Sn. Alternatively, this is the
permutation module Mn−k,k corresponding to a two-rowed tableau. Every irrep occurs once in Mn−k,k (we
say that (Sn, Sk × Sn−k) is a Gelfand pair), and this is behind the commutativity which makes the slice a
scheme.

Another domain, which so far hasn’t been studied, is the multislice, a generalization of the slice into a
multicolored setting, in which we replace Sk × Sn−k with a product of more than two symmetric groups.
Alternatively, the multislice consists of a c-coloring of {1, . . . , n} with given histogram, the case c = 2
corresponding to the slice. Not much is known about the multislice. Indeed, neither hypercontractivity nor
a unique representation theorem are known at present.

1.5 How to study association schemes

One difficulty in studying association schemes beyond the Hamming schemes is apparent already in the
Johnson scheme: it is the absence of a Fourier basis. While there does exist a canonical basis, the Gelfand–
Tsetlin basis, it is not as useful as the usual Fourier basis, since it depends on an ordering of the coordinates.

Another difficulty arises in the Johnson scheme when k/n is small. This is a regime in which the classical
FKN theorem doesn’t hold. The classical FKN theorem states that if f is a Boolean function and f>1
is small, then f is close to a dictator (a function depending on a single coordinate). This is no longer true
when k/n is small: instead, f could depend on O(n/k) coordinates. This particular difficulty is already
apparent in the p-biased cube for small p, a domain which has classically been studied only in the context
of sharp threshold theorems, which are the small p analogs of Friedgut’s junta theorem. F. generalized the
FKN theorem to this setting, and recently, Dinur, F. and Harsha generalized the Kindler–Safra theorem to
this setting. All these results generalize to the slice with small k/n.

A new difficulty arises for the Grassmann scheme. The mapping V → V ⊥ maps Jq(n, k) to the isomorphic
Jq(n, n− k). However, whereas the corresponding mapping S → S on the Johnson scheme is quite benign,
in the Grassmann scheme it highlights a duality, which we illustrate by considering degree 1 functions. As
stated above, a function has degree 1 if it is a linear combination of the functions 1x∈V . It turns out that
instead of the collection 1x∈V , we can take the collection 1y⊥V (on the Johnson scheme, this would be 1y/∈S ,
which is equivalent to 1x∈S).

In applications we may not know in advance which of the two bases to use, and indeed sometimes we
need to use a combination of bases. This is what makes the proof of Khot–Minzer–Safra so challenging.
They are able to move between the two bases using the Fourier transform on the Boolean cube.
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2 Differential posets

We can think of the Boolean hypercube as the lattice of all subsets of a set {1, . . . , n}. Denote by Pk the kth
level of this lattice, which corresponds to the kth slice. The operator U maps functions on Pk to functions
on Pk+1. It is defined by (Uf)(S) =


T⊳S f(T ). We can similarly defined an operator D mapping functions

on Pk to functions on Pk−1. Notice that

(UDf)(S) =


|T△S|=2

f(T ) + kf(S),

(DUf)(S) =


|T△S|=2

f(T ) + (n− k)f(S).

Therefore DU − UD = (n− 2k)I. A differential lattice is a lattice in which DU − UD is a scalar for every
starting level.

The original example was the Young lattice of all (unfilled) Young diagrams, in which the scalar doesn’t
depend on the level. Another example is the q-cube, consisting of all subspaces of an n-dimensional Fq-vector
space.

We can use the Boolean lattice to study the slice. Let k ≤ n/2. Every element x of the poset at level
0 ≤ ℓ ≤ k corresponds to a function on level k given by fx(y) = 1 if x ≤ y (i.e., if x ⊆ y). A linear
combination f of such functions, which we identify with a function on levels 0 ≤ ℓ ≤ k, is harmonic if
Df = 0 (where D now maps P0 ∪ · · · ∪ Pk to P0 ∪ · · · ∪ Pk−1, and maps P0 to zero).

The unique representation of functions on the Grassmann scheme can be obtained in exactly the same
way.

The unique representation theorem has the following abstract formulation.

Theorem. Let P be a (sequentially) differential posets, and let DU − UD = rkI at level k. Suppose
further that the poset satisfies the unitary Peck property: |Pk| = |Pn−k|; |P0| < |P1| < · · · < |P⌊n/2⌋|; and
ri + · · ·+ rj ∕= 0 for j ≤ n− i.

For k ≤ n/2, every function f on Pk has a unique representation

f =

k

d=0

Uk−df=d,

where f=d is a function on Pd satisfying Df=d = 0. Moreover, the different components are orthogonal.

Here orthogonality is with respect to the uniform measure on the Pk. Let us briefly explain how orthog-
onality is proved. The operations U,D are adjoint, and so

〈Uk−df=d, Uk−ef=e〉 = 〈f=d, Dk−dUk−ef=e〉.

Suppose now that k− d > k− e. Using the relation DU −UD = rℓI, we can move the Ds to the right-hand
side. Since k − d > k − e, we will get a bunch of terms having D at the right end, and so Df=e = 0 implies
that the entire inner product vanishes.

Similar ideas apply for analyzing high-dimensional expanders, which are high-dimensional analogs of
expander graphs. The setup is more complicated since the correct measure on the slices is not uniform, and
since DU − UD is only close to a scalar, but some of the results can be recovered.

3 Other domains

Let us briefly mention a few other interesting domains.
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Quantum Fourier analysis The Pauli matrices are four 2 × 2 Hermitian matrices which form a basis
for the space of 2 × 2 Hermitian matrices over the reals. Tensorizing, this gives a Fourier basis for 2n × 2n

Hermitian matrices.
In quantum computing we are mainly interested in unitary operators. A unitary Hermitian matrix A

satisfies the identity A2 = I, which is analogous to the identity f2 = 1 satisfied by {±1}-valued functions on
the Boolean cube.

Montanaro and Osborne initiated the study of the space of Hermitian matrices from the perspective of
Boolean function analysis. They identified analogs of basic concepts such as the Fourier expansion (which is
the Pauli expansion), degree, influences, the noise operator, and even hypercontractivity and (later) reverse
hypercontractivity. They proved analogs of the FKN theorem. It would be interested to continue their study.

Continuous spaces Gaussian space is just one example of a continuous space of interest in Boolean
function analysis (due to the invariance principle, relating it to the Boolean cube). The noise operator on
Gaussian space is the Ornstein–Uhlenbeck semigroup, which corresponds to Brownian motion. Other spaces
of potential interest include spheres and tori, the latter with the heat semigroup as a noise operator.

Raphael Bouyrie has shown that several results in Boolean function analysis can be proved in similar
ways both in discrete settings and in continuous settings. One example is a generalization of Friedgut’s junta
theorem to bounded (rather than Boolean) functions.

Error-correcting codes Barak, Gopalan, H̊astad, Meka, Raghavendra, and Steurer generalized Boolean
function analysis to locally testable codes. They proved several intriguing results for the particular case of
Reed–Muller codes, including an invariance principle and, as corollary, Majority is Stablest.
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